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deviation (SCAD) [8], the log-sum penalty function (LSP) [5], the minimax concave penalty
(MCP) [31], and the capped ℓ1-regularization (Capped ℓ1)[32], among others. Compared
to their convex counterparts, the nonconvex regularizers can eliminate estimation biases
and achieve more refined statistical rates of convergence [9]. However, solving problem
(1.1) becomes more challenging due to the nonconvex and nonsmooth nature of the DC
regularizer.

For the problem (1.1) when f is convex and g2 = 0, a large number of proximal Newton-
type methods (PNMs) (also known as sequential quadratic approximal methods) has been
proposed. In a generic proximal Newton-type method, the kth iteration involves first com-
puting an approximate solution x̂k to the subproblem obtained by approximating the smooth
part f quadratically in (1.1):

min
x∈Rn

f(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)

THk(x− xk) + g1(x), (1.2)

where Hk is a symmetric positive definite matrix as an approximation of the Hessian
∇2f(xk). Subsequently, the iterate xk+1 is obtained by performing a backtracking line
search along the direction x̂k − xk. In fact, several PNMs and their variants (see, e.g.,
[10, 29, 12, 22, 3, 25, 33]) for solving special instances of problem (1.1) with f being convex
and g2 = 0 have been proposed. Although they exhibit good numerical performance, achiev-
ing global convergence, the methods need to solve subproblem (1.2) exactly, which is time
consuming in practice. To address this issue, several families of the PNMs along with inexact
stopping criterion for the subproblem (1.2) were proposed. Those inexact methods reserve
global convergence and local superlinear convergence rates [13, 4] under the condition that f
is strongly convex. Unfortunately, such strong convexity is often absent in many interesting
applications, such as the ℓ1-regularized least squares regression problem, especially when
the number of features is much greater than the sample size. To overcome these challenges,
Yue et al. [30] and Mordukhovich et al. [19] proposed similar frameworks of inexact PNMs,
respectively. Both of them allow inexact solutions to the subproblem (1.2). Without the
requirement of strong convexity on f , both methods still possess global convergence and
local superlinear convergence rates.

Our purpose in this paper is to solve the nonconvex problem (1.1). Several variants
of proximal gradient methods (combined with a majorization technique) for solving (1.1)
have been proposed [18, 11, 15]. Those methods are first-order methods. We are interested
in second-order methods. Specifically, we approximate the smooth part of f quadratically
while approximate the concave term −g2 at xk linearly, which yields the subproblem

min
x∈Rn

f(xk)− g2(xk) + (∇f(xk)− ξk)
T (x− xk) +

1

2
(x− xk)

THk(x− xk) + g1(x), (1.3)

where Hk ∈ Sn
++ (the set of all symmetric and positive definite matrices) is an approximate

Hessian of f at xk, and ξk is a subgradient of the subdifferential of g2 at xk. Liu et al. [17]
proposed an inexact successive quadratic approximation method (sSQAmajor) and derived
the iteration complexity for obtaining an approximate ε-stationary point. Nakayama et al.
[20] proposed an inexact proximal DC Newton-type method (mLBGS), in which Hk was
updated by some memoryless BFGS formula, and also discussed the numerical method for
solving the subproblem (1.3). To ensure the convergence, both above methods require the
assumption that the smallest eigenvalue λmin(Hk) of the matrix Hk has a positive lower
bound. We notice that in a recent work, Mordukhovich et al. [19] proposed a PNM method
for solving the convex problem (1.1) with g2 = 0. The global convergence and locally
superlinear convergence rate were achieved without the assumption that λmin(Hk) has a
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positive lower bound. Our purpose of this paper is to develop an efficient PNM method
called the inexact regularized proximal Newton-type method (IRP), for solving (1.1).

The contributions of the paper can be summarized as follows:

(1) We propose the IRP (Algorithm 1) for solving nonconvex composite optimization prob-
lem (1.1). Particularly, we develop a novel inexact rule (2.7) to assess the inexactness
of solution to subproblem (1.3).

(2) We establish the global convergence (Theorem 2.5) of the IRP without the requirement
of the positive lower bound of {λmin(Hk)}k≥0.

(3) We conduct numerical experiments to solve the problem (1.1) with convex and non-
convex loss functions, along with four distinct DC regularizers on large-scale data sets,
and demonstrate the superiority of IRP over three existing methods in terms of both
objective function values achieved and the number of iterations required to reach the
stopping criteria.

The rest of the paper is organized as follows. In Section 2, we propose the IRP and
analyze its global convergence. In Section 3, we present numerical results of four methods
for solving the problem (1.1) using a convex loss function or a nonconvex loss function
under four different DC regularizers on large-scale data sets. Finally, Section 4 concludes
this paper.

2 The Algorithm and Its Convergence

In this section, we will design an inexact proximal Newton-type method for solving the
nonconvex composite optimization problem (1.1) and also show its global convergence. We
first introduce the concept of the critical point, which will be useful for characterizing the
convergence result of our algorithm.

Definition 2.1 ([28]). A point x∗ ∈ Rn is said to be a critical point of the problem (1.1) if

0 ∈ ∇f (x∗) + ∂g1 (x
∗)− ∂g2 (x

∗) ,

where ∂gi(x
∗) is the subdifferential of gi at x

∗ for i = 1, 2, i.e.,

∂gi(x
∗) = {ξi | gi(x) ≥ gi(x

∗) + ξTi (x− x∗), ∀x ∈ Rn}, i = 1, 2.

It is well-known that if f is convex and g2 ≡ 0, then x is a solution to (1.1) if and only
if it is a critical point of (1.1).

Notice that in the case where f is convex, the problem (1.1) is a DC programming. In a
typical DC algorithm (see, e.g, [26]), the subproblem is the the following convex subproblem

min
x∈Rn

f(x) + g1(x)− g2 (xk)− ξTk (x− xk) , (2.1)

where ξk ∈ ∂g2(xk). The optimality condition for the above subproblem (2.1) can be
expressed as

0 ∈ ∇f (x)− ξk + ∂g1(x).

Then the proximal residual mapping associated with (2.1) is given by

Gk(x) := x− Proxg1(x−∇f(x) + ξk),
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where for a closed proper convex mapping g : Rn → (−∞,+∞], its proximal mapping is
defined as

Proxg(u) := argmin

{
g(x) +

1

2
∥x− u∥2

∣∣∣ x ∈ Rn

}
, u ∈ Rn. (2.2)

In what follows, we extend this idea to solve the nonconvex problem (1.1). In stead of (2.1),
in our method, the subproblem is the following quadratic approximation to it

min
x∈Rn

qk(x) := f (xk)− g2(xk) + (∇f (xk)− ξk)
T (x− xk) +

1

2
(x− xk)

T
Hk (x− xk) + g1(x),

(2.3)
where the matrix Hk is an approximate to the Hessian ∇2f(xk) that takes the form

Hk := Bk + αkI with αk = min{ᾱ, c∥Gk(xk)∥ρ} (2.4)

for some given positive constants ᾱ, c and ρ ∈ (0, 1]. In the case where f is convex and
g2 ≡ 0, the method reduces to the method in [19]. If f is convex and g1 = g2 ≡ 0, the
method with Bk = ∇2f(xk) reduces to the regularized Newton method for solving convex
unconstrained optimization problem by Li et. al. [14].

We will let matrix Bk satisfy the following condition

Bk ∈ Sn
+ and there exists a number M ≥ 0 such that ∥Bk∥ ≤ M for all k = 0, 1, . . . . (2.5)

In the case that f is convex, if we take Bk = ∇2f(xk), then the above condition is satisfied
[1, Theorem 5.12].

We define the proximal residual mapping associated with (2.3) by

rk(x) := x− Proxg1 (x− (∇f (xk)− ξk)−Hk (x− xk)) . (2.6)

It is single-valued and continuous [24, Theorem 2.26].

Observing that ∥rk (x̂k)∥ = 0 if and only if x̂k is an exact solution to subproblem (2.3).
Thus it is reasonable to use ∥rk(x̂k)∥ for measuring the quality of the approximate solution
x̂k of (2.3). Taking this into account, we use the following two inequalities as the inexact
stopping criteria for the subproblem (2.3)

∥rk (x̂k)∥ ≤ ηk ∥Gk (xk)∥ and qk (x̂k) ≤ qk (xk) , (2.7)

where

Gk(x) := x− Proxg1(x−∇f(x) + ξk), ∀x ∈ Rn, (2.8)

and ηk := νmin {1, ∥Gk (xk)∥ϱ} with constants ν ∈ [0, 1) and ϱ > 0.

In the latter part of the paper, we require the following assumption.

Assumption 2.1. Assume that the objective function F in problem (1.1) is bounded below

on Rn, i.e., there exists a constant Ĉ ∈ R such that infx∈Rn F (x) ≥ Ĉ.

Now, we propose an inexact regularized proximal Newton-type method for solving (1.1)
whose steps are given below.
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Algorithm 1 Inexact regularized proximal Newton-type method for solving
(1.1)

Initialization: Choose an initial point x0 ∈ Rn, parameters 0 < µ < 1/2, 0 < σ, γ < 1, C >
F (x0) , ᾱ, c > 0, and ρ ∈ (0, 1]. Set k = 0.
repeat

1: Update matrix Bk in (2.4) satisfying conditions (2.5) and choose ξk ∈ ∂g2(xk).
2: Form the quadratic model (2.3) with Hk defined in (2.4).
3: Obtain an inexact solution x̂k of (2.3) satisfying the conditions (2.7).
4: If k = 0, let ϑ1 := G0 (x0) and go to Step 5. For k ≥ 1, if ∥Gk (x̂k)∥ ≤ σϑk and

F (x̂k) ≤ C, let tk := 1, ϑk+1 := ∥Gk (x̂k)∥ , and go to Step 6. Otherwise, let ϑk+1 := ϑk

and go to Step 5.
5: Perform a backtracking line search along the direction dk := x̂k−xk by setting tk := γmk ,

where mk is the smallest nonnegative integer m such that

F (xk + γmdk) ≤ F (xk)− µαkγ
m ∥dk∥2 . (2.9)

6: Set xk+1 := xk + tkdk.

until Some proper stopping criterion is satisfied.

Remark 2.2. There exist fruitful effective methods to solve the convex subproblems (2.3)
inexactly, e.g., the block coordinate descent method [29], the fast iterative soft-shrinkage
algorithm [2], and the semismooth Newton augmented Lagrangian method [16], among
others. For our experiment, we opt to utilize the block coordinate descent method to solve
the subproblems (2.3).

The remainder of this section is devoted to the global convergence of the above algorithm.
We first prove the following two lemmas.

Lemma 2.3. Given an approximate solution x̂k to the subproblem (2.3), there exists a
vector ek ∈ Rn such that ek ∈ ∇f (xk)− ξk +Hk (x̂k − xk) + ∂g1 (x̂k − ek)

∥ek∥ ≤ νmin
{
∥Gk (xk)∥ , ∥Gk (xk)∥1+ϱ

}
.

(2.10)

Proof. Let ek := rk (x̂k) = x̂k − Proxg1 (x̂k − (∇f (xk)− ξk)−Hk (x̂k − xk)). It follows
from (2.2) that

ek ∈ ∇f (xk)− ξk +Hk (x̂k − xk) + ∂g1 (x̂k − ek) .

By the use of the inexact conditions (2.7), it is easy to get (2.10).

The next lemma describes the lower bound of the step size obtained by a backtracking
line search in Algorithm 1 and the corresponding decrease in the objective function values
in (1.1).

Lemma 2.4. The steplength tk obtained by Step 5 of Algorithm 1 satisfies

tk ≥ γmin

{
1,

(1− 2µ)αk

L

}
. (2.11)
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The values of the objective function at xk and xk+1 satisfy

F (xk+1)− F (xk) ≤ −µαk γmin

{
1,

(1− 2µ)αk

L

}(
1− ν

1 +M + αk

)2

∥Gk (xk)∥2 . (2.12)

Proof. Since x̂k is an inexact solution to (2.3) obeying the conditions in (2.7), one has

0 ≥ qk (x̂k)− qk (xk) = lk (x̂k)− lk (xk) +
1

2
(x̂k − xk)

T
Hk (x̂k − xk) ,

where lk is defined as

lk(x) := f (xk)− g2(xk) + (∇f (xk)− ξk)
T (x− xk) + g1(x). (2.13)

It yields from the definition of Hk that

lk (xk)− lk (x̂k) ≥
1

2
(x̂k − xk)

T
Hk (x̂k − xk) ≥

1

2
αk ∥x̂k − xk∥2 . (2.14)

By the definition of the proximal residual mapping Gk in (2.8), we can deduce that

Gk (xk) ∈ ∇f (xk)− ξk + ∂g1 (xk − Gk (xk)) .

Based on the fact that the subdifferential ∂g1 is monotone, associating with the inequality
in (2.10), one has ∥ek∥ ≤ ν∥Gk(xk)∥ and

(Gk (xk) +Hk (x̂k − xk)− ek)
T (xk − Gk (xk)− x̂k + ek) ≥ 0,

which implies that

∥Gk (xk)− ek∥2 ≤ ∥Gk (xk)− ek∥2 + (x̂k − xk)
T
Hk (x̂k − xk)

≤ (Gk (xk)− ek)
T (xk − x̂k +Hk (xk − x̂k))

≤ ∥Gk (xk)− ek∥ · ∥xk − x̂k +Hk (xk − x̂k)∥ .

Combing the conditions ∥ek∥ ≤ ν ∥Gk (xk)∥ and ∥Bk∥ ≤ M from (2.5), we further obtain

∥Gk (xk)∥ ≤ ∥Gk (xk)− ek∥+ ∥ek∥ ≤ (1 +M + αk) ∥x̂k − xk∥+ ν ∥Gk (xk)∥ .

Since ν ∈ [0, 1), the proximal residual mapping Gk(·) at xk can be estimated by

∥Gk (xk)∥ ≤ 1 +M + αk

1− ν
∥x̂k − xk∥ . (2.15)

Next, we show that the backtracking line search along the direction dk = x̂k−xk in Step
5 is well-defined and the proposed step size ensures a sufficient decrease in the cost function
F . Based on the Lipschitz continuity of ∇f and ξk ∈ ∂g2(xk), one has that for any τ ≥ 0,

f (xk + τdk) ≤ f (xk) + τ∇f (xk)
T
dk +

L

2
τ2 ∥dk∥2 and g2(xk + τdk) ≥ g2(xk) + τξ⊤k dk,

which further implies that

F (xk)− F (xk + τdk) ≥ lk (xk)− lk (xk + τdk)−
L

2
τ2 ∥dk∥2 . (2.16)
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Furthermore, by the convexity of lk, we get

lk (xk)− lk (xk + τdk) ≥ τ (lk (xk)− lk (xk + dk)) , ∀τ ∈ [0, 1]. (2.17)

Combing (2.16), (2.17), (2.14) and µ ∈ (0, 1/2), one has for any τ ∈ [0, 1],

F (xk)− F (xk + τdk)− µαkτ∥dk∥2 ≥ lk(xk)− lk(xk + τdk)− (L/2)τ2∥dk∥2

− µαkτ∥dk∥2

≥ τ(lk(xk)− lk(xk + dk))− (L/2)τ2∥dk∥2

− µαkτ∥dk∥2

≥ (τ/2)αk∥dk∥2 − (L/2)τ2∥dk∥2

− µαkτ∥dk∥2

= τ [(1− 2µ)αk − Lτ ]∥dk∥2/2. (2.18)

It means that the backtracking line search criterion (2.9) is satisfied when 0 < τ ≤ min{1, (1−
2µ)αk/L}, and thus the step size tk satisfies the claimed condition (2.11). Substituting
τ := tk ≥ γmin{1, (1 − 2µ)αk/L} into (2.18) and employing the estimate of ∥Gk (xk)∥ in
(2.15), we obtain

F (xk)− F (xk + tkdk) ≥ µαktk∥dk∥2

≥ µαkγmin

{
1,

(1− 2µ)αk

L

}(
1− ν

1 +M + αk

)2

∥Gk(xk)∥2,

which verifies the decreasing condition (2.12) and thus completes the proof of the lemma.

Now we are ready to prove the global convergence of Algorithm 1. Define the sets
K := {0, 1, . . .} and

K0 := {0} ∪ {k + 1 ∈ K | Step 5 is not applied at iteration k}.

Theorem 2.5. Let Assumption 2.1 hold and {xk} be generated by Algorithm 1. Then we
have

lim inf
k→∞

∥Gk (xk)∥ = 0. (2.19)

Furthermore, if {xk} is bounded, then any accumulation point of {xk} is a critical point of
(1.1).

Proof. Firstly, we consider the case that the index set K0 is infinite. We can reorganize K0

in such a way that 0 = k0 < k1 < k2 < . . .. It follows from Step 4 of Algorithm 1 that the
inequalities ∥∥Gkℓ+1

(
xkℓ+1

)∥∥ ≤ σ ∥Gkℓ
(xkℓ

)∥ for ℓ = 0, 1, . . .

hold, which follows from σ ∈ (0, 1) that

0 ≤ lim inf
k→∞

∥Gk (xk)∥ ≤ lim sup
ℓ→∞

∥Gkℓ
(xkℓ

)∥ ≤ lim
ℓ→∞

σℓ ∥Gk0 (xk0)∥ = 0.

Thus, the equality (2.19) holds if K0 is infinite.
Secondly, consider the case that the index set K0 is finite. Denote k̄ = max

k∈K0

k. It follows

from Lemma 2.4 that for any k > k̄, we get

F (xk+1)− F (xk) ≤ −µαk γmin

{
1,

(1− 2µ)αk

L

}(
1− ν

1 +M + αk

)2

∥Gk (xk)∥2 .



636 C. WU, D. ZHU AND D.-H. LI

It follows from Assumption 2.1 that

∞∑
k=k̄

µαkγmin

{
1,

(1− 2µ)αk

L

}(
1− ν

1 +M + αk

)2

∥Gk(xk)∥2 ≤ F (xk̄)− Ĉ < +∞,

which implies that

lim
k→∞

αk min

{
1,

(1− 2µ)αk

L

}(
1− ν

1 +M + αk

)2

∥Gk(xk)∥2 = 0.

Based on the expression αk := min{ᾱ, c∥Gk(xk)∥ρ} with positive numbers ᾱ, c, ρ and
ν ∈ [0, 1), one has

lim
k→∞

∥Gk(xk)∥ = 0.

Thus, the equality (2.19) also holds when K0 is finite.
Next, we show that the boundedness of the sequence {xk} implies that any cluster point

of {xk} is a critical point of problem (1.1). Assume that the sequence {xk} is bounded, and
x̄ is an arbitrary cluster point of {xk}. Then there exists a subsequence {xki

} of {xk} such
that lim

i→∞
xki

= x̄. Since g2 is a real-valued convex function on Rn, we know that g2 is locally

Lipschitz continuous on Rn [23, Theorem 10.4]. It further from [7, Proposition (a) and (c)]
that there exists a positive integer N such that {ξki}i≥N is bounded. Taking a subsequence
of {ξki

}i≥N if necessary, assume that lim
i→∞

ξki
= ξ̄. From the closedness of ∂g1(·), one has

ξ̄ ∈ ∂g2(x̄). Then by the definition of Gki
(·) in (2.8) and continuities of Proxg1(·) and ∇f(·),

we obtain

0 = lim inf
i→∞

∥Gki
(xki

)∥ = lim
i→∞

∥xki
− Proxg1(xki

−∇f(xki
) + ξki

)∥

=∥x− Proxg1(x̄−∇f(x̄) + ξ̄)∥,

which means that x̄ = Proxg1(x̄−∇f(x̄) + ξ̄), i.e.,

0 ∈ ∇f(x̄) + ∂g1(x̄)− ξ̄ ⊆ ∇f(x̄) + ∂g1(x̄)− ∂g2(x̄).

Thus x̄ is a critical point of the problem (1.1) according to Definition 2.1.

3 Numerical Experiments

In this section, we evaluate the numerical performance of our IRP for solving the problems
(1.1) using a convex loss function or a nonconvex loss function under four different DC terms
on large-scale data sets. To be specific, we consider four different DC terms g1(x) − g2(x),
with

g1(x) =

n∑
i=1

g1,i(xi) and g2(x) =

n∑
i=1

g2,i(xi).

Detailed g1,i and g2,i are given in Table 1.
All the numerical experiments were performed in MATLAB 2021a on a laptop with Apple

M1 and 16GB memory running macOS Monterey.
We compare our IRP with other three algorithms: the general iterative shrinkage and

thresholding (GIST) algorithm [11], the nonmonotone accelerated proximal gradient (non-
APG) algorithm [15], and the inexact proximal DC Newton-type method (mLBFGS) algo-
rithm [20]. All the implementation details of above four algorithms are listed below.
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Table 1: Expressions of g1,i and g2,i with [x]+ = max{0, x} and λ > 0

Name g1,i(xi) g2,i(xi)
LSP [5] λ|xi| λ(|xi| − log(1 + |xi|/θ))

SCAD [8] λ|xi|


0, if |xi| ≤ λ,

x2
i−2λ|xi|+λ2

2(θ−1) , if λ ≤ |xi| ≤ θλ,

λ|xi| − (θ+1)λ2

2 , if |xi| > θλ.

MCP [31] λ|xi|
{

x2
i /(2θ), if |xi| ≤ θλ,

λ|xi| − θλ2/2, if |xi| > θλ.
Capped ℓ1 [32] λ|xi| λ[|xi| − θ]+

IRP We set ν = 0.9 and ϱ = 0.1 in the inexact conditions (2.7). We also set µ = 0.1,
σ = 0.25, γ = 0.5, C = 2F (x0), ᾱ = 10−4, and ρ = 0.1. The subproblem can be solved by
the coordinate gradient descent method [29, 30], which is implemented in MATLAB as a C
source MEX-file.

GIST It uses the nonmonotone line search criterion with Barzilai-Borwein rule as the
step size initialization. And we set σ = 10−5, m = 5, η = 2, and 1/tmin = tmax = 1030 as
suggested in [11].

nonAPG We follow [15] to set σ = 10−5, η = 0.8, 1/tmin = tmax = 1020.

mLBFGS It chose the approximation of the Hessian ∇2f by the memoryless BFGS
formula and applied semismooth Newton method to compute scaled proximal mappings. In
our implementation, we set ϕk = 0, τk = 1, γk = (sTk−1zk−1)/(z

T
k−1zk−1), and

νk =

{
0, if sTk−1yk−1 ≥ 10−6∥sk−1∥2,
max

{
0,− sTk−1yk−1

sTk−1sk−1

}
+ 10−6, otherwise.

We also set δ = 0.5 and βk = 0.5 for its line search scheme, and set σ = 10−4, ρ = 0.5,
α0 = (0, 0)T , and θk = 0.98 for the semismooth Newton method.

3.1 Solving problem (1.1) with convex loss function f

In this subsection, we evaluate the numerical performance of our IRP for solving the logistic
regression problem under four distinct DC regularizers on four large-scale real datasets.
Specifically, the function f(x) =

∑s
i=1 log

(
1 + exp

(
−bia

T
i x

))
is chosen and is convex.

For all four methods, we set the initial point x0 as the original point in Rn, and the
stopping criteria as |F (xk+1)− F (xk)| < 10−5 max(1, |F (xk)|) or ∥uk∥ ≤ 10−2, where uk =
∇f(xk) + ξ1,k − ξ2,k, ξi,k ∈ ∂gi(xk) for i = 1, 2. In IRP, we choose c = 10−8 and Bk :=
∇2f (xk).

We tested four real datasets “w2a.t”,“rcv1.binary” , “news20.binary” and “real-sim”
downloaded from the SVMLib repository [6]. Their sizes are given in Table 2.

The code is downloaded from https://github.com/ZiruiZhou/IRPN.
The code is downloaded from https://github.com/iamtu/OPE GIST.git
The code is downloaded from https://zhouchenlin.github.io/NIPS2015 code.zip
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.
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Table 2: The size of data sets

Data sets w2a.t rcv1.binary news20.binary real-sim

s (sample size) 46279 20242 19996 72309
n (dimension of features) 300 47236 1355191 20958

Figure 1: Objective function values versus iteration numbers on wa2.t data set.

Figure 2: Objective function values versus iteration numbers on rcv1.binary data set.
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Figure 3: Objective function values versus iteration numbers on news20.binary data set.

Figure 4: Objective function values versus iteration numbers on real-sim data set.

Figures 1-4 report the changes of the objective function values with the increase of the
iteration number under respective four different regularizers. It can be observed that our
IRP consistently exhibits the fastest convergence rate in the sense of the objective function
value obtained, and has the ability to achieve smaller objective function values than other
methods.



640 C. WU, D. ZHU AND D.-H. LI

Table 3: Numerical comparison on wa2.t dataset with λ = 10−2

GIST nonAPG mLBFGS IRP

Regularizers Iter Time Obj V Iter Time Obj V Iter Time Obj V Iter Time Obj V
LSP 110 0.81 5159.78 162 2.62 5102.05 116 2.29 5097.05 34 0.54 5093.72
SCAD 115 0.83 5146.29 94 1.39 5163.98 126 2.59 5092.25 34 0.58 5089.26
MCP 105 0.80 5155.15 125 1.97 5124.32 126 2.55 5091.90 34 0.55 5089.24
Capped ℓ1 90 0.69 5173.37 123 2.00 5133.90 129 2.52 5091.81 34 0.56 5089.24

Table 4: Numerical comparison on rcv1.binary dataset with λ = 10−3

GIST nonAPG mLBFGS IRP

Regularizers Iter Time Obj V Iter Time Obj V Iter Time Obj V Iter Time Obj V
LSP 553 12.31 41.38 416 19.53 43.06 239 9.43 46.50 33 2.86 27.57
SCAD 665 14.01 23.39 146 6.97 21.57 74 3.03 21.55 18 1.46 21.20
MCP 120 2.24 36.31 154 7.23 21.56 94 4.00 21.28 18 1.45 21.17
Capped ℓ1 451 8.81 24.32 204 9.17 21.20 108 4.72 21.15 18 1.45 21.13

Table 5: Numerical comparison on news20.binary dataset with λ = 10−3

GIST nonAPG mLBFGS IRP

Regularizers Iter Time Obj V Iter Time Obj V Iter Time Obj V Iter Time Obj V
LSP 546 98.47 106.25 348 124.91 93.43 804 264.00 85.39 29 11.37 61.56
SCAD 314 47.10 57.20 141 42.40 55.47 47 16.98 57.02 12 2.46 52.86
MCP 340 46.52 57.16 169 49.59 54.46 59 23.79 55.31 12 2.46 52.68
Capped ℓ1 305 41.16 66.10 123 35.43 67.36 77 33.37 69.64 16 3.85 55.25

Table 6: Numerical comparison on real-sim dataset with λ = 5× 10−4

GIST nonAPG mLBFGS IRP

Regularizers Iter Time Obj V Iter Time Obj V Iter Time Obj V Iter Time Obj V
LSP 270 15.22 453.82 1703 184.58 256.14 123 11.11 277.16 57 18.60 245.09
SCAD 555 30.81 338.11 142 15.37 259.11 120 11.67 250.63 32 10.03 236.77
MCP 483 26.53 335.41 142 15.33 259.10 85 7.66 261.44 32 10.06 236.77
Capped ℓ1 707 39.40 306.34 142 15.39 259.25 96 8.65 260.81 32 10.07 236.87

Tables 3 to 6 list the number of iterations, CPU time and the objective function values
of four methods for solving problem (1.1) under four different regularizers. We found that in
all instances, the IRP is superior to other methods from the perspective of objective function
value and number of iterations.

3.2 Solving problem (1.1) with nonconvex loss function f

In this subsection, we test the performance of the proposed IRP method on nonconvex
problems. Specifically, we consider the loss function f(x) = (1/2)

∑n
i=1 log(1 + β(xi − u0

i )
2)

[21] with n = 10000, u0 = (1, 1, · · · , 1)T , and β = 100. Clearly, f is nonconvex and has a
Lipschitz continuous gradient with the components (∇f(x))i = β(xi−u0

i )/(1+β(xi−u0
i )

2)
for i = 1, . . . , n. The DC terms are given in Table 1.
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We compared the proposed IRP method with the methods GIST, nonAPG, and mLBFGS.
While conducting numerical experiments, we always set the initial point x0 as the original
point in Rn, and take |F (xk+1 − F (xk))| < 10−5 as the stopping criterion. In the IRP, we
choose c = 0.619 and Bk = ∇2f(xk) + max(0,−λmin(∇2f(xk)))In, where λmin(∇2f(xk))
means the smallest eigenvalue of the Hessian ∇2f(xk).

The results are depicted in Figure 5 and summarized in Table 7. We can observe that
IRP, nonAPG, and mLBFGS achieved nearly identical objective values within 20 iterations,
whereas GIST failed to meet the termination criterion even after 1000 iterations. Further-
more, in terms of the number of iterations and CPU time consumption, the performance of
IRP was superior to nonAPG and mLBFGS.

Figure 5: Objective function values versus iteration numbers under four different regulariz-
ers.

Table 7: Numerical comparison with λ = 10−2

GIST nonAPG mLBFGS IRP

Regularizers Iter Time Obj V Iter Time Obj V Iter Time Obj V Iter Time Obj V
LSP 1000* 7.2340 245.35 20 0.2369 109.86 20 0.0321 109.86 3 0.0071 109.86
SCAD 1000* 0.5554 51.13 10 0.0081 2.35 11 0.0305 2.36 3 0.0056 2.35
MCP 1000* 0.5117 50.28 10 0.0070 1.50 11 0.0295 1.51 3 0.0059 1.50
Capped ℓ1 1000* 2.2919 63.78 10 0.0065 15.00 11 0.0281 15.01 3 0.0053 15.00

The symbol “*” indicates that the stopping condition is not satisfied until the maximum iteration is reached.

4 Conclusion

We developed an inexact regularized proximal Newton-type method (Algorithm 1) for solv-
ing general nonconvex nonsmooth composite optimization problems and demonstrated its
global convergence. For minimizing the sum of the convex or nonconvex loss function and
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four different DC regularizers, our numerical results have shown that the proposed algo-
rithm outperforms other three existing methods in the most of the testing instances. The
convergence rate of the proposed method remains unknown. It is likely that the method is
linearly convergent only due to the use of linear approximation to the nonconvex term. It
is important to improve the convergence rate of the method. It is also very interesting to
extend the method to solve problems where f is not twice continuously differentiable.
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