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epi f := {(x, α) ∈ X × R : f(x) ≤ α}, respectively. The Fréchet subdifferential ∂f(x) of f
at x ∈ Dom f is defined as

∂f(x) : =

{
x∗ ∈ X∗ : lim inf

h→0

f(x+ h)− f(x)− ⟨x∗, h⟩
∥h∥

≥ 0

}
and ∂f(x) := ∅ if f(x) = +∞.

The Fréchet normal cone to a subset C ⊆ X at some point x ∈ C is defined as the Fréchet
subdifferential of the indicator function δC of C at the same point:

NC(x) := ∂δC(x) =

{
x∗ ∈ X∗ : lim sup

z→x

⟨x∗, z − x⟩
∥z − x∥

≤ 0

}
.

When X is Asplund, i.e., when every continuous convex function defined on X is generically
Fréchet differentiable, the Fréchet subdifferential enjoys a fuzzy sum rule (see, e.g., [2]): For
any ε > 0, for x ∈ Dom f1 ∩ Dom f2, provided f1, f2 are lower semicontinuous and one of
them is locally Lipschitz around x, one has

∂(f1 + f2)(x) ⊆
∪
{ ∂f1(x1) + ∂f2(x2) + εBX∗ :

(xi, f(xi)) ∈ B((x, f(x)), ε), i = 1, 2}. (1.1)

Let F : X ⇒ Y be a multifunction between Banach spaces X,Y . Throughout we assume
that F is a closed multifuntion, that is, the graph of F , gphF , is closed in X × Y. As usual,
denote by

DomF := {x ∈ X : F (x) ̸= ∅}

the effective domain of F, and the inverse of F : F−1 : Y ⇒ X, defined by

F−1(y) = {x ∈ X : y ∈ F (x)}, y ∈ X.

The contingent derivative of F at a given point (x, y) ∈ gphF denoted by DF (x, y) : X ⇒ Y
and is defined by, for u ∈ X,

DF (x, y)(u) := { v ∈ Y : ∃(un) → u, (vn) → v, tn → 0+,
with (x+ tnun, y + tnvn) ∈ gphF}.

Note that for all (x, y) ∈ gphF, DF (x, y) is a positive homogeneous set-valued mapping.
Also recall the inner norm of a positive homogeneous set-valued mapping H : X ⇒ Y is

∥H∥ := sup
∥u∥≤1

inf{∥v∥ : v ∈ H(u), u ∈ X}.

Here, a convention inf ∅ = +∞ is used.
Finally, for a multifunction F : X ⇒ Y , the Fréchet coderivative of F at a point (x, y) ∈

gphF, refers to a multifunction DF ∗(x, y) : Y ∗ ⇒ X∗ and defined as

DF ∗(x, y)(y∗) := {x∗ : (x∗,−y∗) ∈ NgphF (x, y)} , y∗ ∈ Y ∗,

for every (x, y) ∈ gphF . Associated to a lower semicontinuous function f : X → R∪{+∞},
define the multifunction F : X ⇒ R by gphF = epi f, that is, F (x) = [f(x),+∞), x ∈ Rn.
One has

x∗ ∈ ∂f(x) ⇐⇒ x∗ ∈ DF ∗(x, f(x))(1).
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Finally, recall the notion of weak convexity ([6, 8, 16, 17, 11, 19]). An extended real valued
function f defined on X is said to be weakly convex around a point a ∈ Dom f, if there are
ρ > 0, ε > 0 such that any x1, x2 ∈ B[x̄, ε], any t ∈ [0, 1], one has

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) +
ρ

2
t(1− t)∥x1 − x2∥2.

Note that when f is weakly convex around a (with respect to ρ, ε as above), for any x ∈
B[x̄, ε], x∗ ∈ ∂f(x), one has

⟨x∗, y − x⟩ ≤ f(y)− f(x) +
ρ

2
∥y − x∥2, ∀y ∈ B[a, ε]. (1.2)

Definition 1.2. A multifunction F : X ⇒ Y between Banach spaces X,Y is called weakly
convex around x̄ ∈ X if there exist ρ > 0, ε > 0 such that for any x1, x2 ∈ B(x̄, ε), any
t ∈ [0, 1], one has

tF (x1) + (1− t)F (x2) ⊆ F (tx1 + (1− t)x2) +
ρ

2
t(1− t)∥x1 − x2∥2BY .

For example (see, e.g., [11]), a mapping f : X → Y being of C1,1−class around a point
x̄ ∈ X, is weakly convex around this point; the function f : X → R ∪ {+∞} is a weakly
convex function around x̄ ∈ X iff the associated multifunction F : gphF = epi f, is weakly
convex around this point (with the same constants).

2 An Inverse Multifunction Theorem

The inverse function theorem stated in the following is a set-valued version of the one by
Ekeland in [4] (see, for the earlier version, e.g., in [5]).

Theorem 2.1. Let X,Y be Banach spaces and let F : X ⇒ Y be a closed multifunction
(i.e., its graph is a closed set in X × Y ). For given (x̄, ȳ) ∈ gphF, and reals R1, R2,M > 0,
suppose that

sup{∥DF (x, y)−1∥ : (x, y) ∈ gphF ∩ (B(x̄, R1)×B(ȳ, R2))} < M. (2.1)

Let parameters r1, r2, r3 > 0 such that

r1 +Mr3 < R1, r2 + r3 < R2. (2.2)

Then for all a ∈ B[x̄, r1]; b ∈ F (a) ∩B[ȳ, r2], and y ∈ Y with

∥y − b∥ ≤ r3, (2.3)

there exists z ∈ X such that

z ∈ F−1(y) and ∥z − a∥ ≤ M∥y − b∥. (2.4)

Proof. For given y ∈ Y satisfying (2.7), take any M1 < M such that MM−1
1 ∥y − b∥ < r3

and
sup{∥DF (x, y)−1∥ : (x, y) ∈ gphF ∩ (B(x̄, R1)×B(ȳ, R2))} < M1.

Consider the following norm in the product space X × Y :

∥(u, v)∥ = max{∥u∥,M1∥v∥}, (u, v) ∈ X × Y,
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and define the extended real valued function φ : X × Y → R ∪ {+∞} by

φ(u, v) := ∥y − v∥+ δgphF (u, v), (u, v) ∈ X × Y,

where δgphF stands for the indicator function of gphF. As

φ(a, b) = ∥y − b∥ ≤ inf
(u,v)∈X×Y

φ(u, v) + ∥y − b∥,

by applying the Ekeland Variational Principle, there is (z, w) ∈ X × Y such that

(i) ∥(z, w)− (a, b)∥ ≤ M∥y − b∥;

(ii) φ(z, w) ≤ φ(a, b) = ∥y − b∥;

(iii) φ(z, w) ≤ φ(u, v) +M−1∥(u, v)− (z, w)∥, for all (u, v) ∈ X × Y.

By (i), ∥z − a∥ ≤ M∥y − b∥ ≤ Mr3, and ∥w − b∥ ≤ MM−1
1 ∥y − b∥ ≤ MM−1

1 r3, therefore

∥z − x̄∥ ≤ ∥z − a∥+ ∥a− x̄∥ ≤ Mr3 + r1 < R1;

∥w − ȳ∥ ≤ ∥w − b∥+ ∥b− ȳ∥ ≤ MM−1
1 r3 + r2 < R2.

Relation (ii) implies (z, w) ∈ gphF . We shall show that w = y, so z ∈ F−1(y). Indeed,
assume to contrary that w ̸= y, then in view of (2.1), there is u ∈ X, satisfying

u ∈ DF (z, w)−1(y − w) and ∥u∥ < M1∥y − w∥.

Thus there are sequences (un) → u, (vn) → y−w and (tn) → 0+ with (z+ tnun, w+ tnvn) ∈
gphF, for all n ∈ N. From relation (iii), one has

∥y − w∥ ≤ ∥y − w − tnvn∥+M−1tn∥(un, vn)∥.

By making use of the following inequality

∥y − w − tnvn∥ = ∥(1− tn)(y − w) + tn(y − w − vn)∥
≤ (1− tn)∥y − w∥+ tn∥y − w − vn∥,

one derives that
∥y − w∥ ≤ ∥y − w − vn∥+M−1∥(un, vn)∥.

By letting n → ∞, one obtains

0 < ∥y − w∥ ≤ M−1 max{∥u∥,M1∥y − w∥} < ∥y − w∥,

a contradiction. Thus w = y, showing the conclusion

z ∈ F−1(y) and ∥z − a∥ ≤ M∥y − b∥.

When X,Y are Asplund spaces, one establish a following version of inverse function
theorem, in which, a criteria based on the coderivatives is used, instead of the contingent
derivative. Its proof follows the same schema as in the one of the preceding theorem, but
here alternatively, the fuzzy sum rule (1.1) for Fréchet subdifferentials is made of use (see
also, [10] for a related result), so it is omitted.
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Theorem 2.2. Let X,Y be Asplund spaces and let F : X ⇒ Y be a closed multifunction.
For given (x̄, ȳ) ∈ gphF, and reals R1, R2,m > 0, suppose that

inf{d∗(0, DF ∗(x, y)(SY ∗)) : (x, y) ∈ gphF ∩ (B(x̄, R1)×B(ȳ, R2))} > m, (2.5)

where, d∗ (from a point to a set) stands for the distance in X∗ associated to the dual norm,
and SY ∗ denotes the unit sphere in Y ∗.

Let parameters r1, r2, r3 > 0 such that

r1 +m−1r3 < R1, r2 + r3 < R2. (2.6)

Then for all a ∈ B[x̄, r1]; b ∈ F (a) ∩B[ȳ, r2], and y ∈ Y with

∥y − b∥ ≤ r3, (2.7)

there exists z ∈ X such that

z ∈ F−1(y) and ∥z − a∥ ≤ m−1∥y − b∥. (2.8)

3 The Convexity Principle for Weakly Convex Multifunctions

The main result is stated as follows, asserting the convexity of an image of a small ball by a
weakly convex multifunction from a Hilbert space to a Banach space. This result is regarded
as a set-valued version of the convexity principle by Polyak ([14, 15]).

Theorem 3.1. Let X be a Hilbert space and let Y be a Banach space. Let F : X ⇒ Y be
a closed multifunction. For given (x̄, ȳ) ∈ gphF, and reals R1, R2,M > 0, suppose that the
following two conditions are satisfied.

(i) either

sup{∥DF (x, y)−1∥ : (x, y) ∈ gphF ∩ (B(x̄, R1)×B(ȳ, R2))} < M, (3.1)

or the space Y is assumed to be an Asplund space and

inf{d∗(0, DF ∗(x, y)(SY ∗)) : (x, y) ∈ gphF ∩ (B(x̄, R1)×B(ȳ, R2))} > m. (3.2)

(ii) The multifunction F is ρ−weakly convex on B(x̄, R1), that is, for any x1, x2 ∈ B(x̄, R1),
any t ∈ [0, 1], one has

tF (x1) + (1− t)F (x2) ⊆ F (tx1 + (1− t)x2) +
ρ

2
t(1− t)∥x1 − x2∥2BY .

Then for ε1, ε2 > 0 satisfying for α = M if (3.1) holds, and α = m−1 if (3.2) holds,

ε1 ≤ 1/(αρ), ε1 +
αρ

2
ε21 < R1, ρε

2
1 + ε2 < R2, (3.3)

the set F (B[x̄, ε1]) ∩B[ȳ, ε2] is convex.

Proof. Let x1, x2 ∈ B[x̄, ε1], t ∈ [0, 1], and y1 ∈ F (x1) ∩ B[ȳ, ε2], y2 ∈ F (y2) ∩ B[ȳ, ε2]. For
y := yt = ty1 + (1− t)y2, by (ii), there is v ∈ F (tx1 + (1− t)x2) such that

∥y − v∥ ≤ ρ

2
∥x1 − x2∥2t(1− t) ≤ ρ

8
∥x1 − x2∥2 ≤ ρ

2
ε21.
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Thus
∥v − ȳ∥ ≤ ∥v − y∥+ ∥y − ȳ∥ ≤ ρ

2
ε21 + ε2.

In virtue of Theorem 2.1, with parameters r1 := ε1, r2 := ρε21/2 + ε2, r3 := ρε21/2, there
exists u ∈ F−1(y), such that

∥tx1 + (1− t)x2 − u∥ ≤ M∥y − v∥ ≤ Mρ

2
t(1− t)∥x1 − x2∥2.

As

∥tx1 + (1− t)x2 − x̄∥2 = t∥x1 − x̄∥2 + (1− t)∥x2 − x̄∥2 − t(1− t)∥x1 − x2∥2
≤ ε21 − t(1− t)∥x1 − x2∥2,

one has from the two relations above,

∥u− x̄∥ ≤ ∥tx1 + (1− t)x2 − u∥+ ∥tx1 + (1− t)x2 − x̄∥
≤ Mρ

2 t(1− t)∥x1 − x2∥2 +
(
ε21 − t(1− t)∥x1 − x2∥2

)1/2
.

Since ε1 ≤ 1/(Mρ), it is straightforward to derive that

Mρ

2
t(1− t)∥x1 − x2∥2 +

(
ε21 − t(1− t)∥x1 − x2∥2

)1/2 ≤ ε1,

so u ∈ B[x̄, ε1], hence, y = ty1 + (1 − t)y2 ∈ F (B[x̄, ε1]) ∩ B[ȳ, ε2], which shows that
F (B[x̄, ε1]) ∩B[ȳ, ε2] is a convex set.

Remark 3.2. Observe from the proof of the above theorem, one sees that, for x1, x2 ∈
B[x̄, ε1], t ∈ [0, 1], and y1 ∈ F (x1) ∩ B[ȳ, ε2], y2 ∈ F (y2) ∩ B[ȳ, ε2], then there exists
u ∈ B[x̄, ε1] such that

∥tx1 + (1− t)x2 − u∥ ≤ Mρ

2
t(1− t)∥x1 − x2∥2, ty1 + (1− t)y2 ∈ F (u).

4 Application: Local Programming

Consider the optimization problem with a set-valued mapping constraint of the form:

min f0(x) (4.1)

x ∈ Rn, 0 ∈ G(x),

where, f0 : Rn → R is a lower semicontinuous function and G : Rn ⇒ Rm is a closed
set-valued mapping. As in ([13, 14]), for a given feasible point a ∈ Rn, and some ε > 0,
associated to it, consider its local version with added constraint: ∥x− a∥ ≤ ε.

min f0(x) (4.2)

x ∈ Rn, 0 ∈ G(x),

∥x− a∥ ≤ ε.

Define the multifunction F : Rn ⇒ Rm+1 by

F (x) = [f0(x),+∞]×G(x), x ∈ Rn. (4.3)

The Lagrange function of (4.1) is of the form:

L(x, λ, y∗) := λf0(x) + inf
y∈G(x)

⟨y∗, y⟩, (x, λ, y∗) ∈ Rn × R× Rm. (4.4)
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Theorem 4.1. Assume that the multifunction F : Rn ⇒ Rm+1 defined by (4.3) is weakly
convex around a given a ∈ Rn with 0 ∈ F (a), and that for some r > 0,

inf{d∗(0, DF ∗(x, y)(SRm+1)) : (x, y) ∈ gphF ∩ (B(ā, r)× Rm+1)} > 0. (4.5)

Then there exists ε∗ > 0 such that for all ε ∈]0, ε∗[, for a solution x∗ ∈ B[a, ε] of problem
(4.2), there exists (λ∗, y∗) ∈ R× Rm \ {(0, 0Rm)} with λ∗ ≥ 0, such that

L(x, λ∗, y∗) ≥ L(x∗, λ∗, y∗), ∀x ∈ B[a, ε], (4.6)

and
inf

y∈G(x∗)
⟨y∗, y⟩ = 0. (4.7)

Proof. By Theorem 3.1, there is ε∗ > 0 such that for all 0 < ε < ε∗, the image set
F (B[a, ε]) ⊆ Rm+1 is a closed convex set. For x∗ being a solution of (4.2), the point
(f0(x

∗), 0Rm) is a boundary point of F (B[a, ε]). Hence by the separating theorem (for con-
vex sets), we can find (λ∗, y∗) ∈ R× Rm \ {(0, 0Rm)} such that

⟨(λ∗, y∗), (α, y)⟩ ≥ ⟨(λ∗, y∗), (f0(x
∗), 0)⟩, ∀(α, y) ∈ F (B[a, ε]).

Therefore, one has λ∗ ≥ 0, and

λ∗α+ ⟨y∗, y⟩ ≥ λ∗f0(x
∗), ∀(α, y) ∈ F (B[a, ε]),

and this follows directly (4.6) and (4.7).

Consider the standard mathematical programming:

min f0(x), x ∈ Rn, (4.8)

fi(x) ≤ 0, i = 1, ..., p

fi(x) = 0, i = p+ 1, ...,m,

and its local version with respect to a feasible point a and ε > 0,

min f0(x), x ∈ Rn, (4.9)

fi(x) ≤ 0, i = 1, ..., p

fi(x) = 0, i = p+ 1, ...,m,

∥x− a∥ ≤ ε.

where, fi : Rn → R, i = 1, ...,m, are lower semicontinuous functions. Obviously, (4.9) is a
particular case of (4.2) with the multifunction G : Rn ⇒ Rm defined by

G(x) = Πp
i=1[fi(x),+∞]× {(fp+1(x)), ..., fm(x))}, x ∈ Rn. (4.10)

Assume that fi, i = 0, ..., p, are weakly convex functions around a, and fi, i = p+ 1, ...,m,
are C1,1 functions around a. So G and F are weakly convex multifunctions around a. For
points x ∈ Rn (near a), and for

(x, y) := (x, α0, α1, ..., αp, fp+1(x), ..., fm(x)) ∈ gphF,

By a straightforward computation, the coderivative mapping DF ∗(x, y) is given as follows.
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For y∗ = (y∗1 , ..., y
∗
m) ∈ Rm,

DF ∗(x, y)(y∗) = ∅ if either y∗i < 0 or y∗i (fi(x)− αi) ̸= 0,

for some i ∈ {0, ..., p}, otherwise,

DF ∗(x, y)(y∗) =

{
x∗ : x∗ ∈

m∑
i=0

y∗i ∂fi(x)

}
. (4.11)

Denote by

m(a) = inf

{
∥x∗∥ :

x∗ ∈
∑m

i=0 y
∗
i ∂fi(a), ∥y∗∥ = ∥(y∗0 , ..., y∗m)∥ = 1

y∗i ≥ 0, y∗i fi(a) = 0 for i = 0, ..., p.

}
(4.12)

The Lagrangian of problem (4.8) is defined by:

L(x, λ, y) = λf0(x) +

m∑
i=1

yifi(x). (4.13)

From Theorem 4.1, one obtains the following one which generalizes ([14], Theo. 4.1, and
4.2).

Theorem 4.2. With above assumptions, if m(a) > 0, then there exists ε∗ > 0 such that for
all ε ∈]0, ε∗[, a solution x∗ ∈ B[a, ε] of problem (4.2) exists, is unique, lines on the boundary
of B[a, ε] : ∥x∗ − a∥ = ε, and that there exists (λ∗, y∗) ∈ R × Rm \ {(0, 0Rm)} with λ∗ ≥ 0,
such that

L(x, λ∗, y∗) ≥ L(x∗, λ∗, y∗), ∀x ∈ B[a, ε], (4.14)

and

y∗i ≥ 0, y∗i fi(x
∗) = 0, for i = 1, ..., p. (4.15)

Moreover, suppose further the following regularity condition is satisfied: for any ε > 0, any
δ = (δ1, δ2, ..., δm) ∈ Rm, with δi = 1 for i = 1, ..., p; |δi| = 1 for i = p+ 1, ...,m, there exists
xδ ∈ B[a, ε] such that

δifi(xδ) < 0, i = 1, ...,m, (4.16)

then one can take λ = 1, and in this case, the two conditions (4.14), (4.15) are necessary
and sufficient condition of optimality for local programming (4.9).

Proof. Note that obviously in this particular situation, condition (4.5) in Theorem 4.1 is
equivalent to m(a) > 0. So by virtue of Theorem 4.1, there exists (λ∗, y∗) ∈ R × Rm \
{(0, 0Rm)} with λ∗ ≥ 0, such that

λ∗f0(x) + inf
y∈G(x)

⟨y∗, y⟩ ≥ λ∗f0(x
∗), ∀x ∈ B[a, ε],

and infy∈G(x∗)⟨y∗, y⟩ = 0, where G defined by (4.10). The second relation implies directly
y∗i ≥ 0, y∗i fi(x

∗) = 0 for i = 1, ..., p. Therefore, the first implies, for all x ∈ B[a, ε],

L(x, λ∗, y∗) = λ∗f0(x) +

m∑
i=1

y∗i fi(x)

= λ∗f0(x) + inf
y∈G(x)

⟨y∗, y⟩ ≥ λ∗
0f(x

∗) = L(x∗, λ∗, y∗).
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Suppose now (4.16) holds, if λ∗ = 0 then by taking δ, xδ as in 4.16 with δi = signy∗i , it is
derived to

L(xδ, λ
∗, y∗) =

m∑
i=1

y∗i fi(xδ) < 0 = L(x∗, λ∗, y∗),

a contradiction. So λ∗ ̸= 0 and therefore one can take λ∗ = 1. For this case, the optimal
sufficiency of conditions (4.14) and (4.15), is obvious.

Lemma 4.3. Assume that f : Rn → R ∪ {+∞} is a weakly convex lower semicontinuous
function around point a ∈ Dom f. If 0 /∈ ∂f(a), then there exist α, ε > 0 such that for all
x∗ ∈ B[a, ε], all y∗ ∈ ∂f(x∗) one has

⟨y∗, x− x∗⟩ ≤ f(x)− f(x∗) + α∥y∗∥∥x− x∗∥2, for all x ∈ B[a, ε].

Proof. As 0 /∈ f(a), for the associated weakly convex multifunction F (x) = [f(x),+∞),
there is ε∗ > 0 such that for all 0 < ε < ε∗, F (B[a, ε]) is a convex set. For given 0 < ε < ε∗,
such that f being weakly convex with some constant ρ > 0, on B[a, ε]; for all x∗ ∈ B[a, ε],
y∗ ∈ ∂f(x∗), one has

⟨y∗, x− x∗⟩ ≤ f(x)− f(x∗) +
ρ

2
∥x− x∗∥2, for all x ∈ B[a, ε].

For x ∈ B[a, ε] ∩ Dom f, t ∈]0, 1[, as was noticed in Remark 3.2, for some M > 0, there is
u ∈ B[a, ε] with

∥tx+ (1− t)x∗ − u∥ ≤ Mρ

2
t(1− t)∥x− x∗∥2;

f(u) ≤ tf(x) + (1− t)f(x∗).

Hence, by virtue of above inequalities,

⟨y∗, t(x− x∗)⟩ = ⟨y∗, u− x∗⟩+ ⟨y∗, x∗ + t(x− x∗)− u∗⟩
≤ ⟨y∗, u− x∗⟩+ ∥y∗∥∥x∗ + t(x− x∗)− u∗∥

≤ f(u)− f(x∗) +
ρ

2
∥u− x∗∥2 + Mρ

2
t(1− t)∥y∗∥∥x− x∗∥2

≤ t(f(x)− f(x∗)) + t2∥x− x∗∥2 (1 +Mρ∥x− x∗∥/2)2 + Mρ

2
t(1− t)∥y∗∥∥x− x∗∥2.

By deviding the inequality by t > 0, then letting t → 0, one obtains

⟨y∗, x− x∗⟩ ≤ f(x)− f(x∗) + α∥y∗∥∥x− x∗∥2, α := Mρ/2.

Lemma 4.4. Assume that f : Rn → R ∪ {+∞} is a weakly convex lower semicontinuous
function around point a ∈ Dom f, and 0 /∈ ∂f(a). Then there exists ε∗ > 0 such that for all
0 < ε < ε∗, the problem:

min f(x) : x ∈ Rn, ∥x− a∥ ≤ ε,

attains a unique solution x∗ with ∥x∗ − a∥ = ε and the necessary and sufficient condition
holds: There is y∗ ∈ ∂f(x∗) such that

x∗ = a− ε
y∗

∥y∗∥
.
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Proof. Let x∗ ∈ B[a, ε] be a solution of the problem. As 0 /∈ ∂f(a), when ε is enough small,
0 /∈ ∂f(x∗), so ∥x∗ − a∥ = ε. By the standard necessary optimal condition, there exists

y∗ ∈ ∂f(x∗) such that x∗ = a − ε y∗

∥y∗∥ . To show this is a sufficient condition, for ε∗ > 0

enough small 0 < ε < ε∗ such as F (B[a, ε]) is convex, where, F (x) := [f(x),+∞]. By the
preceding lemma, for some α > 0,

⟨y∗, x− x∗⟩ ≤ f(x)− f(x∗) + α∥y∗∥∥x− x∗∥2, for all x ∈ B[a, ε].

Thus for any x ∈ B[a, ε],

ε−1∥y∗∥⟨a− x∗, x− x∗⟩ ≤ f(x)− f(x∗) + α∥y∗∥∥x− x∗∥2. (4.17)

On the other hand, since

∥a− x∗∥2 = ∥a− x∥2 + 2⟨a− x, x− x∗⟩+ ∥x− x∗∥2,

and ∥a− x∥ ≤ ε = ∥a− x∗∥,

⟨a− x, x− x∗⟩ ≥ −∥x− x∗∥2/2,

which implies

⟨a− x∗, x− x∗⟩ = ⟨a− x, x− x∗⟩+ ∥x− x∗∥2 ≥ ∥x− x∗∥2/2.

So, by (4.17),

(ε−1 − α)∥y∗∥∥x− x∗∥2 ≤ f(x)− f(x∗).

Therefore x∗ is a strongly optimal solution when 0 < ε < 1/α, and consequently the solution
x∗ is unique.

Theorem 4.2 together with the above two lemmas yield the following optimal necessary
and sufficient condition for local programming (4.9).

Theorem 4.5. Suppose that m(a) > 0 and the regularity condition (4.16) in Theorem 4.2
holds. Then there exists ε∗ > 0 such that for all 0 < ε < ε∗, a point x∗ ∈ B[a, ε] is a optimal
solution of local programming (4.9) if and only if there is y∗ ∈ Rm satisfying

y∗i ≥ 0, y∗i fi(x
∗) = 0, for i = 1, ..., p;

x∗ = a− ε
u∗

∥u∗∥
, u∗ ∈ ∂L(x∗, 1, y∗).
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