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market economy [26] and many applications can be found in different fields such as supply
chain management [2, 10], hyperparameter selection and meta learning in machine learning
[11, 12, 18, 19, 33]. More details about bilevel programs and their recent developments can
be found in [1, 3, 9, 21,22,25,28] and the references therein.

As is well-known to us, solving bilevel programs numerically is very challenging. The
most popular approach is to use the KKT conditions of the lower-level program to transform
(1.1) into the following mathematical program with complementarity constraints:

(MPCC) min F (x, y)

s.t. (x, y) ∈ Ω, h(x, y) = 0,

∇yf(x, y) +∇yg(x, y)u+∇yh(x, y)v = 0,

0 ≤ u ⊥ g(x, y) ≤ 0,

where a ⊥ b means aT b = 0. However, the MPCC does not satisfy the Mangasarian-
Fromovitz constraint qualification (MFCQ) at any feasible point so that the well-developed
optimization algorithms in nonlinear programming may be unstable in solving it. So far,
many approximation algorithms have been proposed for solving the MPCC; see, e.g., [5–
8, 15, 16, 20, 24, 27]. Another approach to solve bilevel programs is based on the lower-level
value function. Since the value function does not have analytic expressions in general, it can
not be solved directly by the popular optimization algorithms. For more details about this
approach, we refer the readers to [17,30–32] and the references therein.

Recently, two new methods based on lower-level duality were proposed for solving bilevel
programs. The first one is based on the lower-level Wolfe duality in [13], where the bilevel
program (1.1) is transformed equivalently to the single-level optimization problem

(WDP) min F (x, y)

s.t. (x, y) ∈ Ω, g(x, y) ≤ 0, h(x, y) = 0,

f(x, y)− f(x, z)− uT g(x, z)− vTh(x, z) ≤ 0,

∇zf(x, z) +∇zg(x, z)u+∇zh(x, z)v = 0, u ≥ 0.

The second one is based on the lower-level Mond-Weir duality in [14], where (1.1) is trans-
formed equivalently to the single-level optimization problem

(MDP) min F (x, y)

s.t. (x, y) ∈ Ω, g(x, y) ≤ 0, h(x, y) = 0,

f(x, y)− f(x, z) ≤ 0, uT g(x, z) + vTh(x, z) ≥ 0,

∇zf(x, z) +∇zg(x, z)u+∇zh(x, z)v = 0, u ≥ 0.

It was shown by two examples in [13, 14] that, unlike MPCCs, both WDP and MDP may
satisfy the MFCQ at their feasible points. Numerical experiments on 150 linear bilevel
programs generated randomly indicate that, although solving the WDP and MDP directly
may not perform very well, relaxation methods based on them are more efficient than the
MPCC-based methods. See [13,14] for more details.

However, as shown in [13, 14], the MFCQ is still hard to hold for both WDP and MDP
in many cases. Therefore, it is of great theoretical significance to explore whether these
new reformulations satisfy other weaker constraint qualifications such as Abadie CQ and
Guignard CQ. In this paper, we focus on this issue. Main contributions can be stated as
follows:
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• An interesting example is given to illustrate that the WDP and MDP reformulations
have certain advantages over the MPCC reformulation.

• The WDP and MDP reformulations may satisfy Abadie and Guignard CQs under mild
conditions. Furthermore, some sufficient conditions are given to ensure Abadie and
Guignard CQs to hold for both WDP and MDP.

Before discussing Abadie and Guignard CQs for the WDP and MDP, we give an example,
which comes from [29], to show that optimal solutions of bilevel program may be obtained
by solving the KKT systems of the WDP and MDP, but can not be gotten by solving the
corrsponding MPCC. This may be regarded as another superiority of the WDP and MDP
reformulations compared with the MPCC reformulation.

Example 1.1. Consider the bilevel program

min (y + 1)2

s.t. −3 ≤ x ≤ 2, y ∈ argmin
y

{y3 − 3y| y ≥ x}. (1.2)

This problem has a unique optimal solution (x̄, ȳ) = (−2,−2). Next, we discuss whether
(x̄, ȳ) corresponds to a stationary point of the MPCC, WDP, and MDP reformulations.

• The MPCC reformulation of (1.2) is

min (y + 1)2

s.t. −3 ≤ x ≤ 2, 3y2 − 3− u = 0, (1.3)
0 ≤ u ⊥ x− y ≤ 0.

The corresponding optimal solution to (1.3) is (x̄, ȳ, ū) = (−2,−2, 9). This point being
a weakly stationary point of (1.3) means that there exist λ ∈ R2 and µ, α, β ∈ R such
that

λ1 − λ2 + β = 0, (1.4)
2(ȳ + 1) + 6ȳµ− β = 0, (1.5)
−µ− α = 0, (1.6)

0 ≤ λ ⊥
(

x̄− 2
−3− x̄

)
≤ 0, (1.7)

α = 0 if ū > 0, β = 0 if x̄− ȳ < 0. (1.8)

Obviously, we have α = 0 by (1.8) and then µ = 0 by (1.6). Moreover, we have λ =
(0, 0) by (1.7) and hence β = 0 by (1.4). Substituting into (1.5) yields a contradiction,
which means that (x̄, ȳ, ū) is not a weakly stationary point of (1.3).

• The WDP reformulation of (1.2) is

min (y + 1)2

s.t. −3 ≤ x ≤ 2, 3z2 − 3− u = 0, (1.9)
y3 − 3y − z3 + 3z − u(x− z) ≤ 0, u ≥ 0, x− y ≤ 0.

One corresponding optimal solution to (1.9) is (x̄, ȳ, z̄, ū) = (−2,−2, 1, 0). This point
being a stationary point of (1.9) means that there exist λ ∈ R2

+, µ ∈ R, and α, β, γ ∈ R+
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such that

λ1 − λ2 − αū+ γ = 0, (1.10)
2(ȳ + 1) + α(3ȳ2 − 3)− γ = 0, (1.11)
6z̄µ = 0, − α(x̄− z̄)− µ− β = 0, (1.12)

0 ≤ λ ⊥
(

x̄− 2
−3− x̄

)
≤ 0, (1.13)

0 ≤ α ⊥ ȳ3 − 3ȳ − z̄3 + 3z̄ − ū(x̄− z̄) ≤ 0, (1.14)
0 ≤ β ⊥ ū ≥ 0, 0 ≤ γ ⊥ x̄− ȳ ≤ 0. (1.15)

By (1.12) and (1.13), we have λ = (0, 0) and µ = 0. Then, we have γ = 0 by (1.10).
Substituting into (1.11) and (1.12) yields α = 2

9 and β = 2
3 . This means that (x̄, ȳ, z̄, ū)

is a KKT point of (1.9).

• The MDP reformulation of (1.2) is

min (y + 1)2

s.t. −3 ≤ x ≤ 2, 3z2 − 3− u = 0, (1.16)
y3 − 3y − z3 + 3z ≤ 0, u(x− z) ≥ 0,

u ≥ 0, x− y ≤ 0.

One corresponding optimal solution to (1.16) is (x̄, ȳ, z̄, ū) = (−2,−2, 1, 0). This point
being a stationary point of (1.16) means that there exist λ ∈ R2

+, µ ∈ R, and α, β, γ, ν ∈
R+ such that

λ1 − λ2 − βū+ ν = 0, 2(ȳ + 1) + α(3ȳ2 − 3)− ν = 0, (1.17)
α(−3z̄2 + 3) + βū+ 6z̄µ = 0, − β(x̄− z̄)− µ− γ = 0, (1.18)

0 ≤ λ ⊥
(

x̄− 2
−3− x̄

)
≤ 0, 0 ≤ ν ⊥ x̄− ȳ ≤ 0, (1.19)

0 ≤ α ⊥ ȳ3 − 3ȳ − z̄3 + 3z̄ ≤ 0, 0 ≤ β ⊥ ū(x̄− z̄) ≥ 0, 0 ≤ γ ⊥ ū ≥ 0.(1.20)

It is easy to verify that (1.17)-(1.20) hold for λ = (0, 0), µ = 0, α = β = 2
9 , γ = 2

3 , and
ν = 0. Therefore, (x̄, ȳ, z̄, ū) is a KKT point of (1.16).

2 Abadie and Guignard Constraint Qualifications forWDP

As mentioned before, although the WDP may satisfy the MFCQ at its feasible point, this
CQ is still hard to hold in many cases [13]. In this section, we focus on exploring whether
the WDP satisfies other weak constraint qualifications such as Abadie CQ and Guignard
CQ. For simplicity, since the upper-level constraints have no effect on subsequent analysis,
we take them away from the WDP.

To proceed our discussion, we introduce the following associated MPCC related to the
WDP by adding the complementary constraint:

min F (x, y)

s.t. f(x, y)− f(x, z)− uT g(x, z)− vTh(x, z) ≤ 0, (2.1)
∇zf(x, z) +∇zg(x, z)u+∇zh(x, z)v = 0, h(x, y) = 0,

0 ≤ u ⊥ g(x, y) ≤ 0.
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Denote by FWDP and FMWDP the feasible regions of the WDP and (2.1), respectively. It is
obvious that FMWDP ⊆ FWDP. Let (x, y, z, u, v) be a feasible point of (2.1). We define the
following index sets:

I0+ := {i| gi(x, y) = 0, ui > 0}, I−0 := {i| gi(x, y) < 0, ui = 0},
I00 := {i| gi(x, y) = 0, ui = 0}, Ig := {i| gi(x, y) = 0, i = 1, · · · , p},
Iu := {i| ui = 0, i = 1, · · · , p}.

Then, we have the following relationship between stationary points of the WDP and (2.1).

Theorem 2.1. Let (x, y, z, u, v) ∈ FMWDP. Then, (x, y, z, u, v) is a KKT point of the WDP
if and only if (x, y, z, u, v) is an S-stationary point of (2.1).

Proof. For simplicity, we remove the constraint h(x, y) = 0 away from the problems involved.
Suppose that (x, y, z, u) is a KKT point of the WDP. Then, there exists (ηg, ηu, α, β) ∈
Rp+p+1+m such that

∇xF (x, y) + α(∇xf(x, y)−∇xL(x, z, u)) +∇2
zxL(x, z, u)β +∇xg(x, y)η

g = 0, (2.2)
∇yF (x, y) + α∇yf(x, y) +∇yg(x, y)η

g = 0, (2.3)

∇2
zzL(x, z, u)β = 0, ∇zg(x, z)

Tβ − αg(x, z)− ηu = 0, (2.4)
0 ≤ α ⊥ f(x, y)− L(x, z, u) ≤ 0, (2.5)
0 ≤ ηg ⊥ g(x, y) ≤ 0, (2.6)
0 ≤ ηu ⊥ u ≥ 0, (2.7)

where L(x, z, u) := f(x, z) + uT g(x, z). Set λg := ηg, λu := ηu, α′ := α, and β′ := β. When
i ∈ I−0 (i.e., gi(x, y) < 0), we have from (2.6) that λg

i = ηgi = 0. When i ∈ I0+ (i.e., ui > 0),
we have from (2.7) that λu

i = ηui = 0. Thus, (x, y, z, u) is an S-stationary point of (2.1).
Conversely, suppose that (x, y, z, u) is an S-stationary point of (2.1), which means that

there exists (λg, λu, α′, β′) satisfying (2.2)-(2.5) and

λg
i = 0 (i ∈ I−0), (2.8)

λu
i = 0 (i ∈ I0+), (2.9)

λg
i ≥ 0, λu

i ≥ 0 (i ∈ I00). (2.10)

By setting ηg := λg, ηu := λu, α := α′, and β := β′, we obtain (2.2)-(2.7) immediately. This
completes the proof.

Note that (2.1) is equivalent to

min F (x, y)

s.t. f(x, y)− f(x, z)− uT g(x, z)− vTh(x, z) ≤ 0, (2.11)
∇zf(x, z) +∇zg(x, z)u+∇zh(x, z)v = 0, h(x, y) = 0

u ≥ 0, g(x, y) ≤ 0, uT g(x, y) ≥ 0.

Denote by FNWDP the feasible region of (2.11). We have FMWDP = FNWDP ⊆ FWDP.
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Under the condition that the first constraint in (2.1) and (2.11) is active at (x, y, z, u, v),
the linearization cones of FWDP and FNWDP at (x, y, z, u, v) can be written as

LFWDP
(x, y, z, u, v)

=



(
∇xf(x, y)−∇xL(x, z, u, v)

)T
dx+∇yf(x, y)

T dy
−g(x, z)T du− h(x, z)T dv ≤ 0

(dx, dy, dz, du, dv)
(
∇2

zxL(x, z, u, v)
)T

dx+
(
∇2

zzL(x, z, u, v)
)T

dz
∈ Rn+m+m+p+q +∇zg(x, z)du+∇zh(x, z)dv = 0

dui ≥ 0, (i ∈ Iu)
∇xgi(x, y)

T dx+∇ygi(x, y)
T dy ≤ 0, (i ∈ Ig)

∇xhi(x, y)
T dx+∇yhi(x, y)

T dy = 0, (i = 1, · · · , q)


,

LFNWDP
(x, y, z, u, v)

=



(
∇xf(x, y)−∇xL(x, z, u, v)

)T
dx+∇yf(x, y)

T dy
−g(x, z)T du− h(x, z)T dv ≤ 0(
∇2

zxL(x, z, u, v)
)T

dx+
(
∇2

zzL(x, z, u, v)
)T

dz
(dx, dy, dz, du, dv) +∇zg(x, z)du+∇zh(x, z)dv = 0
∈ Rn+m+m+p+q dui ≥ 0, (i ∈ Iu)

∇xgi(x, y)
T dx+∇ygi(x, y)

T dy ≤ 0, (i ∈ Ig)
∇xhi(x, y)

T dx+∇yhi(x, y)
T dy = 0, (i = 1, · · · , q)

−(∇xg(x, y)u)
T dx− (∇yg(x, y)u)

T dy − g(x, y)T du ≤ 0


.

Remark 2.2. In the case that the first constraint in (2.1) and (2.11) is inactive at
(x, y, z, u, v), the corresponding linearization conditions in the above cones need to be re-
moved, which does not affect subsequent analysis. On the other hand, since ∇xh(x, y)

T dx+
∇yh(x, y)

T dy = 0 and h(x, y) = 0, the last item in LFNWDP
(x, y, z, u, v) can be equivalently

expressed as

− (∇xg(x, y)u+∇xh(x, y)v)
T dx− (∇yg(x, y)u+∇yh(x, y)v)

T dy

− g(x, y)T du− h(x, y)T dv ≤ 0.

It will be used in subsequent analysis.

We have the following results for the problems (2.1) and (2.11), which are preparatory
to the establishment of Abadie CQ and Guignard CQ for the WDP.

Lemma 2.3. We have LFNWDP(x, y, z, u, v) = LFMWDP(x, y, z, u, v) for any feasible point
(x, y, z, u, v).

Proof. First of all, to simplify the proof, we skip all common constraints and so two cones
can be rewritten as follows:

LFNWDP =

 dui ≥ 0, (i ∈ Iu = I00 ∪ I−0)
(dx, dy, du) ∇xgi(x, y)

T dx+∇ygi(x, y)
T dy ≤ 0, (i ∈ Ig = I00 ∪ I0+)

(∇xg(x, y)u)
T dx+ (∇yg(x, y)u)

T dy + g(x, y)T du ≥ 0

 ,

LFMWDP =

 dui = 0, (i ∈ I−0)
(dx, dy, du) dui ≥ 0, ∇xgi(x, y)

T dx+∇ygi(x, y)
T dy ≤ 0, (i ∈ I00)

∇xgi(x, y)
T dx+∇ygi(x, y)

T dy = 0, (i ∈ I0+)

 .
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It is easy to see that LFMWDP ⊆ LFNWDP .
Let (dx, dy, du) ∈ LFNWDP

be arbitrary. Obviously, we have

dui ≥ 0, ∇xgi(x, y)
T dx+∇ygi(x, y)

T dy ≤ 0 (i ∈ I00). (2.12)

Since

A :=
∑
i∈I00

((∇xgi(x, y)ui)
T dx+ (∇ygi(x, y)ui)

T dy + gi(x, y)dui) = 0,

B :=
∑
i∈I0+

((∇xgi(x, y)ui)
T dx+ (∇ygi(x, y)ui)

T dy + gi(x, y)dui)

=
∑
i∈I0+

((∇xgi(x, y)ui)
T dx+ (∇ygi(x, y)ui)

T dy),

C :=
∑
i∈I−0

((∇xgi(x, y)ui)
T dx+ (∇ygi(x, y)ui)

T dy + gi(x, y)dui) =
∑
i∈I−0

gi(x, y)dui,

the inequality (∇xg(x, y)u)
T dx+ (∇yg(x, y)u)

T dy + g(x, y)T du ≥ 0 is equivalent to

B + C ≥ 0. (2.13)

When i ∈ I0+, we have ui > 0 and ∇xgi(x, y)
T dx + ∇ygi(x, y)

T dy ≤ 0, which
implies (∇xgi(x, y)ui)

T dx + (∇ygi(x, y)ui)
T dy ≤ 0 for i ∈ I0+ and hence B =∑

i∈I0+

((∇xgi(x, y)ui)
T dx + (∇ygi(x, y)ui)

T dy) ≤ 0. On the other hand, when i ∈ I−0,

we have gi(x, y) < 0 and dui ≥ 0, which means gi(x, y)dui ≤ 0 for i ∈ I−0 and then
C =

∑
i∈I−0

gi(x, y)dui ≤ 0. As a result, we have B + C ≤ 0, B ≤ 0, and C ≤ 0. By (2.13),

we have B = C = 0, which implies

∇xgi(x, y)
T dx+∇ygi(x, y)

T dy = 0 (i ∈ I0+), (2.14)
dui = 0 (i ∈ I−0). (2.15)

Combining (2.12) and (2.14)-(2.15), we have LFNWDP
⊆ LFMWDP

, which means LFNWDP
=

LFMWDP
. This completes the proof.

Since FMWDP = FNWDP, we have the following corollary from Lemma 2.3 immediately.

Corollary 2.4. The problem (2.11) satisfies Guignard (or Abadie) CQ at a feasible point
(x, y, z, u, v) if and only if the problem (2.1) satisfies Guignard (or Abadie) CQ at (x, y, z, u, v).

Based on the above analysis, we have the following result.

Theorem 2.5. If Abadie CQ holds for (2.1) at (x, y, y, u, v) ∈ FMWDP, then Abadie CQ
also holds for the WDP at (x, y, y, u, v).

Proof. By FNWDP ⊆ FWDP, we have

TFNWDP
(x, y, z, u, v) ⊆ TFWDP

(x, y, z, u, v) ⊆ LFWDP
(x, y, z, u, v).

Since (2.1) satisfies Abadie CQ at (x, y, y, u, v), by Lemma 2.3 and Corollary 2.4, we have

TFMWDP(x, y, y, u, v) = LFMWDP(x, y, y, u, v) = LFNWDP(x, y, y, u, v) = TFNWDP(x, y, y, u, v).
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To show that the WDP satisfies Abadie CQ at (x, y, y, u, v), we only need to illustrate

LFNWDP
(x, y, y, u, v) ⊇ LFWDP

(x, y, y, u, v). (2.16)

In fact, for any d = (dx, dy, dz, du, dv) ∈ LFWDP(x, y, y, u, v), it is easy to see that,
compared to LFWDP

(x, y, y, u, v), LFNWDP
(x, y, y, u, v) has only one additional term

−(∇xg(x, y)u)
T dx− (∇yg(x, y)u)

T dy − g(x, y)T du ≤ 0.

Considering the first item of LFWDP
(x, y, y, u, v), we have

−(∇xg(x, y)u+∇xh(x, y)v)
T dx+∇yf(x, y)

T dy − g(x, y)T du− h(x, y)T dv ≤ 0. (2.17)

By ∇yf(x, y)+∇yg(x, y)u+∇yh(x, y)v = 0 and Remark 2.2, we have d∈LFNWDP
(x, y, y, u, v).

This completes the proof.

We further have the following result related to Guignard CQ.

Theorem 2.6. If Guignard CQ holds for (2.1) at (x, y, y, u, v) ∈ FMWDP, then Guignard
CQ also holds for the WDP at (x, y, y, u, v).

Proof. By FNWDP ⊆ FWDP, we have

TFNWDP(x, y, z, u, v) ⊆ TFWDP(x, y, z, u, v) ⊆ LFWDP(x, y, z, u, v),

which yields the inclusion

TFNWDP(x, y, z, u, v)
◦ ⊇ TFWDP(x, y, z, u, v)

◦ ⊇ LFWDP(x, y, z, u, v)
◦.

In order to verify Guignard CQ for the WDP at (x, y, y, u, v), we only need to show
TFNWDP

(x, y, y, u, v)◦ ⊆ LFWDP
(x, y, y, u, v)◦.

In fact, since Guignard CQ holds for (2.1) at (x, y, y, u, v), by Lemma 2.4, Guignard CQ
also holds for (2.11) at (x, y, y, u, v), that is,

TFNWDP
(x, y, y, u, v)◦ = LFNWDP

(x, y, y, u, v)◦.

Let ξ = (ξx, ξy, ξz, ξu, ξv) ∈ TFNWDP(x, y, y, u, v)
◦ = LFNWDP(x, y, y, u, v)

◦ be arbitrary. By
Remark 2.2 and Farkas’ Lemma [23, Lemma 6.45], there exist multipliers ξgi ≥ 0 (i ∈ Ig),
ξh, ξui ≥ 0 (i ∈ Iu), β′, α′ ≥ 0, and γ′ ≥ 0 such that

ξx = −(α′ + γ′)(∇xg(x, y)u+∇xh(x, y)v) +∇2
yxL(x, y, u, v)β

′

+
∑
i∈Ig

∇xgi(x, y)ξ
g
i +∇xh(x, y)ξ

h,

ξy = (α′ + γ′)∇yf(x, y) +
∑
i∈Ig

∇ygi(x, y)ξ
g
i +∇yh(x, y)ξ

h,

ξz = ∇2
yyL(x, y, u, v)β

′,

ξu = −(α′ + γ′)g(x, y) +∇yg(x, y)
Tβ′ −

∑
i∈Iu

ξui Ip×i,

ξv = −(α′ + γ′)h(x, y) +∇yh(x, y)
Tβ′,

where Ip×i denotes the ith column of the unit matrix Ip×p. This implies that ξ ∈
LFWDP

(x, y, y, u, v)◦. Therefore, Guignard CQ holds for the WDP at (x, y, y, u, v). This
completes the proof.
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Remark 2.7. See [4, Proposition 2.17 and Theorems 3.4-3.5] for some sufficient conditions to
ensure (2.1) to satisfy Abadie CQ or Guignard CQ. For ease of understanding, we summarize
some relations related to Guignard CQ as follows:

MPEC-LICQ of (2.1)
[4]

========⇒ Guignard CQ of (2.1)
Corollary 2.4
========⇒ Guignard CQ of (2.11)
Theorem 2.6
========⇒

y=z
Guignard CQ of the WDP

Since the sufficient conditions given in [4] for (2.1) to satisfy Abadie CQ are somewhat
complicated, we refer the reader to [4, Proposition 2.17] for details.

3 Abadie and Guignard Constraint Qualifications forMDP

In this section, we extend the results in the last section to the case of the MDP. To this end,
we introduce the following two associated problems:

min F (x, y)

s.t. f(x, y)− f(x, z) ≤ 0, uT g(x, z) + vTh(x, z) ≥ 0, (3.1)
∇zf(x, z) +∇zg(x, z)u+∇zh(x, z)v = 0, h(x, y) = 0,

0 ≤ u ⊥ g(x, y) ≤ 0

and

min F (x, y)

s.t. f(x, y)− f(x, z) ≤ 0, uT g(x, z) + vTh(x, z) ≥ 0, (3.2)
∇zf(x, z) +∇zg(x, z)u+∇zh(x, z)v = 0, h(x, y) = 0,

u ≥ 0, g(x, y) ≤ 0, uT g(x, y) ≥ 0.

Denote by FMDP, FMMDP, and FNMDP the feasible sets of the MDP, (3.1), and (3.2) respec-
tively. Obviously, we have FNMDP = FMMDP ⊆ FMDP. We also assume that the first two
constraints are both active at (x, y, z, u, v) when defining the following linearization cones:

LFMDP
(x, y, z, u, v) =

(
∇xf(x, y)−∇xf(x, z)

)T
dx+∇yf(x, y)

T dy−∇zf(x, z)
T dz≤0(

−∇xg(x, z)u−∇xh(x, z)v
)T

dx− g(x, z)T du− h(x, z)T dv(
−∇zg(x, z)u−∇zh(x, z)v

)T
dz ≤ 0

(dx, dy, dz, du, dv)
(
∇2

zxL(x, z, u, v)
)T

dx+
(
∇2

zzL(x, z, u, v)
)T

dz
∈ Rn+m+m+p+q +∇zg(x, z)du+∇zh(x, z)dv = 0

dui ≥ 0, (i ∈ Iu)
∇xgi(x, y)

T dx+∇ygi(x, y)
T dy ≤ 0, (i ∈ Ig)

∇xhi(x, y)
T dx+∇yhi(x, y)

T dy = 0, (i = 1, · · · , q)


,
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LFNMDP(x, y, z, u, v) =

(
∇xf(x, y)−∇xf(x, z)

)T
dx+∇yf(x, y)

T dy−∇zf(x, z)
T dz≤0(

−∇xg(x, z)u−∇xh(x, z)v
)T

dx− g(x, z)T du− h(x, z)T dv(
−∇zg(x, z)u−∇zh(x, z)v

)T
dz ≤ 0

(dx, dy, dz, du, dv)
(
∇2

zxL(x, z, u, v)
)T

dx+
(
∇2

zzL(x, z, u, v)
)T

dz
∈ Rn+m+m+p+q +∇zg(x, z)du+∇zh(x, z)dv = 0

dui ≥ 0, (i ∈ Iu)
∇xgi(x, y)

T dx+∇ygi(x, y)
T dy ≤ 0, (i ∈ Ig)

∇xhi(x, y)
T dx+∇yhi(x, y)

T dy = 0, (i = 1, · · · , q)
−(∇xg(x, y)u)

T dx− (∇yg(x, y)u)
T dy − g(x, y)T du ≤ 0


.

In particular, the last item in LFNMDP
(x, y, z, u, v) can be equivalently expressed as

− (∇xg(x, y)u+∇xh(x, y)v)
T dx− (∇yg(x, y)u

+∇yh(x, y)v)
T dy − g(x, y)T du− h(x, y)T dv ≤ 0.

(3.3)

Similarly as in Section 2, we can show the following results for the MDP and the problems
(2.1)-(2.11).

Theorem 3.1. Let (x, y, z, u, v) ∈ FMMDP. Then, (x, y, z, u, v) is a KKT point of the MDP
if and only if (x, y, z, u, v) is an S-stationary point of (3.1).

Lemma 3.2. For any (x, y, z, u, v) ∈ FMMDP, we have LFNMDP
(x, y, z, u, v) =

LFMMDP
(x, y, z, u, v) and, in addition, (3.2) satisfies Abadie (or Guignard) CQ at (x, y, z, u, v)

if and only if (3.1) satisfies Abadie (or Guignard) CQ at (x, y, z, u, v).

Based on the above lemma, we have the following results related to Abadie and Guignard
CQs.

Theorem 3.3. If Abadie CQ holds for (3.1) at (x, y, y, u, v) ∈ FMMDP, then Abadie CQ
also holds for the MDP at (x, y, y, u, v).

Proof. By FNMDP ⊆ FMDP, we have

TFNMDP
(x, y, z, u, v) ⊆ TFMDP

(x, y, z, u, v) ⊆ LFMDP
(x, y, z, u, v).

Since (3.1) satisfies Abadie CQ at (x, y, y, u, v), by Lemma 3.2, we have

LFNMDP(x, y, y, u, v) = TFNMDP(x, y, y, u, v).

Therefore, to prove that the MDP satisfies Abadie CQ at (x, y, y, u, v), we only need to show

LFNMDP(x, y, y, u, v) ⊇ LFMDP(x, y, y, u, v). (3.4)

In fact, for any d = (dx, dy, dz, du, dv) ∈ LFMDP
(x, y, y, u, v), it is easy to see that,

compared to LFMDP
(x, y, y, u, v), LFNMDP

(x, y, y, u, v) has only one additional term
−(∇xg(x, y)u)

T dx − (∇yg(x, y)u)
T dy − g(x, y)T du ≤ 0. By (3.3), we have d ∈

LFNMDP(x, y, y, u, v). This completes the proof.

Theorem 3.4. If Guignard CQ holds for (3.1) at (x, y, y, u, v) ∈ FMWDP, then Guignard
CQ holds for the MDP at (x, y, y, u, v).
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Proof. By FNMDP ⊆ FMDP, we have

TFNMDP
(x, y, z, u, v) ⊆ TFMDP

(x, y, z, u, v) ⊆ LFMDP
(x, y, z, u, v),

which yields the inclusion

TFNMDP(x, y, z, u, v)
◦ ⊇ TFMDP(x, y, z, u, v)

◦ ⊇ LFMDP(x, y, z, u, v)
◦.

In order to verify that Guignard CQ holds for the MDP at (x, y, y, u, v), we only need to show
TFNMDP

(x, y, y, u, v)◦ ⊆ LFMDP
(x, y, y, u, v)◦. In fact, since Guignard CQ holds for (3.1) at

(x, y, y, u, v), by Lemma 3.2, the problem (3.2) satisfies Guignard CQ at (x, y, y, u, v), that
is,

TFNMDP
(x, y, y, u, v)◦ = LFNMDP

(x, y, y, u, v)◦.

Pick ξ = (ξx, ξy, ξz, ξu, ξv) ∈ TFNMDP(x, y, y, u, v)
◦ = LFNMDP(x, y, y, u, v)

◦ arbitrarily. By
(3.3), there exist multipliers ξgi ≥ 0 (i ∈ Ig), ξh, ξui ≥ 0 (i ∈ Iu), β′, α′

1 ≥ 0, α′
2 ≥ 0, and

γ′ ≥ 0 such that

ξx = −(α′
2 + γ′)(∇xg(x, y)u+∇xh(x, y)v) +∇2

yxL(x, y, u, v)β
′

+
∑
i∈Ig

∇xgi(x, y)ξ
g
i +∇xh(x, y)ξ

h,

ξy = (α′
1 + γ′)∇yf(x, y) +

∑
i∈Ig

∇ygi(x, y)ξ
g
i +∇yh(x, y)ξ

h,

ξz = −α′
1∇yf(x, y)− α′

2(∇yg(x, y)u+∇yh(x, y)v) +∇2
yyL(x, y, u, v)β

′

= (α′
2 − α′

1)∇yf(x, y) +∇2
yyL(x, y, u, v)β

′,

ξu = −(α′
2 + γ′)g(x, y) +∇yg(x, y)

Tβ′ −
∑
i∈Iu

ξui Ip×i,

ξv = −(α′
2 + γ′)h(x, y) +∇yh(x, y)

Tβ′.

Note that α′
2 + γ′ ↔ α2 and α′

1 + γ′ ↔ α1 imply α′
2 − α′

1 ↔ α2 − α1, where the symbol
a ↔ b indicates that a and b correspond one-to-one. Specifically, set α′

2 := α2 − γ′ and
α′
1 := α1 − γ′. Then, we have α′

2 − α′
1 = α2 − γ′ − (α1 − γ′) = α2 − α1. Therefore, we have

ξ ∈ LFMDP(x, y, y, u, v)
◦ and hence the MDP satisfies Guignard CQ at (x, y, y, u, v). This

completes the proof.

Remark 2.7 related to the WDP can also be applicable to the MDP by replacing (2.1) to
(3.1). To end this section, we discuss the relationship between Abadie and Guignard CQs for
the WDP and MDP. Note that, by the definitions of the WDP and MDP reformulations, we
have TFMDP(x, y, y, u, v) = TFWDP(x, y, y, u, v) and LFMDP(x, y, y, u, v) = LFWDP(x, y, y, u, v).
Thus, we can directly obtain the following result.

Corollary 3.5. The WDP satisfies Guignard (or Abadie) CQ at a feasible point (x, y, y, u, v)
if and only if the MDP satisfies Guignard (or Abadie) CQ at (x, y, y, u, v).

4 Conclusions

This paper aims to explore whether the WDP and MDP reformulations for bilevel programs
satisfy Abadie CQ or Guignard CQ. Some sufficient conditions to ensure Abadie CQ and
Guignard CQ to hold for the WDP and MDP are given. These results can be regarded as
a supplement to the previous works [13, 14]. In the future, we will continue to study this
novel approach based on lower-level duality from theoretical and algorithmic perspectives.



486 Y.-W. LI, G.-H. LIN AND X. ZHU

Acknowledgments

The authors would like to thank two anonymous referees for their helpful and constructive
comments that have helped us to improve the presentation of this paper.

References

[1] J.F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer, Dor-
drecht, 1998.
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