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the expected profit and the risk, where the risk is measured by the variance of the profit. A
growing number of researchers employ the MV approach to formulate the expected utility
and study the operational decisions of the risk-averse newsvendor problem [10, 18, 31].

In literature, newsvendor approaches have been proposed to investigate the impacts of
carbon emission reduction on the firm’s operations [5, 20, 38]. Dong et al. [11] develop a lin-
ear function to model a stochastic demand influenced by the sustainability level. The authors
use a newsvendor approach to study the sustainable investment decision and coordination
of a two-tier supply chain under cap-and-trade regulation. Ma et al. [19] extend a newsven-
dor model to that for a single-manufacturer and multi-manufacturer supply chain under an
emissions trading mechanism. The authors focus on studying how information asymmetry
affect the coordination of the regulated supply chain. Meng et al. [23] use a newsvendor
approach to study the make-or-buy decision of the manufacturer under carbon tax regula-
tion. Cao and Yu [4] consider the carbon permit as a financing mechanism and develop a
supply chain financing model in the context of the newsvendor problem under cap-and-trade
regulation. Bai et al. [2] consider a newsvendor model with limited demand information
and compare the impacts of carbon tax regulation with those of carbon cap regulation on
the operational decision. Bai et al. [3] develop a distributionally robust newsvendor model
for a remanufacturing system under cap-and-trade regulation. The aforementioned studies
are focused on the development of newsvendor models under different carbon regulations
and studying how carbon emission reduction affect the operational decisions.

On the other hand, mean-variance analysis of inventory models optimizes the problem
with consideration of both the expected profit and the risk [8, 13]. There has been a rapid
growing popularity in studying stochastic inventory operations [6, 7, 18, 32]). Recently,
Rubio-Herrero et al. [30] propose the mean-variance approach to study the impacts of the
risk aversion on a newsvendor model with price-dependent demand. Some extensions have
further investigated by two recent publications [28, 29]. Ray and Jenamani [27] conduct
a mean-variance analysis of the order allocation decision for a supply chain with multi-
supplier and single-risk-averse-buyer. Chiu et al. [9] consider a luxury fashion firm who is
risk-averse and use a mean-variance approach to solve the optimal customer portfolios and
budget allocation strategies. Zhang et al. [36] extend the classic newsvendor problem to
that considers the preferences for mean, variance, skewness, and kurtosis of the firm’s profit.
In the framework of the mean-variance theory, the authors study the structural properties
of the optimal operational decisions and make some extensions. Yang et al. [34] develop a
mean-variance model to conduct risk analysis of the coordination for a single-supplier and
capital-constrained-retailer system. Zhang et al. [37] study the effectiveness of coordinating
contracts in a two-echelon supply chain under the mean-variance and mean-downside-risk
objectives.

In recent years, sustainable operations have become one of the prominent issues in the
global business environment because carbon emissions contribute to global warming. The
production stage is the main source of emitting carbon emissions in the enterprise opera-
tions. Many countries and regions have carried out cap-and-trade policies to reduce carbon
emissions. Under a cap-and-trade policy, the government sets a carbon limit to the en-
terprise, if the enterprise emits more carbon emissions than the carbon limit, the neeeded
emissions credits are purchased from the carbon market. Otherwise, the surplus emission
credits are sold to other enterprises [1]. Moreover, consumers are increasingly favoring low-
carbon products, some manufacturers have to invest in sustainability technology to produce
the product with green label while the production cost are increased. In this situation,
when a risk-averse manufacturer invests in the sustainability technology under a cap-and-
trade policy, the following issues arise: (i) What are the conditions for the existence of
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the optimal decisions on sustainability level and production quantity ? (ii) How does the
risk-averse attribute affect the regulated manufacturer’s operations?

To fill in the research gaps above, this paper considers a risk-averse manufacturer un-
der a cap-and-trade policy who invests in the sustainability technology. In the framework of
newsvendor model, we study the impacts of the sustainability level on the demand, with spe-
cific to additive and multiplicative forms of sustainability-dependent demand. To address
the trade-offs between expected profit and its variance due to the ambiguity of demand
fluctuation in the market, we employ the mean-variance approach to determining optimal
decisions on the sustainability level and production quantity. Further, we investigate suffi-
cient conditions for the existence and uniqueness of the optimal solution of the underlying
models. Different from the existing studies in literature, this study considers carbon emission
reduction in the newsvendor model, incorporating both cap-and-trade regulation and the
investment in the sustainability technology by taking into account both additive and mul-
tiplicative demand. We believe the obtained results would greatly enrich and complement
the field of green manufacturing and sustainable development.

The remainder of this paper is organized as follows. Section 2 presents a benchmark
model of the underlying problem using mean-variance analysis. The corresponding models
with an additive demand and with a multiplicative demand are discussed in Sections 3 and
4, respectively. We study the conditions for the existence and uniqueness of the optimal
decisions for the latter two models. Section 5 presents numerical examples and sensitivity
analysis together with managerial implications of our model. Section 6 concludes the paper.

2 Model Development

2.1 Notation

In this paper, we consider the single-product single-period newsvendor problem with sus-
tainability investment under stochastic demand. The underlying manufacturer seeks to
determine the optimal production plan in the framework of mean-variance analysis. Vari-
ous cost factors are incurred in the manufacturing process, such as cost of the production,
inventory holding cost or overproduction cost, investment cost regarding the sustainable
development, and cost related to carbon emissions under the cap-to-trade policy. We first
establish a benchmark model. In next two sections, we consider two different forms of the
demand and study the corresponding models with a focus on the existence and uniqueness of
the optimal solution and sensitivity analysis in terms of risk averse factor. In the following,
we list the notations of parameters and variables needed in model development.

Parameters:

p: unit selling price of the product in the market,

c: unit cost of production of the manufacturer,

ch: unit inventory holding cost of the manufacturer for leftover products,

a: the carbon emission quantity per unit when the sustainability level is zero,

b: coefficient of the sustainability effect on the carbon emission reduction,

ce: unit carbon emission price,

cI : coefficient of the sustainability investment,
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K: total allowable carbon emissions under cap-and-trade policy,

β: coefficient of the sustainability effect on demand,

ϵ: random variable describing demand fluctuations in the market with a support set
[A,B], A ∈ R, B > 0,

D: random demand of the product characterized by stochastic market fluctuations ϵ
and sustainability level s,

d: fixed base demand of product,

E[Π̃]: expected profit of the manufacturer,

Π: utility of the manufacturer under the mean-variance framework.

Decision variables:

s: sustainability level of the manufacturer,

x: production quantity of the manufacturer.

2.2 A benchmark model

For the demand under consideration, D(s, ϵ) is sustainability-dependent [11], where s denotes
the sustainability level and ϵ is random variable characterizing demand fluctuation in the
market. Let f(·) , F (·) denote the probability density function and cumulative distribution
function of ϵ, respectively. We assume F (·) is twice continuously differentiable. Following
the existing literature [12], we denote h(z) as the failure rate of ϵ, that is, h(z) = f(z)/(1−
F (z)). In the case when the production quantity x is greater than the demand D(s, ϵ), the
manufacturer will bear the cost of the excess product at cost ch per unit. In this paper, we
assume the manufacturer has adequate production capacity to meet the demand. In short,
the manufacturer is more concerned about the optimal production planning to avoid excess
production as far as possible, rather than the issue of product shortage.

In alignment with green manufacturing and promoting sustainable development, the
manufacturer invests in the sustainability technology to reduce carbon emissions generated
at the production stage. Let a represent the basal quantity of carbon emissions in the
production process without adoption of any sustainability technology, i.e., the sustainability
level is zero. If the manufacturer produces x units of the product, (a− bs)x units of carbon
emissions will be emitted, where b denotes the coefficient of the sustainability effect on
the emissions reduction. It is evident that the sustainability level s satisfies 0 ≤ s < a/b.
Under the cap-and-trade regulation, if the total carbon emissions are higher (or lower)
than an allowable quota K, the manufacturer will buy (or sell) a certain amount of carbon
credits at the unit price ce from the carbon trading market. Following Dong et al. [11], the
sustainability investment cost is a quadratic function in s in form of cIs

2/2, where cI denotes
the sustainability investment coefficient. In practice, the sustainability level is improved by
a large investment. Using similar assumptions in [11], we assume that cI is sufficiently high,
i.e. cI > 2cebβ. Based on the above discussions, the expected profit of the manufacturer is
given by

E[Π̃(x, s)] = E[pmin{D(s, ϵ), x}]− cx− E[ch(x−D(s, ϵ))+]

−ce((a− bs)x−K)− cI
2
s2. (2.1)
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In equation (2.1), the first term represents the manufacturer’s revenue from selling the
products, the second term is the manufacturing cost of the products, the third term refers to
the leftover cost or holding cost of the product, the fourth term denotes the cost (or revenue)
from trading the emission credits, and the last term is the sustainability investment. The
underling manufacturer is risk-averse in decision making in that he/she likes to maximize
the expected profit and also seeks to minimize the variance of its profit. Due to this, we
then apply the mean-variance method to determine the joint optimal decisions of production
quantity and sustainability level by maximizing the utility Π of of the manufacturer, namely

Π(x, s) = E[Π̃(x, s)]− λV ar[Π̃(x, s)]

= (p+ ch)E[min{x,D(s, ϵ)}]− (c+ ch)x− ce((a− bs)x−K) (2.2)

−cI
2
s2 − λV ar(p+ ch)min{x,D(s, ϵ)},

where λ > 0 is a risk-averse parameter, representing the degree of the manufacturer’s risk-
averse. Thus, we have the mean-variance optimization model of the underlying newsvendor
problem as follows.

max Π(x, s)

s.t. 0 ≤ s <
a

b
, (2.3)

x ≥ 0.

Note that when λ = 0, model (2.3) will reduce to the usual expected profit maximization
problem in risk-neutral decision-making. In general, the objective function Π(x, s) is not
tractable. Furthermore, it is impossible to derive optimal solution (x∗, s∗) of (2.3) in a closed
form even if exists. In this paper, our interest is to investigate the existence and uniqueness
of the optimal solution by considering the demand in form of additive and multiplicative
expressions in the sustainability level s following discussions in literature, which will be
elaborated in subsequent sections.

Before end of this section, we introduce some important notions of newsvendor prob-
lems as discussed in [17] to analyze economic significance and managerial insights of our
optimization model.

Definition 2.1. For a given sustainability level s and inventory level x, the lost sales rate
(LSR) elasticity is defined as

ξ̃(s, x) =
sGs(s, x)

1−G(s, x)
(2.4)

where G(s, x) := P (D(s, ϵ) ≤ x) and Gs(s, x) := ∂G(s, x)/∂s.

The LSR elasticity describes how the probability of fulfilling demand (i.e., P (D(s, ϵ)
≤ x)) changes as we increase the sustainability level of the product. More specifically, for a
given safety stock, the LSR elasticity represents the percentage change in the rate of sales
loss relative to the change in the sustainability level.

Definition 2.2. The elasticity of the optimal sustainability level, ρ, measures the percentage
change in the optimal sustainability level s∗(z) when there is a one percent change in the
safety stock z, defined by

ρ(z) :=
ds∗(z)

dz

z

s∗(z)
. (2.5)
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Definition 2.3. The elasticity of the expected safety stock surplus (ESSS elasticity), ω,
measures the percentage change in the expected excess of safety stock when there is a one
percent change in the safety stock z, defined by

ω(z) :=
dE[(z − ϵ)+]

dz

z

E[(z − ϵ)+]
. (2.6)

Note that the expected safety stock surplus E[(z − ϵ)+] ≡ z − µ(z), where µ(z) =
E[min{z, ϵ}]. By definition, the expected safety stock surplus is positive and an increase in
the safety stock will inevitably produce an increment in this expectation. Then, ω(·) is a
nonnegative function.

By incorporating these definitions into our analysis, we could better understand the
relevant conditions regarding the existence and uniqueness of the models discussed in Section
3 and 4 from economic perspective, enhancing our analysis in a managerial context, not
merely deductions and explanations using mathematical terms.

3 The model with an additive demand

In this section, we consider an additive demand in form of

D(s, ϵ) = y(s) + ϵ, (3.1)

where y(s) = d+βs with d > 0 and β > 0, d is the base demand and β is the coefficient of the
sustainability effect on demand. To ensure the well-definedness (i.e., the non-negativeness)
of the demand, we have A ≥ −d. In addition, we make the following assumption on the
uncertain demand fluctuation ϵ.

Assumption 3.1. (i) ϵ is a random variable with finite variance Var(ϵ) and compact
support interval [A,B], where A < 0 and B > 0. (ii) E(ϵ) = 0.

The above assumption is mild and reasonable. Assumption 3 (i) holds because if ϵ
is a random variable defined on an open interval, following certain distribution such as an
exponential or a normal distribution, we can consider an efficient truncation to capture more
information with an closed support interval [A, B]. Assumption 3 (ii) is intuitive concerning
random variations (i.e., increase and decrease) in demand fluctuation in the market.

To ease our analysis, in what follows we reformulate the underlying model using a trans-
formation z = x − y(s). Here, z refers to a safety stock factor implying that the difference
between the stock quantity x and the risk-free demand with a sustainability level s, as stated
in [25, 30]. By Assumption , we have y(s) +A ≤ x ≤ y(s) +B. Applying basic mathemati-
cal operations and by replacing x by z + y(s) using the transformation, the utility function
Π(x, s) can be written as

Π(s, z)

= (p+ ch)E[min{y(s) + z, y(s) + ϵ}]− (c+ ch)(y(s) + z)− ce((a− bs)(y(s) + z)

+ceK − cI
2
s2 − λV ar(p+ ch)min{y(s) + z, y(s) + ϵ}

= (p+ ch)(y(s) + E[min{z, ϵ}])− (c+ ch)(y(s) + z)− ce((a− bs)(y(s) + z)−K)

−cI
2
s2 − λV ar(p+ ch)(y(s) + min{z, ϵ}) (3.2)

= (p+ ch)(y(s) + µ(z))− (c+ ch)(y(s) + z)− ce((a− bs)(y(s) + z)−K)

−cI
2
s2 − λ((p+ ch))

2σ2(z),
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where

µ(z) = E[min{z, ϵ}] =
∫ B

z

(z − u)f(u)du, (3.3)

σ2(z) = V ar[min{z, ϵ}] (3.4)

= V ar(ϵ) +

∫ B

z

(z2 − u2)f(u)du−

[∫ B

z

(z − u)f(u)du

]2

.

Note that µ(·) is an increasing and concave function since µ′(z) = 1 − F (z) > 0 and
µ′′(z) = −f(z) < 0. In addition, σ2(·) is increasing as its first order derivative σ2(z)′ =
2(1 − F (z))(z − µ(z)) > 0. Then, we have the optimization model under additive demand
as follows.

max Π(s, z) := (p+ ch)(y(s) + µ(z))− (c+ ch)(y(s) + z)

−ce((a− bs)(y(s) + z)−K)− cI
2
s2 − λ((p+ ch))

2σ2(z) (3.5)

s.t. 0 ≤ s <
a

b
, z ∈ [A,B].

In what follows, we use the optimization method in [35] to solve the optimal values of
sustainability level and stock factor. The procedures are as follows. First, for any given
value of the safety stock z, we solve the optimal sustainability level s∗(z) that maximizes
Π(s, z). Then, substituting the optimal sustainability level into the objective function of
(3.5) and simplifying its expression, we solve the optimal safety stock z∗ that maximizes
Π(s∗, z).

Lemma 3.1. For any given z ∈ [A,B], the following holds. (i) s∗(z) is strictly positive in
z. (ii) s∗(z) is increasing in z. (iii) s∗(z) are increasing in β and b, and decreasing in cI .

Proof. (i) For any given z, take the first order derivative of Π(s, z) with respect to s and
solve ∂Π

∂s = 0, it follows that

s∗(z) =
(cea+ c− p)β − ceb(z + d)

2cebβ − cI
. (3.6)

Noticing that Π(s, z) is a concave function with respect to s because ∂2Π(s, z)/∂s2 = 2cebβ−
cI ≤ 0. Then, the optimal sustainability level s∗ exists. In addition, 2cebβ − cI < 0 and
p > c+ cea, we then have s∗(z) > 0 as z ≥ A ≥ −d.

(ii) It follows from (3.6) that ∂s∗(z)
∂z = −ceb

2cebβ−cI
> 0, which implies s∗(z) is monotonically

increasing in z.
(iii) With help of equation (3.6), taking the first order derivative of s∗(z) with respect

to β, it gives that

∂s∗(z)

∂β
=

(cea+ c− p)(2cebβ − cI)− 2[(cea+ c− p)β − ceb(z + d)]ceb

(2cebβ − cI)2
. (3.7)

Since p > c+ cea, z ≥ A ≥ −d, and 2cebβ − cI < 0, we then have ∂s∗(z)
∂β > 0. Similarly, we

have

∂s∗(z)

∂b
=

−ce(z + d)(2cebβ − cI)− 2[(cea+ c− p)β − ceb(z + d)]ceβ

(2cebβ − cI)2
> 0, (3.8)
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and
∂s∗(z)

∂cI
=

(cea+ c− p)β − ceb(z + d)

(2cebβ − cI)2
< 0. (3.9)

Thus, the desired result follows immediately by virtue of (3.7) – (3.9).

According to Lemma 3.1, we have the following result, stating an upper bound on the
optimal stock z∗.

Lemma 3.2. For model (3.5) with an additive demand, the optimal safety stock z∗ satisfies

z∗ < F−1

(
p− c− ce(a− bs∗(z))

p+ ch

)
.

Proof. Substituting s∗(z) into the utility function of (3.2), we have

Π(z) = Π(s∗(z), z) = (p+ ch)(y(s
∗(z)) + µ(z))− (c+ ch)(z + y(s∗(z)))

−ce((a− bs∗(z))(z + y(s∗(z))−K)− cI
2
(s∗(z))2 − λ(p+ ch)

2σ2(z). (3.10)

Taking the first order derivative of Π(z) with respect to z and from (3.10), we have

∂Π(z)

∂z
= (p+ ch)µ

′(z)− (c+ ch)− ce(a− bs∗(z))− λ(p+ ch)
2σ2′(z). (3.11)

Solving the equation ∂Π(z)
∂z = 0, it gives that

λ =
(p+ ch)(1− F (z))− (c+ ch)− ce(a− bs∗(z))

2(p+ ch)2(1− F (z))(z − µ(z))
. (3.12)

Since λ > 0, we have (p+ ch)(1− F (z))− (c+ ch)− ce(a− bs∗(z)) > 0. By virtue of (3.6),
it follows that

z∗ < F−1

(
p− c− ce(a− bs∗(z)

p+ ch

)
. (3.13)

According to Definition 2.1, the LSR elasticity with respect to the additive demand can
be rewritten as

ξ̃(s, x) =
sGs(s, x)

1−G(s, x)
=

−sβf(z)

1− F (z)
=: ξ(s, z). (3.14)

Then, ξ(s∗(z), z) = ξ∗(z) = −βs∗(z)h(z) holds at the point of the optimal sustainability
level s∗(z), where h(z) represents the failure rate of ϵ. Let η(A) = c̃ + ce(a − bs∗(A) and
c̃ = c+ ch.

According to Lemma 3.2 and (3.14), we have the following result, which is one of main
results of this paper.

Theorem 3.3. For model (3.5) with an additive demand, if the LSR elasticity satisfies

ξ∗(z) <
βbce

2cebβ − cI

[
ω(z)

ρ(z)
+ ceb

s∗(B)

η(A)

]
, (3.15)

then the utility Π(s∗(z), z) is quasiconcave in [A,B]. Moreover, there exists a unique solution
(z∗, s∗(z∗)) that maximizes the utility of the manufacturer.
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Proof. Since Π(z) is a continuous in [A,B], it follows from (3.11) that there is at least one
solution on [A,B] satisfying Π′(z) = 0. Since s∗(z) ∈ [0, a/b), we have Π

′
(A) = p − c −

ce(a− bs′(A)) > 0 and Π′(B) = −c̃− ce(a− bs∗(B)) < 0.

By the expressions of µ′(z) and σ2(z)
′
and equation (3.11), we rewrite the first order

equation ∂Π(z)
∂z = 0 as

1− 2λp̃(z − µ(z)) = c̃+ ce(a− bs∗(z))/p̃(1− F (z)), (3.16)

and
2λp̃2(1− F (z)) = (p̃(1− F (z))− c̃− ce(a− bs∗(z)))/(z − µ(z)). (3.17)

Taking the second order derivative of Π(z) with respect to z and with help of equation
(3.11), we have

∂2Π(z)

∂z2
= (p+ ch)(−f(z))− (ceb)

2

2cebβ − cI
− λ(p+ ch)

2σ2′′(z), (3.18)

and

∂2Π(z)

∂z2
= − F (z)

z − µ(z)
(p̃(1−F (z))− c̃− ce(a− bs∗(z)))+ cebs

∗′(z)−h(z)(c̃+ ce(a− bs∗(z))),

(3.19)
where p̃ = c+ ch, c̃ = c+ ch.

By assumption, we have ξ∗(z) < βbce
2cebβ−cI

[
ω(z)
ρ(z) + ceb

s∗(B)
η(A)

]
. By virtue of (3.6) and

s∗′(z) = ceb/(cI − 2cebβ), we have

ξ∗(z)

βs∗′(z)
≤ −ω(z)

ρ(z)
− cebs

∗(B)

η(A)

≤ ω(z)

ρ(z)
(
p̃(1− F (z))

η(A)
− 1)− cebs

∗(B)

η(A)

<
ω(z)

ρ(z)
(

p̃(1− F (z))

c̃+ ce(a− bs∗(z))
− 1)− cebs

∗(z)

c̃+ ce(a− bs∗(z))
, (3.20)

where η(A) = c̃+ ce(a− bs∗(A)). By equation (3.20), it yields that

−ω(z)

ρ(z)
(p̃(1− F (z))− c̃− ce(a− bs∗(z))) + cebs

∗(z) +
ξ∗(z)

βs∗′(z)
(c̃+ ce(a− bs∗(z))) < 0,

from which, we have Π
′′
(z)|Π′ (z)=0 < 0. Hence, Π(z) is a concave function of z. Thereby

there exists a unique optimal solution (z∗, s∗(z∗)) to maximize the utility of the manufacturer
as desired.

4 The model with a multiplicative demand

In this section, we consider the model with a multiplicative demand in form of D(s, ϵ) =
y(s)ϵ, where y(s) = dsβ with d > 0, β > 0. The multiplicative demand under consideration
has been widely studied in literature such as [29, 39]. Similarly, we make the following
assumption on the random variable ϵ.

Assumption 4.1. E(ϵ) = 1 and ϵ ∈ [A,B] with 0 < A < 1 < B.
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With similar arguments as the case of the additive demand previously, we use the trans-
formation of z = x/y(s) to reformulate the underlying model. It is not hard to see that
z ∈ [A,B] and x ∈ [y(s)A, y(s)B]. Accordingly, the utility Π(x, s) in (2.2) can be rewritten
as

Π(s, z) = (p+ ch)E[min{y(s)z, y(s)ϵ}]− (c+ ch)y(s)z − ce((a− bs)y(s)z − k)

−cI
2
s2 − λV ar(p+ ch)min{y(s)z, y(s)ϵ}

= (p+ ch)y(s)E[min{z, ϵ}]− (c+ ch)y(s)z − ce((a− bs)y(s)z − k)

−cI
2
s2 − λV ar(p+ ch)y(s)min{z, ϵ}

= (p+ ch)y(s)µ(z)− (c+ ch)y(s)z − ce((a− bs)y(s)z − k)

−cI
2
s2 − λ((p+ ch)y(s))

2σ2(z), (4.1)

where

µ(z) = E[min{z, ϵ}] =
∫ B

z

(z − u)f(u)du+ 1, (4.2)

σ2(z) = V ar[min{z, ϵ}]

= z2 −B2 + 2

∫ B

z

uF (u)du+ V ar(ϵ) + 1− µ2(z). (4.3)

Note that µ′(z) = 1 − F (z) > 0 and µ′′(z) = −f(z) < 0, hence µ(z) is increasing and

concave. Again, σ2 is an increasing function since σ2′(z) = 2(1−F (z))(z−µ(z)) > 0. Then,
the corresponding optimization model can be reformulated as

max Π(s, z) := p+ ch)y(s)µ(z)− (c+ ch)y(s)z − ce((a− bs)y(s)z − k)

−cI
2
s2 − λ((p+ ch)y(s))

2σ2(z), (4.4)

s.t. 0 ≤ s <
a

b
, z ∈ [A,B].

With help of equations (4.1) – (4.3), we obtain the following result.

Lemma 4.1. If s∗(z) is the optimal solution of problem (4.4) with respect to any fixed
z ∈ [A,B], then the following condition holds.

p̃µ(z)β − c̃zβ − ceazβ + cezb(β + 1)s− d−1cIs
2−β − 2λp̃2dβsβσ2(z) = 0, (4.5)

where p̃ = p+ ch and c̃ = c+ ch.

It can be seen that the case of the solution of Eq. (4.5) with respect to s∗(z) is very
complicated and related to β. When β ̸= 1, it is very difficult to obtain a closed-form
expression with respect to s∗(z), which is a great hindrance to our subsequent analysis.
Therefore, in what follows, we concentrate on the case of the demand with β = 1, i.e.,
D(s, ϵ) = dsϵ. First, from Lemma 4.1, we have the following results.

Theorem 4.2. For any given z ∈ [A,B], if 2cebz − d−1cI − 2λp̃2dσ2(z) < 0, the utility
function Π(s, z) is concave in s. Moreover, if p̃µ(z) − c̃z − ceaz > 0, then the optimal
sustainability level s∗(z) exists and

s∗(z) =
−p̃µ(z) + c̃z + ceaz

2cebz − d−1cI − 2λp̃2dσ2(z)
.
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Proof. From (4.1) – (4.3), we have

Π(s, z) = (p̃dµ(z)− c̃zd− ceazd)s+ ceK + (cebzd−
cI
2

− λp̃2d2σ2(z))s2. (4.6)

Taking the first and second order derivatives of Π(s, z) with respect to s, it gives that

∂Π(s, z)

∂s
= p̃dµ(z)− c̃zd− ceazd+ 2s(cebzd−

cI
2

− λp̃2d2σ2(z)), (4.7)

∂2Π(s, z)

∂s2
= 2(cebzd−

cI
2

− λp̃2d2σ2(z)). (4.8)

By assumption, 2cebz − d−1cI − 2λp̃2dσ2(z) < 0. Then, from (4.8), we can easily see that
the utility function Π(z, s) is concave in s. Since p̃µ(z)− c̃z−ceaz > 0, there exists a unique

solution s∗(z). By virtue of (4.7) and solving ∂Π(s,z)
∂s = 0, we have

s∗(z) =
−p̃µ(z) + c̃z + ceaz

2cebz − d−1cI − 2λp̃2dσ2(z)
. (4.9)

Since 0 ≤ s < a
b , s

∗(z) is the optimal sustainability level when s∗(z) < a
b .

Note that in this case the corresponding LSR elasticity in Definition 2.1 becomes to

ξ̃(s, x) =
sGs(s, x)

1−G(s, x)
=

−zβf(z)

1− F (z)
=: ξ(z). (4.15)

Following the above discussion, we have the following results.

Theorem 4.3. For the multiplicative demand d with β = 1, if the LSR elasticity satisfies

ξ(z) > ω(z) +
(p̃− c̃− cea)

2

(p̃/B − c̃− cea)c̃
, z ∈ [A,B], (4.16)

then the utility function Π(s∗(z), z) is a unimodal function, where s∗(z) is in form of (4.9).
Moreover, there exists a unique optimal solution (s∗(z∗), z∗) that maximizes the utility of
the manufacturer.

Proof. Substituting β = 1 and s∗(z) into the utility function Π(s, z) in (4.1), it follows that

Π(z) = Π(s∗(z), z) (4.17)

= (p̃dµ(z)− c̃zd− ceazd)s
∗(z) + ceK + (cebzd−

cI
2

− λp̃2d2σ2(z))(s∗(z))2.

Taking the first order derivative of Π̃(z) with respect to z, we have

Π′(z) = (p̃dµ′(z)− c̃d− cead)s
∗(z) + (cebd− λp̃2d2σ2′(z))(s∗(z))2 = s∗(z)dR(z), (4.18)

where

R(z) = p̃µ′(z)− c̃− cea+ (ceb− λp̃2dσ2′(z))s∗(z). (4.19)

Since R(z) is continuous in [A,B], then there is at least one solution z ∈ [A,B] such that
Π′(z) = 0 or R(z) = 0. Noticing that s∗(z) ∈ [0, a/b), it follows that R(A) = p̃− c̃− cea+
cebs

∗(A) > 0 and R(B) = −c̃− cea+ cebs
∗(B) < 0. In the following, we’ll study properties

of R(x) so as to prove the concavity of Π(z).
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We first consider the first order derivative of R(z) as follows

R′(z) = p̃µ′′(z)− λp̃2dσ2′′(z)s∗(z) + (ceb− λp̃2dσ2(z))s∗(z)

= −p̃f(z)− 2λp̃2d((1− F (z))F (z)− f(z)(z − µ(z)))s∗(z)

+(ceb− 2λp̃2d(1− F (z))(z − µ(z)))s∗′(z), (4.20)

from which, it yields

R′(z)

∣∣∣∣
R(z)=0

= −p̃f(z)− 2λp̃2d((1− F (z))F (z)− f(z)(z − µ(z)))s∗(z)

+(−p̃µ′(z) + c̃+ cea)
s∗′(z)

s∗(z)
, (4.21)

and

R′(z)

∣∣∣∣
R(z)=0

= [1− F (z)]{h(z)p̃(2λp̃d(z − µ(z))s∗(z)− 1)− 2λp̃2dF (z)s∗(z)}

− (p̃(1− F (z))− c̃− cea)
s∗′(z)

s∗(z)
.

(4.22)

It follows from R(z) = 0, we have

2λp̃d[z − µ(z)]s∗(z)− 1 =
−c̃− cea+ cebs

∗(z)

p̃[1− F (z)]
,

and

2λp̃2dF (z)s∗(z) =
p̃F (z)[1− F (z)]

[1− F (z)][z − µ(z)]
− c̃+ cea− cebs

∗(z)

[1− F (z)][z − µ(z)
.

Then, (4.22) can be simplified as

R′(z)

∣∣∣∣
R(z)=0

= h(z)(−c̃− cea+ cebs
∗(z))− F (z)(p̃(1− F (z))− c̃− cea+ cebs

∗(z))

z − µ(z)

−(p̃(1− F (z))− c̃− cea)
s∗′(z)

s∗(z)
. (4.23)

From (4.9), we have

s∗′(z) = s∗(z)
(p̃(1− F (z))− c̃− cea)− (2ceb− 2λp̃2dσ2′(z))s∗(z)

s∗(z)(2cebz − d−1cI − 2λp̃2dσ2(z))
.

and

s∗′(z)

s∗(z)

∣∣∣∣
R(z)=0

=
p̃(1− F (z))− c̃− cea

s∗(z)(2cebz − d−1cI − 2λp̃2dσ2(z))

=
p̃(1− F (z))− c̃− cea

−p̃µ(z) + c̃z + ceaz
. (4.24)

By assumption, ξ(z) > ω(z) + (p̃−c̃−cea)
2

(p̃/B−c̃−cea)c̃
. Then, by virtue of (4.9) and (4.24), it gives
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that

ξ(z) ≥ ω(z) +
(p̃− c̃− cea)

2

(p̃/B − c̃− cea)c̃
(4.25)

≥ ω(z) +
z(p̃− c̃− cea)

2

(p̃µ(z)− c̃z − ceaz)(c̃+ cea− cebs∗(z))

> −ω(z)(
p̃(1− F (z))

c̃+ cea− cebs∗(z)
− 1)− z(p̃(1− F (z))− c̃− cea)

2

(−p̃µ(z) + c̃z + ceaz)(c̃+ cea− cebs∗(z))
.

Recalling h(z) = f(z)
1−F (z) , we rearrange (4.25) as

h(z) > − F (z)

z − µ(z)
(

p̃(1− F (z))

c̃+ cea− cebs∗(z)
− 1)− p̃(1− F (z))− c̃− cea

c̃+ cea− cebs∗(z)

s∗′(z)

s∗(z)
. (4.26)

By virtue of (4.23), (4.24) and (4.26), we then have R′(z)|R(z)=0 < 0, implying that Π(z)
is a unimodal function of z. Therefore, there exists a unique optimal solution (s∗(z∗), z∗)
that maximizes the utility of the manufacturer, where (s∗(z∗), z∗) is determined by (4.9)
and (4.18). This completes the proof.

5 Numerical Examples and Sensitivity Analysis

5.1 Numerical examples

To illustrate the theoretical properties of optimal solutions derived in the previous section,
following the literature [7] and [11], we conduct preliminary numerical experiments on ar-
tificial examples with different forms of the demand. These problems are solved using the
software MATLAB V9.5.0 in a personal computer with Windows 10 operating system. By
setting various values of risk-averse parameter λ, we compare the derived numerical results
of interest, such as the manufacturer’s total carbon emissions C, optimal utility Π∗, optimal
stock level z∗, optimal sustainability level s∗, and optimal production quantity x∗.

1. Example with additive demand
In this example, we consider the underlying problem with the additive demand in form

of D(s, ϵ) = 90 + s + ϵ where ϵ ∼ N(0, 52), A = −10 and B = 10. The values of other
parameter are set as follows. p = 150, c = 50, ch = 0, ce = 8, a = 8, b = 0.5, cI = 35,
K = 200. Table 1 shows numerical results for different values of risk-averse parameter λ.

Table 1: Numerical results with different values of λ under the additive demand
λ z∗ s∗(z∗) x∗ Π∗ C
0 -9.7616 13.2205 93.4589 8472.8219 129.8843
0.2 -1.6017 14.4294 102.8277 7247.6121 80.7516
0.4 -1.2645 14.4793 103.2149 7111.3428 78.4775
0.6 -1.1496 14.4964 103.3468 7007.8174 77.6982
0.8 -1.0916 14.5049 103.4133 6912.7094 77.3044
1 -1.0567 14.5101 103.4534 6821.0067 77.0667

2. Example with multiplicative demand
In this example, we consider the problem with the multiplicative demand in form of

D(s, ϵ) = 102sϵ, where ϵ ∼ U(0.001, 1.999), A = 0.001, B = 1.999. The values of other
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parameter are set as follows. p = 300, c = 50, ch = 0, ce = 10, a = 5, b = 0.5, cI = 25,
K = 200. Table 2 shows the numerical results for different values of risk-averse parameter
λ.

Table 2: Numerical results with different values of λ under the additive demand
λ z∗ s∗(z∗) x∗ Π∗ C
0 0.5784 0.7812 45.1846 2238.4752 208.2739
0.2 0.5865 0.3998 23.4483 1860.3781 112.5540
0.4 0.5908 0.2024 11.9578 1825.6972 58.5788
0.6 0.5923 0.1355 8.0257 1768.1443 39.5846
0.8 0.5931 0.1018 6.0378 1654.2731 29.8815
1 0.5935 0.0816 4.8430 1308.3635 24.0172

Tables 1 and 2 demonstrate the risk-averse parameter plays an important role for the
manufacturer in production planning to address trade-offs involved in green manufacturing.
If the manufacturer likes to improve the utility, he/she would generate higher the carbon
emissions, which is again regulated by the cap-and-trade policy. On the other hand, if the
manufacturer seeks to minimize the carbon emissions alone, this results in the low utility of
the manufacturer. It is important to balance this trade-off for the manufacturer in decision
making. Interestingly, this can be leveraged using the underlying risk-averse parameter,
following in the above tables.

5.2 Sensitivity analysis

In this section, we analyze how the optimal sustainability level varies as a function of the
risk parameter λ for a given safety stock z for the problem with multiplicative demand. Let
s̃∗(·, z) be a function of λ, denoting the optimal sustainability level for a given safety stock
z.

Proposition 5.1. Let λ > 0, β = 1. For a given safety stock z, the optimal sustainability
level is a nonincreasing function with respect to λ.

Proof. For a given safety stock z, let Π(λ, s, z) denote the objective function as a function
of λ and s. Let g(λ, s) := ∂Π(λ, s, z)/∂s. Then, we have

ds̃∗(λ, z)

dλ
= −

∂g(λ,s)
∂λ

g(λ,s)
∂s

∣∣∣∣
s=s̃∗(λ,z)

= −−2s̃∗(λ, z) ˜p2d2σ2(z)

∂2Π(λ,s,z)
∂s2

∣∣∣∣
s=s̃∗(λ,z)

≤ 0.

Since ∂2Π(λ, s, z)/∂s2 < 0 when s = s̃∗(λ, z) as discussed in Theorem 4.2. Thus, the optimal
sustainability level does not increase with λ.

Proposition 5.1 shows that, given a safety stock z, the optimal sustainability level de-
creases as the degree of risk-aversion increases, due to the fact that in this case the vari-
ance of demand is increasing with respect to the sustainability level. i.e., V ar(D(s, ϵ)) =
V ar(ϵ)y(s)2. Thus, when increasing λ in the risk-averse case, the rise in the sustainability
level increases the expected demand y(s), which in turn increases the variance of stochastic
demand.

Next, we study the relationship between the profit, its variance and the risk-averse
parameter λ. Let Π∗(λ, z) be a random variable denoting the profit, as a function of the
risk parameter λ, at a given safety stock z.
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Proposition 5.2. Let λ > 0, β = 1. For a given a safety stock z, the variance of profit
decreases with the increase of λ.

Proof. From (4.1), we have V ar(Π∗(λ, z) = p̃2d2s2σ2(z). According to Proposition 5.1, it
follows that

d

dλ
V ar(Π∗(λ, z)) = 2p̃2d2sσ2(z)

ds̃∗(λ, z)

dλ
≤ 0.

The result as desired follows immediately.

Proposition 5.3. Let λ > 0, β = 1. For a given safety stock z, the expected profit decreases
as λ increases.

Proof. From (4.1), E(Π∗(λ, z)) = (p̃dµ(z) − c̃zd − ceazd)s + ceK +
(
cebzd− cI

2

)
s2. Then,

we have

dE(Π∗(λ, z))

dλ
= s̃∗′(λ, z)

(
p̃dµ(z)− c̃zd− ceazd+ (cebzd−

cI
2
)2s

)
.

Note that the first factor s̃∗′(λ, z) ≤ 0 by Proposition 5.1. Per (4.9), s̃∗(0, z) = (−p̃dµ(z) +
c̃zd+ ceazd)/(2cebzd− cI) Since s̃∗′(λ, z) ≤ 0, we have s̃∗(λ, z) ≤ s̃∗(0, z). Note that λ = 0,
the second factor above equals to 0 and s̃∗(λ, z) decreases as λ increases. Thereby, the
second factor is nonnegative when λ > 0. Hence, the derivative of E(Π∗(λ, z)) with respect
to λ is negative. The result as desired follows immediately.

For illustration purpose, we analyze an example for the case of the multiplicative demand
with β = 1. We set D(s, ϵ) = 30sϵ, ϵ ∼ U [0.001, 1.001], p = 300, c = 50, ch = 0, ce = 10,
a = 5, b = 0.5, cI = 25, K = 200. Figure 1 shows the objective function Π∗(λ, ·) as well as
E(Π∗(λ, ·)) and Std(Π∗(λ, ·)) =

√
V arΠ∗(λ, ·) for different values of λ for risk-aversion. The

behavior stated in Propositions 5.2 and 5.3 can be observed in this figure, that is, for a given
safety stock z, the expected profit and the variance of profit decrease with the risk-aversion.
Also, as demonstrated in Figure 1, the change rates (decreasing rates) of expected profit
and its variance are particularly remarkable as risk-verse parameter λ increases from 0.1 to
0.3, comparing with other scenarios such as from 0.3 to 0.5 and from 0.5 to 1.

6 Conclusions

Newsvendor model as a fundamental approach has been widely used to determine the op-
timal inventory decision with the maximization of the expected profit when the enterprise
faces a stochastic demand in a single period. It remains unclear how both carbon emission
reduction and risk-averse attribute affect the newsvendor model. This factor motivate us to
study a risk-averse newsvendor model with sustainability investment. Specifically, we con-
sider a risk-averse manufacturer under a cap-and-trade policy and investigate the impacts
of the sustainability level on the stochastic demand. We have that the investment in the
sustainability technology has a positive effects on the market demand. In this scenario, we
formulate additive and multiplicative forms of the sustainability-dependent stochastic de-
mand. We first develop a benchmark model and present several definitions and assumptions.
In the framework of the mean-variance theory, we establish two optimization models for the
cases with additive and multiplicative demand forms. By solving the two models, we have
that when the lost sales rate(LSR) elasticity satisfies certain conditions, the existence of the
optimal decisions on sustainability level and production quantity are derived. We further
provide several numerical examples to illustrate the developed models.
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Figure 1: Objective function, expected profit, and standard deviation of the profit under
different risk-averse scenarios

Our work can be extended in the following several research directions. In this paper, we
only consider that the stochastic demand is affected by the sustainability level. A possible
research direction is to consider the impacts of both the sales price and the sustainability
level on the demand. Another research direction is to compare the risk-averse newsvendor
model under a cap-and-trade policy with that under other carbon policies. Finally, it may
be of interest to consider the risk-averse newsvendor model with multiple products.
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