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where the objective function f(x) : X ⊂ Rm → R is continuous, X is a convex compact
subset of Rm, Qi (i = 1, 2, . . . ,m) and B belong to Sn which is the set of all n×n symmetric
matrices, Cn is the cone of copositive matrices defined as

Cn := {Z ∈ Sn : vTZv ≥ 0, ∀v ∈ Rn
+}. (1.1)

Copositive programming is a relatively new field in mathematical optimization, it can
be seen as a generalization of semidefinite programming because the optimization is carried
out over the cone of copositive matrices. It is shown in [3] that any quadratic programming
with linear constraints can be formulated as a copositive programming. For further details,
see, for example [12, 10, 5], and references cited therein.

Although copositive programming is a convex optimization problem, it is intractable
under the standard definition given in [5]. That is because the problem of detecting a given
matrix Z ∈ Cn is NP-complete [11], and hence copositive programming is not solvable in
polynomial time. Therefore, the reformulation as a convex optimization problem does not
alter the complexity of the original problem, even though several quadratic problems have
been shown to have exact copositive reformulations. However, this new convex reformulation
motivates the exploration of better bounds than those previously obtained. Moreover, it
seems feasible to find new methods considering some of the approximations introduced in
[9, 8, 6, 14, 7].

In [2], it is shown that a class of copositive programming problems can be equivalently
expressed as a class of linear SIP problems considered in [13]. Subsequently, an approxima-
tion scheme is proposed in [1] to solve such linear copositive programming problems. This
approximation scheme is inspired by the discretization method proposed in [15] for solving
linear SIP problems. Note that the copositive programming problem considered in [1] in-
volves only a linear objective function, and the proposed approximation scheme is based on
the optimality conditions and the duality results of the linear SIP problems.

Inspired by the ideas reported in [1], we consider a class of copositive programming
problems. They are collectively referred to as problem (CP). This problem can be seen as an
extension of the problem considered in [1], since the objective function of problem (CP) only
needs to be continuous. First, we show that problem (CP) can be equipollently expressed as
a SIP problem through the use of a key lemma. Then, by an appropriate parameterization
of the objective function, a new discretization method is proposed to solve this SIP problem.
Moreover, under some mild assumptions, we show that this new method will terminate in a
finite number of iterations, generating a feasible solution with the corresponding objective
function value being better than or equal to the predicted objective function value of problem
(CP), or confirming that there does not admit a feasible solution to problem (CP) with the
predicted objective function value. In particular, if the predicted objective function value is
equal to the optimal objective function value of problem (CP), then the method will output
an exact optimal solution to problem (CP).

The rest of paper is organized as follows. In Section 2, the basic framework of discretiza-
tion method for solving SIP is presented. Through the use of a key lemma, problem (CP) is
reformulated equivalently as a SIP problem in Section 3. The new discretization method and
an analysis showing termination for a finite number of iterations are presented in Section 4
and Section 5, respectively. In Section 6, two numerical examples are solved and the results
obtained are presented. Finally, we conclude the paper in Section 7.

2 Preliminary

In this section, we review basic results for discretization methods for solving SIP.
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First, it is well-known that SIP is an old mathematical programming problem that is
well studied in the literature. See, for example, [16] and the references cited therein. The
general form of SIP is

(SIP)
min
x∈X

f(x)

s.t. g(x, s) ≤ 0, s ∈ Ω,

where f(x) : Rm → R and g(x, s) : Rm × Ω → R are continuous functions, and Ω is a
nonempty compact subset of Rp. Let this problem be referred to as problem (SIP).

Clearly, for problem (SIP), there are infinitely many constraints. Thus, it cannot be
solved in polynomial time. Therefore, there exist no polynomial time algorithms for solving
problem (SIP). Discretization method is a popular numerical method. It approximates the
set Ω by a finite subset Ω′ ⊂ Ω such that problem (SIP) is approximated as the following
approximate problem, which is refereed to as problem (2.1).

min
x∈X

f(x)

s.t. g(x, s) ≤ 0, s ∈ Ω′.
(2.1)

Since Ω′ ⊂ Ω, it holds that Opt(SIP) ≥ Opt(2.1), i.e., the discretization method can
produce a lower bound for problem (SIP). The approximate problem (2.1) can be solved
either locally or globally to produce an optimal solution x̄. To check whether x̄ is a feasible
point to problem (SIP) or not, it is required to solve the following auxiliary optimization
problem

max g(x̄, s)
s.t. s ∈ Ω

(2.2)

in each iteration. Clearly, if Opt(2.2) ≤ 0, we can conclude that x̄ is an optimal solution of
problem (SIP). If Opt(2.2) > 0, the discretized set is required to be refined and updated.
We then return to solve the corresponding problem (2.1) and problem (2.2).

This process is continued until optimal solution to problem (SIP) is obtained. See, for
example, [4] and relevant references cited therein for more details on discretization methods
for solving problem (SIP).

3 Problem Reformulation

To establish a SIP equivalent representation of problem (CP), a key lemma is given below.

Lemma 3.1. Let A ∈ Sn, and let ∥ · ∥ denote the usual 2-norm on Rn. The following
properties are equivalent:

(i) A is copositive;

(ii) yTAy ≥ 0, ∀y ∈ Rn
+, ∥y∥ ≤ 1.

Proof. The (i)⇒(ii) is obviously from the definition of copostive cone (1.1).
Now, we show the relationship (ii)⇒(i). Let y ∈ Rn

+ with ∥y∥ ≤ 1. If ∥y∥ = 0, then
it follows that y = 0 and yTAy = 0. If ∥y∥ > 0, then let ȳ := y

∥y∥ . Clearly, ∥ȳ∥ = 1 and

ȳTAȳ = 1
∥y∥2 y

TAy ≥ 0. Thus, it holds that (ii)⇒(i).

By Lemma 3.1, for any Z ∈ Sn

Z ∈ Cn ⇔ vTZv ≥ 0, ∀v ∈ V := {v ∈ Rn
+ : ∥v∥ ≤ 1}.
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Thus, it follows from the definition of problem (CP) that

Z ∈ Cn ⇔
m∑
i=1

xiQi +B ∈ Cn

⇔ vT (
m∑
i=1

xiQi +B)v ≥ 0, ∀v ∈ V

⇔ aTv x− bv ≤ 0, ∀v ∈ V,

where av := (−vTQ1v,−vTQ2v, . . . ,−vTQmv)T and bv := vTBv. On this basis, problem
(CP) can be expressed equivalently as follows:

(SIPcp)
min
x∈X

f(x)

s.t. aTv x− bv ≤ 0, ∀v ∈ V,

i.e.,

(CP)

min
x∈X

f(x)

s.t.
m∑
i=1

xiQi +B = Z,

Z ∈ Cn,

⇐⇒ (SIPcp)
min
x∈X

f(x)

s.t. aTv x− bv ≤ 0, ∀v ∈ V.

By virtue of the definition of problem (SIP), it is clear that problem (SIPcp) is a SIP
problem.

Now, problem (CP) can be reformulated equivalently as a SIP problem, i.e., problem
(SIPcp). Note that the two problems have the same objective function, but they have
different constraints. If we could obtain an optimal solution x∗ to problem (SIPcp), we can
show that x∗ is also an optimal solution to problem (CP) with the corresponding matrix
Z∗ ∈ Cn.

4 Description of Algorithm

In this section, a new discretization method for solving problem (SIPcp) is presented, and
some important properties are analysized. For convenience, denote x∗ as an optimal solution
to problem (SIPcp), and let f∗ := f(x∗) be the corresponding optimal objective function.
We have the following lemma.

Lemma 4.1. For a given objective function value f0 of problem (SIPcp), the optimal ob-
jective function value of

min
x∈X

max{f(x)− f0, max{aTv x− bv, ∀v ∈ V }} (4.1)

is less than or equal to 0 if and only if f∗ ≤ f0.

Proof. The proof is divided into the following two steps.
(i). If Opt(4.1) ≤ 0, then there exists an x̂ ∈ X such that

max{f(x̂)− f0, max{aTv x̂− bv, ∀v ∈ V }} ≤ 0,

i.e.,

f(x̂)− f0 ≤ 0, max{aTv x̂− bv, ∀v ∈ V } ≤ 0,
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the last inequality implies that x̂ is a feasible solution of problem (SIPcp). Thus,

f∗ ≤ f(x̂) ≤ f0.

(ii). Suppose that f∗ ≤ f0, i.e., f
∗ − f0 ≤ 0. Since x∗ is the optimal solution of problem

(SIPcp), and that max{aTv x∗ − bv, ∀v ∈ V } ≤ 0, we obtain

max{f∗ − f0, max{aTv x∗ − bv, ∀v ∈ V }} ≤ 0.

Therefore, it follows that

min
x∈X

max{f(x)− f0, max{aTv x− bv, ∀v ∈ V }}
≤ max{f∗ − f0, max{aTv x∗ − bv, ∀v ∈ V }}
≤ 0.

The results of Lemma 4.1 show that the auxiliary problem (4.1) can provide a feasible
solution to problem (SIPcp), and its optimal cost function value is better than or equal to
the predicted optimal cost function value f0 of problem (SIPcp). That is, Opt(4.1) ≤ 0, and
hence f∗ ≤ f0. The following remark reveal some further results obtained from Lemma 4.1
under some additional conditions.

Remark 4.2. Suppose that f0 = f∗. Let x̃ denote the optimal solution of problem (4.1).
Then, it holds that

f(x̃)− f0 ≤ 0, max{aTv x̂− bv, ∀v ∈ V } ≤ 0.

This conclusion is obtained from Lemma 4.1, where the second inequality implies that x̃ is
a feasible solution to problem (SIPcp). Since x∗ is the optimal solution of problem (SIPcp),
it is clear from the first inequality that

f∗ = f(x∗) ≤ f(x̃) ≤ f0 = f∗.

Therefore, x̃ is also an optimal solution of problem (SIPcp). Moreover, by virtue of Lemma
3.1, x̃ is also an optimal solution of problem (CP), and the corresponding constrained matrix
Z lies in the cone Cn of copositive matrices.

Now, a new algorithm for solving problem (SIPcp) is given below, which is referred to
as Algorithm 1.

Algorithm 1.
Step 0. Choose a predicted objective function value f0 and a finite set V0 such that

V0 ⊂ V , and set k := 0.
Step 1. Solve problem (4.1) given below

min
x∈X

max{f(x)− f0, max{aTv x− bv, ∀v ∈ Vk}}

to obtain an optimal solution xk with the corresponding optimal objective function value
Ψk.

Step 2. If Ψk > 0, then the algorithm stops. There does not admits a feasible solutions
of problem (SIPcp) such that the corresponding objective function value is less than or equal
to f0. Or else, go to Step 3.
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Step 3. If Ψk ≤ 0, then solve the following problem

max{aTv xk − bv, ∀v ∈ V }

to obtain an optimal solution vk. If a
T
vk
xk − bvk ≤ 0, then stop. xk is an achievable optimal

solution with an improved optimal objective function value f(xk). Or else, go to next step.
Step 4. Let

Vk+1 := Vk ∪ {vk}, k := k + 1,

and go to Step 1.

Remark 4.3. The solution of problem (4.1) is the key step of Algorithm 1. However,
problem (4.1) is not an easy problem to solve. More specifically, the difficulty of solving
problem (4.1) lies in solving the subproblem max{aTv x − bv, ∀v ∈ Vk} when the dimension
of Vk is high, that is, how to efficiently deal with the continuous constraint v ∈ Vk when the
dimension of Vk is high. This is the major challenge in the development of solution methods
for semi-infinite programming problems. A popular approach is to discretize the continuous
constraint v ∈ Vk using a grid method. For example, we discretize the constraint Vk with unit
vector at each step of solving subproblem max{aTv x−bv, ∀v ∈ Vk} for which the dimension of
Vk is low. Problem (4.1) with higher dimensional index set constraints Vk can be efficiently
solved only if an efficient solution method to subproblem max{aTv x−bv, ∀v ∈ Vk} with higher
dimensional index set constraints Vk is developed. For our paper, the main contribution is
to show that for a feasible solution of the problem (SIPcp) with a corresponding objective
function value f0, Algorithm 1 can output a solution whose corresponding objective function
value is less than or equal to the given approximate value f0. Else, there exists no feasible
solution of the problem (SIPcp) such that its objective function value is less than or equal
to f0. The development of effective solution methods for solving subproblem max{aTv x −
bv, ∀v ∈ Vk} with higher dimensional index set is a challenging future research topic.

Remark 4.4. Note that in Step 3 of Algorithm 1, it follows from the definition of problem
(4.1) that there exists an iteration point xk ∈ X such that

max{f(xk)− f0, max{aTv xk − bv, ∀v ∈ Vk}} ≤ 0,

which combined with aTvkxk − bvk ≤ 0 gives

f(xk)− f0 ≤ 0, aTv xk − bv ≤ 0, ∀v ∈ V,

where the second inequality indicates that xk is a feasible solution of problem (SIPcp).
Furthermore, problem (4.1) also provides a tighter bound for problem (SIPcp) because
f∗ ≤ f(xk) ≤ f0. In particular, if f∗ = f(xk), then xk is an optimal solution of problem
(SIPcp).

Lemma 4.5. If f∗ < f0 and max{aTv x∗ − bv, ∀v ∈ V } < 0, then there exists an ε > 0 such
that the objective function value of problem (4.1) equal to −ε, i.e.,

−ε = min
x∈Λ

max{f(x)− f0, max{aTv x− bv, ∀v ∈ V }}, (4.2)

where Λ := X ∩ N(x∗, λ), and N(x∗, λ) denotes the x∗-neighbourhood with radius λ.

Proof. Since f∗ < f0 and max{aTv x∗ − bv, ∀v ∈ V } < 0, and due to the continuity of the
functions involved, there exists a direction d such that for sufficiently small λ > 0, it holds
that

−ε1 := f(x∗ + λd)− f0 < 0, −ε2 := max{aTv (x∗ + λd)− bv, ∀v ∈ V } < 0
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for sufficiently small positive parameters ε1 and ε2. Moreover, since the set X is compact, the
finiteness of the optimal objective function value of problem (4.2) over the set X∩N(x∗, λ)
is assured. It is denoted by a positive parameter ε as follows:

−ε : = min
x∈Λ

max{f(x)− f0, max{aTv x− bv, ∀v ∈ V }}
≤ max{f(x∗ + λd)− f0, max{aTv (x∗ + λd)− bv, ∀v ∈ V }}
= max{−ε1, −ε2} < 0.

Thus, the validity of the conclusion of Lemma 4.5 follows readily.

5 Finite Convergence

In this section, we analyze the termination of Algorithm 1 for a finite number of iterations.
First, recall the important role played by the condition f0 > f∗ on the predicted objective
function value f0 of problem (SIPcp) in the analysis in the sections above. The following
theorem shows that Algorithm 1 terminates after a finite number of iterations under this
condition.

Theorem 5.1. If f∗ < f0 and max{aTv x∗ − bv, ∀v ∈ V } < 0, then Algorithm 1 terminates
in a finite number of iterations. Furthermore, Algorithm 1 outputs a solution with the
corresponding objective function value being less than or equal to f0 for problem (SIPcp).

Proof. In view of the structure of Algorithm 1 and the results obtained in Lemma 4.5, it
holds that Ψk ≤ −ε < 0 at each iteration. Thus, Step 3 of Algorithm 1 will be executed.
Hence, Algorithm 1 either terminates in a finite number of iterations, or else generates two
infinite iteration sequences {xk} and {vk}.

Without loss of generality, we assume that Algorithm 1 generates two infinite sequences
of points {xk} and {vk} such that

aTvkxk − bvk > 0, aTvixk − bvi ≤ −ε < 0, ∀i < k, (5.1)

where the first inequality is obtained from Step 3 of Algorithm 1, the second inequality is
from the results obtained in Lemma 4.5, and ε is defined in (4.1). Furthermore, it follows
from (5.1) that

| (aTvkxk − bvk)− (aTvixk − bvi) |> ε, ∀i < k. (5.2)

On the other hand, since the constraint function aTv x− bv is continuously differentiable
with respect to v ∈ V , its gradient ∇(aTv x − bv) is also bounded above, denoted by M,
because the sets X and V are compact. Thus,

| (aTvkxk − bvk)− (aTvixk − bvi) |≤ M ∥ vk − vi ∥, ∀i < k (5.3)

holds. Combining (5.2) with (5.3), it follows that

ε/M <∥ vk − vi ∥, ∀i < k. (5.4)

Since the set V is compact, there exists a convergence subsequence of {vk}, denoted by
the original sequence {vk}, such that

∥ vk − vi ∥≤ ϵ (5.5)

holds for k, i sufficiently large, where ϵ is an arbitrary small positive parameter. In partic-
ular, let ϵ := ε/M. Clearly, (5.5) is a contradiction to (5.4).
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Finally, in view of the structure of Algorithm 1, it follows that Algorithm 1 outputs a
solution with the corresponding objective function value being less than or equal to f0 when
Algorithm 1 stops at Step 3 after a finite number of iterations. Thus, the conclusions of
Theorem 5.1 follow readily.

The following theorem presents the result on the termination of Algorithm 1 after a finite
number of iterations under the condition f∗ > f0.

Theorem 5.2. If f∗ > f0, then Algorithm 1 terminates at Step 2 in a finite number of
iterations. That is, there does not admit a feasible solution of problem (SIPcp) such that its
objective function value is less than or equal to f0.

Proof. First, let us define an auxiliary problem as given below:

Θ := min
x∈X

f(x). (5.6)

If Θ > f0, i.e., f(x) − f0 > 0, ∀x ∈ X, then by virtue of the structure of Algorithm 1
and the definition of problem (4.1), Algorithm 1 terminates at Step 2, showing that f0 is
not achievable since Ψk > 0 in each iteration.

On the other hand, if Θ ≤ f0 < f∗, i.e., ∃x̄ ∈ X, then it holds that f(x̄) − f0 ≤ 0. By
virtue of the structure of Algorithm 1, we assume that Algorithm 1 does not terminate at
Step 2 in each iteration, and it generates two infinite iteration point sets {xk} and {vk}.
Note that Ψk ≤ 0 from the assumption. Then, it follows from the definition of Ψk that

min
x∈X

max{f(x)− f0, max{aTv x− bv : ∀v ∈ Vk}} ≤ 0,

which implies that

max{f(xk)− f0, max{aTv xk − bv : ∀v ∈ Vk}} ≤ 0,

i.e.,
f(xk)− f0 ≤ 0, aTvixk − bvi ≤ 0, ∀i < k. (5.7)

On the one hand,

aTvkxk − bvk = max{aTv xk − bv : ∀v ∈ Vk}
= max{aTv xk − bv : ∀v ∈ Vk, f(xk)− f0 ≤ 0}
≥ min

x∈X
max{aTv x− bv : ∀v ∈ V, f(x)− f0 ≤ 0}},

(5.8)

where the second relationship “=” holds due to the fact that the constraint f(xk)− f0 ≤ 0
is redundant for max{aTv xk − bv : ∀v ∈ V }. On the other hand, in view of the condition
f∗ > f0, it follows from the result obtained in Lemma 4.1 that

0 < θ : = min
x∈X

max{f(x)− f0, max{aTv x− bv : ∀v ∈ V }}
≤ max{f(x̄)− f0, max{aTv x̄− bv : ∀v ∈ V }}
= max{aTv x̄− bv : ∀v ∈ V, f(x̄)− f0 ≤ 0},

(5.9)

where θ is the positive optimal objective function value of problem (4.1), the last relationship
“=” holds from the fact that f(x̄)− f0 ≤ 0. Moreover, it is clear from (5.9) that

θ ≤ max{aTv x̄− bv : ∀v ∈ V, f(x̄)− f0 ≤ 0}
⇒
θ ≤ min

x∈X
max{aTv x− bv : ∀v ∈ V, f(x)− f0 ≤ 0},
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which combined with (5.8) gives

aTvkxk − bvk ≥ θ > 0. (5.10)

By virtue of (5.10) and the second inequality of (5.7), we have

(aTvkxk − bvk)− (aTvixk − bvi) ≥ θ > 0, ∀i < k. (5.11)

The remaining part of the proof is similar to the roof given for the last part of Theorem
5.1 and is therefore omitted. By using a similar argument as that given for the proof of
Theorem 5.1, we can also draw a contradictory conclusion. Thus we can conclude that the
assumption does not hold, and Algorithm 1 terminates at Step 2 after a finite number of
iterations. At the same time, the results also show that problem (SIPcp) does not admit a
feasible solution with the objective function value being less than or equal to f0.

Note that the above two theorems show the termination of Algorithm 1 in a finite number
of iterations under the conditions of f0 > f∗ and f0 < f∗, respectively. In particular, when
f0 = f∗, we have Ψk ≤ 0 for all k from the results obtained in Lemma 4.1. In view of the
structure of Algorithm 1, it is clear that Step 3 is performed. By the definition of problem
(4.1) and the condition f0 = f∗, the result of aTv xk− bv ≤ 0 holds for all k and v ∈ V . Thus,
Algorithm 1 terminates at Step 3 in the first iteration, and x∗ is also an optimal solution of
problem (SIPcp).

6 Numerical Experiments

In this section, two numerical examples are considered and solved to show the feasibility of
Algorithm 1. These problems are solved by Algorithm 1, which is implemented by using
MATLAB R2018a on the Windows 10 platform.

Example 6.1 Consider problem (CP) with the objective function f(x) = x and the
coefficient matrixes

Q =

 4 −1 0
−1 1 0
0 0 4

 , B =

 0 0 5
0 0 −2
5 −2 0

 ,

as well as −5 ≤ x ≤ 5.
In the initial process of running Algorithm 1, the predicted objective function value was

set as f0 = −5, the initial finite index set was chosen as V0 = {[0, 0, 0]T }. Then, Algorithm
1 terminates at k = 2, with f∗ = 5 and x∗ = 5. Moreover, the current corresponding
constraint matrix is equal to

5Q+B = 5

 4 −1 0
−1 1 0
0 0 4

+

 0 0 5
0 0 −2
5 −2 0

 =

 20 −5 5
−5 5 −2
5 −2 20

 ,

whose eigenvalues are approximately equal to (3, 15, 26) that are all strictly greater than 0.
At the same time, in view of the definition of copositive matrix (1.1), we can conclude that
5Q+B ∈ C3, that is, there does admits a feasible solution x∗ = 5 of problem (CP).

Example 6.2 Consider problem (CP) with the objective function f(x) = x2
1+x2 and the

coefficient matrixes

Q1 =

 1 −1 1
−1 1 −1
1 −1 1

 , Q2 =

 1 2 0
2 0 3
0 3 5

 , B =

 5 3 4
3 −2 0
4 0 −2

 ,



438 C. GUO, P. MA AND K. L. TEO

as well as 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

In the initial step of Algorithm 1, the predicted objective function value was chosen as
f0 = 2, and the initial finite set V0 = {[0, 0, 1]T }. Algorithm 1 terminates at Step 2 at k = 2
iteration, with x1 = x2 = 0. At this point, Ψ2 = 5.5 > 0 and it follows that there does
not admits a feasible solutions of problem (SIPcp) such that the corresponding objective
function value is less than or equal to f0 = 2. Moreover, the current corresponding constraint
matrix x1Q1+x2Q2+B is equal to B, whose eigenvalues are equal to (−4.6,−2.0, 7.6) that
are not all strictly greater than 0. It is also easy to verify that B /∈ C3 from the definition
of copositive matrix (1.1), that is, there does not admits a feasible solution of problem (CP)
such that the corresponding objective function value is less than or equal to f0 = 2.

7 Conclusions

In this paper, a class of copositive programming problem (CP) with a continuous objective
function is considered. We show that problem (CP) can be reformulated equivalently as a
semi-infinite programming problem through the use of a key lemma. Then, a new discretiza-
tion method is proposed to solve the transformed problem. Under some mild conditions, we
show that the proposed new method will terminated in a finite number of iterations, giving
rise to a feasible solution with the corresponding cost function value better than or equal to
the predicted optimal cost function value of the original problem, or confirming that there
does not admit a feasible solution for the original problem. Two numerical examples are
considered and solved, showing the feasibility of the proposed algorithm.
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