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method [22], dual-extrapolation method [24, 25], hybrid proximal extra-gradient method
[20], OGDA [18, 19], and extra-point method [9]. These are also known as “projection-
type” methods, while the earliest projection-type methods date back to (gradient) projec-
tion method by Sibony [30], proximal method by Martinet [16], and extra-gradient method
by Korpelevich [13]. The convergence of these methods for monotone VI is studied by
Tseng [32]. The aforementioned methods are all first-order projection methods. Recently
there are also research on developing high-order projection methods and establishing their
global convergence iteration complexities. They include [8, 21, 2, 26, 23, 11, 1, 15, 10].

The convergence of the above first-order and high-order (projection-type) methods and
the corresponding iteration complexities are analyzed in the framework of monotone VI (or
more generally, pseudo-monotone VI, which will be formally defined in the next section).
For non-monotone VI, earlier research has developed non-projection-type methods such as
the KKT condition based methods and merit function based methods (see [4, 29, 28, 5] and
the references therein). However, it is in general difficult to establish iteration complexity for
non-projection-type methods for non-monotone VI. In recent years, research on developing
algorithms for non-monotone VI has focused on the VI problems where the so-called Minty
solutions exist. A Minty solution to VI is a solution x∗ where the following inequality is
satisfied:

〈F (x), x− x∗〉 ≥ 0

for all x ∈ X . When the constraint set is a close convex set and the operator F is contin-
uous and monotone, all solutions to the VI (if any) are Minty solutions. The existence of
Minty solutions turns out to be critical in establishing convergence for the projection-type
methods for non-monotone VI, and there have been recent developments of such results;
see e.g. [15, 31, 3, 34, 14]. Recently, Zhao et al. [35] proposed a primal-dual approach to
convex-constrained non-monotone VI problems based on augmented Lagrangian and the
Minty condition.

In this paper, we follow this line of research on the convergence of projection-type meth-
ods for non-monotone VI. We start from the common assumption made in the literature,
that is, a Minty solution exists. We show that a general extra-gradient-type method, the
Approximation-Based Regularized Extra-Gradient Method (ARE) update proposed in [10],
converges in a guaranteed rate with a similar convergence behavior as Perseus in [15]. In
addition, we are interested in the concept of Minty solution itself, especially in the non-
monotone setting where a VI solution is not necessarily a Minty solution. Therefore, we
investigate implications given by the Minty solutions in different problem classes such as
optimization and Nash games. Finally, we explore the possibilities of alternative sufficient
conditions for convergence of projection-type methods through an algorithm-based approach.
Conventionally, algorithms are devised to ensure convergence under a given problem frame-
work, such as monotone VI or VI with Minty solutions, and the convergence behavior is
analyzed within the framework. In this paper, we follow an opposite direction by deriv-
ing sufficient conditions for convergence based on the algorithms we are interested in. In
other words, for a given algorithm, we aim to identify VI with specific structures where the
algorithm is guaranteed to converge to a solution. It turns out that this approach makes
it possible to characterize structures of VI models that are different from commonly en-
countered conditions such as the monotonicity or the Minty condition. We present several
conditions of this kind and demonstrate examples as well as proving convergence of gradient
projection methods and extra-gradient methods under these conditions.

The rest of the paper is organized as follows. Section 2 starts the discussion with non-
monotone VI with Minty solution. We first provide formal definitions of the solution concepts
and merit functions that are relevant to the discussion in this paper. Then the convergence
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of ARE is established, followed by discussions on implications of Minty solutions in opti-
mization and Nash games. Section 3 explores algorithm-based sufficient conditions, starting
with formal definitions and examples. Convergence of gradient-projection method and extra-
gradient method are established under these conditions. Finally, Section 4 concludes the
paper with some further remarks.

2 Non-monotone VI with Minty Solution

2.1 Definitions and solution concepts

2.1.1 VI solutions and Minty solutions

In order to set the background for the discussion in this paper, let us first formally define the
variational inequality problem and its solution set. For a given set X ⊆ Rn and a continuous
mapping F : X 7→ Rn, consider the following VI model, to be denoted by VI(F ;X ):

Find x∗ ∈ X
such that 〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ X .

Let the solution set of the above model be Sol(VI(F ;X )). It is also referred to as the
set of strong solutions, or simply the solutions, to the VI model. The non-emptiness of
Sol(VI(F ;X )) can be guaranteed by imposing some assumptions on the basic problem struc-
ture.

Assumption 2.1. F is a continuous mapping. X is non-empty, convex and compact.

Assumption 2.1 ensures that Sol(VI(F ;X )) 6= ∅ [5, 6], and we shall make this assumption
throughout the paper. In addition to the (strong) solutions to the VI, there is another
important solution concept, which is the so-called Minty solutions or weak solutions, defined
as the set of x∗ such that

〈F (x), x− x∗〉 ≥ 0, ∀x ∈ X .

Let the set of Minty solutions to VI(F ;X ) be denoted by Solm(VI(F ;X )). The well-known
Minty’s Lemma states the follwing:

Lemma 2.1 (Minty’s Lemma [17]). If F is continuous, X is non-empty, closed and convex,
then Solm(VI(F ;X )) ⊆ Sol(VI(F ;X )).

Proof. See [12], Lemma 1.5.

If additionally F is monotone, then Solm(VI(F ;X )) = Sol(VI(F ;X )). Indeed, for every
x∗ ∈ Sol(VI(F ;X )), we have:

〈F (x), x− x∗〉 ≥ 〈F (x∗), x− x∗〉 ≥ 0,

thus x∗ ∈ Solm(VI(F ;X )). In this paper, while we always assume the non-emptiness of
Sol(VI(F ;X )) (by Assumption 2.1), we extend the discussion to the broader class of VI
where F is not necessarily monotone. Alternatively, we focus on the Minty solutions and
assume Solm(VI(F ;X )) 6= ∅ in this section, and we discuss other conditions in Section 3
where no Minty solutions exist.
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2.1.2 Merit functions

In the context of strongly monotone VI where the solution x∗ uniquely exists, it is common
to use (squared) distance to the solution ‖x − x∗‖2 in the iteration complexity analysis.
For VI problems that are merely monotone, there are two other merit functions that are
widely used, known as the gap function and the dual gap function. While monotonicity is
not assumed in this paper, we may still use these two merit functions as the measurement
of convergence. In this section we re-introduce them in a fashion that relates them with
the two solution concepts, VI solutions Sol(VI(F ;X )) and Minty solutions Solm(VI(F ;X )),
introduced earlier.

Proposition 2.2. Suppose that X is compact. It holds that

Sol(VI(F ;X )) 6= ∅ ⇐⇒ min
y∈X

max
x∈X

〈F (y), y − x〉 = 0.

Proof. Observe that for any y ∈ X , we always have

max
x∈X

〈F (y), y − x〉 ≥ 〈F (y), y − y〉 = 0.

Hence, miny∈X maxx∈X 〈F (y), y− x〉 ≥ 0, or equivalently maxy∈X minx∈X 〈F (y), x− y〉 ≤ 0.
The equivalence is due to the following relation:

min
y∈X

max
x∈X

〈F (y), y − x〉

= min
y∈X

(
−min

x∈X
〈F (y), x− y〉

)
= −max

y∈X
min
x∈X

〈F (y), x− y〉.

=⇒: Choose any x∗ ∈ Sol(VI(F ;X )). We have minx∈X 〈F (x∗), x− x∗〉 = 0, implying

max
y∈X

min
x∈X

〈F (y), x− y〉= −min
y∈X

max
x∈X

〈F (y), y − x〉 = 0.

⇐=: Let

y∗ ∈ argmax
y∈X

[
min
x∈X

〈F (y), x− y〉
]
.

It follows that minx∈X 〈F (y∗), x− y∗〉 = 0, or equivalently put

〈F (y∗), x− y∗〉 ≥ 0, for any x ∈ X .

Hence, y∗ ∈ Sol(VI(F ;X )).

In a similar vein, we have:

Proposition 2.3. Suppose that X is compact. It holds that

Solm(VI(F ;X )) 6= ∅ ⇐⇒ max
x∈X

min
y∈X

〈F (y), y − x〉 = 0.

Proof. First, observe that in general, we have

max
x∈X

min
y∈X

〈F (y), y − x〉 ≤ 0
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because for any given x ∈ X , it follows that miny∈X 〈F (y), y − x〉 ≤ 〈F (x), x− x〉 = 0.
=⇒: Choose any x∗ ∈ Solm(VI(F ;X )). Since 〈F (y), y − x∗〉 ≥ 0 for all y ∈ X , we have

min
y∈X

〈F (y), y − x∗〉 = 0,

implying maxx∈X miny∈X 〈F (y), y − x〉 = 0.
⇐=: Let

x∗ ∈ argmax
x∈X

[
min
y∈X

〈F (y), y − x〉
]
.

We have miny∈X 〈F (y), y − x∗〉 = 0, or equivalently

〈F (y), y − x∗〉 ≥ 0, for all y ∈ X ,

implying x∗ ∈ Solm(VI(F ;X )).

The above analysis naturally leads to the following notions of merit functions:

G(x) := max
y∈X

〈F (x), x− y〉,

also known as the gap function, and

H(x) := max
y∈X

〈F (y), x− y〉,

also known as the dual gap function.
Based on our analysis, we have:

Proposition 2.4.

G(x) ≥ 0 for all x ∈ X , and G(x) = 0 if and only if x ∈ Sol(VI(F ;X )).

H(x) ≥ 0 for all x ∈ X , and H(x) = 0 if and only if x ∈ Solm(VI(F ;X )).

Therefore, we may introduce the following notion of ϵ-solutions.

Definition 2.5. For ϵ > 0, we call x to be an ϵ-VI solution if G(x) ≤ ϵ; we call x to be an
ϵ-Minty solution if H(x) ≤ ϵ.

2.1.3 Relaxation of monotonicity

We remark that there are several conditions can be made on the structure of F , under
which the (pure) monotonicity is relaxed but the connections between Sol(VI(F ;X )) and
Solm(VI(F ;X )) still exist. While we do not assume most of these conditions, we summarize
them below for the benefit of easy referencing. In particular, we only consider the Minty
condition among others, which simply states Solm(VI(F ;X )) 6= ∅.

Weak Sharpness:

〈F (x∗), x− x∗〉 ≥ µ‖x− x∗‖2, ∀x ∈ X , x∗ ∈ Sol(VI(F,X )),

for some µ ≥ 0.
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Pseudo-monotonicity:

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ X .

Strongly pseudo-monotonicity:

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ µ‖x− y‖2, ∀x, y ∈ X ,

for some µ > 0.

Quasi-monotonicity:

〈F (y), x− y〉 > 0 =⇒ 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ X .

Minty’s condition: Solm(VI(F ;X )) 6= ∅, i.e. there exists x∗ ∈ X such that

〈F (x), x− x∗〉 ≥ 0, ∀x ∈ X .

Strong Minty’s condition (Generalized monotonicity): there exists x∗ ∈ X such that

〈F (x), x− x∗〉 ≥ µ‖x− x∗‖2, ∀x ∈ X ,

for some µ ≥ 0.

A few remarks are in place to specify some implications given by the above conditions.

Remark 2.6.

• If F is pseudo-monotone, then Sol(VI(F ;X )) ⊂ Solm(VI(F ;X )). If further F is con-
tinuous, X is nonempty, closed and convex, then Sol(VI(F ;X )) = Solm(VI(F ;X )).

• If X is closed and bounded, then Solm(VI(F ;X )) 6= ∅ if and only if F is quasi-monotone
[7].

• Assume Sol(VI(F ;X )) 6= ∅, then the following relations hold:

monotone =⇒ pseudo-monotone =⇒ Minty’s condition

and

strongly monotone =⇒ strongly pseudo-monotone =⇒ strong Minty’s condition

2.2 Convergence of projection-type methods

In this section, we present a solution method of projection type that can be shown to
converge to Minty solutions by simply assuming Solm(VI(F ;X )) 6= ∅. This method, known
as Approximation-based Regularized Extra-gradient method, or simply ARE, was a general
pth-order method of extra-gradient type, proposed in [10] originally for solving monotone

VI with convergence rate O(N− p+1
2 ). It turns out that ARE not only solves monotone VI,

but also solves non-monotone VI as long as Solm(VI(F ;X )) 6= ∅. A similar technique in
the analysis has been used in [15]. It is shown that a different projection-type method—
Perseus—can converge to Minty solutions for non-monotone VI, and the rate is the same as
the one developed in this paper.
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The ARE update proceeds as follows: xk+0.5 := VIX

(
F̃ (x;xk) + Lp‖x− xk‖p−1(x− xk)

)
,

xk+1 := argmin
x∈X

〈F (xk+0.5), x− xk〉+ Lp∥xk+0.5−xk∥p−1

2 ‖x− xk‖2,
(2.1)

for k = 1, 2, ..., where Lp is the Lipschitz constant for ∇p−1F (x) satisfying the condition

‖∇p−1F (x)−∇p−1F (y)‖ ≤ Lp‖x− y‖, (2.2)

F̃ (·; y) : Rn 7→ Rn is a general approximation mapping estimated at y satisfying the bound:

‖F̃ (x; y)− F (x)‖ ≤ τLp‖x− y‖p, (2.3)

and we use the notation VIX (F ) to denote solving for a solution in Sol(VI(F ;X )) as a
subroutine in the update. In the ARE update (2.1), the subroutine at iteration k specifically
solve the VI model associated with the regularized approximation operator F̃ (x;xk)+Lp‖x−
xk‖p−1(x− xk).

The next theorem summarizes the convergence rate of the ARE update (2.1) under the
assumption Solm(VI(F ;X )) 6= ∅.

Theorem 2.7. Consider the ARE update (2.1). Suppose that conditions (2.2) and (2.3)
are satisfied, and Solm(VI(F ;X )) 6= ∅. Then, the sequence produced by ARE converges at
the following rate:

‖xkN+0.5 − xkN ‖2 = O(1/N), G(xkN+0.5) = O(1/N
p
2 ).

Proof. The initial steps in the analysis will follow the exact same logic as the proof in [10]
for Theorem 3.1. By the definition of xk+0.5, we have

〈F̃ (xk+0.5;xk) + Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk), x− xk+0.5〉 ≥ 0, ∀x ∈ X . (2.4)

Denote γk = Lp‖xk+0.5 − xk‖p−1. Substituting x = xk+1 in (2.4) we have

〈F̃ (xk+0.5;xk), xk+1 − xk+0.5〉
≥ γk〈xk+0.5 − xk, xk+0.5 − xk+1〉

=
γk
2

(
‖xk+0.5 − xk‖2 + ‖xk+1 − xk+0.5‖2 − ‖xk+1 − xk‖2

)
. (2.5)

On the other hand, by the optimality condition at xk+1 we have

〈F (xk+0.5) + γk(x
k+1 − xk), x− xk+1〉 ≥ 0, for all x ∈ X .

Hence,

〈F (xk+0.5), x− xk+1〉
≥ γk〈xk+1 − xk, xk+1 − x〉

=
γk
2

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
, for all x ∈ X . (2.6)
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Continue with the above inequality, for any given x ∈ X we have

γk
2

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
(2.6)

≤ 〈F (xk+0.5), x− xk+1〉
= 〈F (xk+0.5), x− xk+0.5〉+ 〈F (xk+0.5), xk+0.5 − xk+1〉
= 〈F (xk+0.5), x− xk+0.5〉+ 〈F (xk+0.5)− F̃ (xk+0.5;xk), xk+0.5 − xk+1〉

+〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉
≤ 〈F (xk+0.5), x− xk+0.5〉+ ‖F (xk+0.5)− F̃ (xk+0.5;xk)‖ · ‖xk+0.5 − xk+1‖

+〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉

≤ 〈F (xk+0.5), x− xk+0.5〉+ ‖F (xk+0.5)− F̃ (xk+0.5;xk)‖2

2γk
+

γk‖xk+0.5 − xk+1‖2

2

+〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉
(2.3)

≤ 〈F (xk+0.5), x− xk+0.5〉+
τ2L2

p‖xk+0.5 − xk‖2p

2γk
+

γk‖xk+0.5 − xk+1‖2

2

+〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉.

Noticing that
τ2L2

p∥x
k+0.5−xk∥2p

2γk
= τ2γk∥xk+0.5−xk∥2

2 , and further using (2.5) we derive from
the above that

γk
2

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
≤ 〈F (xk+0.5), x− xk+0.5〉+ τ2γk‖xk+0.5 − xk‖2

2
+

γk‖xk+0.5 − xk+1‖2

2

+
γk
2

[
−‖xk+0.5 − xk‖2 − ‖xk+1 − xk+0.5‖2 + ‖xk+1 − xk‖2

]
.

Canceling out terms, we simplify the above inequality into

〈F (xk+0.5), xk+0.5−x〉+ γk
2

(
1− τ2

)
‖xk+0.5−xk‖2 ≤ γk

2

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
. (2.7)

In the original analysis in [10], the rest of the proof continues with the monotonicity of
F . In this analysis, we assume the Minty condition (i.e. Solm(VI(F ;X )) 6= ∅) holds instead
of monotonicity of F . Taking any fixed x = x∗ ∈ Solm(VI(F ;X )) in the above inequality,
we have: (

1− τ2
)
‖xk+0.5 − xk‖2 ≤

[
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

]
, (2.8)

since 〈F (xk+0.5), xk+0.5 − x∗〉 ≥ 0. Summing up this inequality for k = 1, ..., N gives us:

min
1≤k≤N

‖xk+0.5 − xk‖2 ≤ 1

N

N∑
k=1

‖xk+0.5 − xk‖2 ≤ 1

N(1− τ2)
‖x1 − x∗‖2, (2.9)

which proves the first convergence result.
Condition (2.4) for updating xk+0.5 implies for all x ∈ X , we have:

〈F̃ (xk+0.5;xk), xk+0.5 − x〉 ≤ −Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk)⊤(xk+0.5 − x)

≤ LpD‖xk+0.5 − xk‖p,
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where D := max
x,x′∈X

‖x− x′‖.

Denote kN := arg min
1≤k≤N

‖xk+0.5 − xk‖2, we have:

〈F (xkN+0.5), xkN+0.5 − x〉
= 〈F (xkN+0.5)− F̃ (xkN+0.5;xkN ), xkN+0.5 − x〉+ 〈F̃ (xkN+0.5;xkN ), xkN+0.5 − x〉

≤
∥∥∥F (xkN+0.5)− F̃ (xkN+0.5;xkN )

∥∥∥ · ‖xkN+0.5 − x‖+ LpD‖xkN+0.5 − xkN ‖p

≤ (1 + τ)LpD‖xkN+0.5 − xkN ‖p

≤ (1 + τ)LpD
1

N
p
2 (1− τ2)

p
2

‖x1 − x∗‖p ≤ (1 + τ)LpD
p+1

N
p
2 (1− τ2)

p
2

,

which holds for all x ∈ X . Therefore,

G(xkN+0.5) = max
x∈X

〈F (xkN+0.5), xkN+0.5 − x〉 ≤ (1 + τ)LpD
p+1

N
p
2 (1− τ2)

p
2

, (2.10)

which proves the second convergence result.

Remark 2.8. In the above analysis, by using the same x∗ ∈ Solm(VI(F ;X )) in (2.8)
repetitively, it can be seen that the sequence {xk} converges to the specific Minty solution
in terms of squared distance. On the other hand, while ‖xkN+0.5 − xkN ‖2 also converges
at a rate 1/N by (2.9), the final result guarantees a rate of convergence 1/N

p
2 in terms of

the merit function G(xkN+0.5), which gives an ϵ-VI solution (but not necessarily an ϵ-Minty
solution) based on Definition 2.5.

Finally, we note that if F is monotone (in which case Sol(VI(F ;X )) = Solm(VI(F ;X ))),

the convergence rate is 1/N
p+1
2 in terms of the merit function H(x̄N ), where x̄N is the

weighted average of xk+0.5 (see [10], Theorem 3.1). It is an improved rate compared to the
above result where we only assume Solm(VI(F ;X )) 6= ∅.

2.3 Minty solutions beyond general VI

In the previous section, we see that the existence of Minty solutions is indeed an important
property to have for solving non-monotone VI. Without assuming any other conditions,
it allows projection-type methods such as extra-gradient method (a first-order specialized
method of ARE) to converge (to a Minty solution) with guaranteed rate. It is then natural
to ask whether the same solution concept presents with similar significance in other problem
classes related to VI and what are the implications of the Minty solution therein. In this
section, we first discuss the role of the Minty solution in optimization. The discussion
proceeds in the context of Nash games, where we present the implications of the Minty
solution and its connections to the VI model.

2.3.1 Minty solutions in optimization

Consider the optimization problem:

min
x∈X

f(x), (2.11)

where f(x) is continuously differentiable, X is convex and closed. The local first-order
optimality condition is given by:

〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ X , (2.12)
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which is equivalent to the VI model VI(∇f ;X ) with solution set Sol(VI(∇f ;X )). Now
suppose a Minty solution exists for this VI model, that is, Solm(VI(∇f ;X )) 6= ∅ and any
element x∗ ∈ Solm(VI(∇f ;X )) satisfies

〈∇f(x), x− x∗〉 ≥ 0, ∀x ∈ X . (2.13)

Note that Minty’s Lemma (Lemma 2.1) applies here due to our assumption. Therefore,
we have Solm(VI(∇f ;X )) ⊆ Sol(VI(∇f ;X )), and any x∗ satisfying (2.13) is a local first-
order stationary point ((2.12) holds). The next theorem states that a Minty solution in
optimization, if exists, is in fact a global solution to the problem.

Theorem 2.9 (Optimality of Minty solution). For the optimization problem (2.11) where
f is continuously differentiable, X is convex and closed. The following holds:

〈∇f(x), x− x∗〉 ≥ 0, ∀x ∈ X
=⇒ f(x∗) ≤ f(x), ∀x ∈ X .

In other words, if a Minty solution exists, it is a global solution to the problem.

Proof. Using the following identity:

f(x∗)− f(x) =

1∫
t=0

∇f(x+ t(x∗ − x))⊤(x∗ − x)dt,

we have for t = 1, ∇f(x∗)⊤(x∗−x) ≤ 0 since (2.12) holds. For t = 0, we have ∇f(x)⊤(x∗−
x) ≤ 0 due to (2.13). For 0 < t < 1, let x̂ = x+ t(x∗ − x) ∈ X , then

∇f(x+ t(x∗ − x))⊤(x∗ − x) =
1

1− t
∇f(x̂)⊤(x∗ − x̂) ≤ 0, 0 < t < 1,

where the last inequality is again due to (2.13). Therefore, we can conclude that

f(x∗)− f(x) =

1∫
t=0

∇f(x+ t(x∗ − x))⊤(x∗ − x)dt ≤ 0

=⇒ f(x∗) ≤ f(x).

Remark 2.10. The Minty solution is always a global solution in optimization, provided that
f(x) is continuously differentiable and X is closed convex set. However, a global solution
needs not be a Minty solution. For a meaningful optimization problem, i.e. a global solution
is well defined and exists, a Minty solution may not exist.

Consider a one-dimensional optimization problem:

min
−1≤x≤1

−x2,

the global solutions are x∗ = −1, 1. For x∗ = −1:

〈∇f(x), x− x∗〉 = 〈−2x, x+ 1〉 < 0, 0 < x ≤ 1;

for x∗ = 1,
〈∇f(x), x− x∗〉 = 〈−2x, x− 1〉 < 0, −1 ≤ x < 0.

Therefore, neither of the global solutions is a Minty solution. Same as the VI model, when
the objective function is convex, the set of local solutions (Sol(VI(∇f ;X ))) coincides with
the set of Minty solutions (Solm(VI(∇f ;X ))), thus every global solution is a Minty solution.
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2.3.2 Minty solutions in Games

Consider a two-player game:  x : min
x∈X

θx(x, y)

y : min
y∈Y

θy(x, y),
(2.14)

where we use x, y to denote both the players and their corresponding strategies. Assume
θx, θy are both continuously differentiable for fixed y, x, and X ,Y are closed convex sets. Let
us first define three different notions of equilibria in this game, starting from the well-known
Nash equilibrium.

Definition 2.11 (Nash equilibrium (NE)). A solution pair (x∗, y∗) ∈ X × Y is said to be
in Nash equilibrium if and only if

θx(x
∗, y∗) ≤ θx(x, y

∗), ∀x ∈ X , θy(x
∗, y∗) ≤ θy(x

∗, y), ∀y ∈ Y .

In other words, for player x it is not possible to be better off by deviating from the Nash
equilibrium strategy x∗ if the opponent continues to play y = y∗ and vice versa. For a
Nash equilibrium pair (x∗, y∗), x∗ (resp. y∗) is the global minimizer of the objective function
θx(·, y∗) (resp. θy(x∗, ·)) for fixed y∗ (resp.x∗).

Definition 2.12 (Quasi-Nash equilibrium [27] (QNE)). A solution pair (x∗, y∗) ∈ X ×Y is
said to be in quasi-Nash equilibrium if and only if

〈∇xθx(x
∗, y∗), x− x∗〉 ≥ 0, ∀x ∈ X , 〈∇yθy(x

∗, y∗), y − y∗〉 ≥ 0, ∀y ∈ Y .

Unlike Nash equilibrium where x∗ and y∗ have to be global minimizers of their respective
objective functions when the opponent plays the equilibrium strategy, a pair of quasi-Nash
equilibrium only requires the first-order stationarity condition to be satisfied in their respec-
tive optimization problem. Hence quasi-Nash equilibrium can be viewed as a relaxation of
Nash equilibrium.

Definition 2.13 (Minty Nash equilibrium (MNE)). A solution pair (x∗, y∗) ∈ X ×Y is said
to be in Minty Nash equilibrium if and only if

〈∇xθx(x, y
∗), x− x∗〉 ≥ 0, ∀x ∈ X , 〈∇yθy(x

∗, y), y − y∗〉 ≥ 0, ∀y ∈ Y .

The third definition given above pertains to the notion of Minty solution discussed thus
far. It requires x∗ (resp. y∗) to be a Minty solution of θx(·, y∗) (resp. θy(x

∗, ·)) for fixed
y∗ (resp.x∗). By the discussion in the previous section, the set of Minty solutions is only
a subset of the global solutions, therefore the Minty Nash equilibrium defines a stronger
concept of equilibrium than the usual notion of Nash equilibrium.

It is straightforward to conclude the following relation among these three different notions
of equilibria:

MNE =⇒ NE =⇒ QNE.

If the objective functions possess an additional property known as block multiconvex, i.e.
θx(·, y) is convex for fixed y ∈ Y and θy(x, ·) is convex for fixed x ∈ X , then the above
relation becomes:

MNE = NE = QNE.
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Let us now consider the connections among the above notions of equilibria to the solutions
in the VI formulation of the two-player game (2.14):

F (z) :=

(
∇xθx(x, y)
∇yθy(x, y)

)
, z := (x, y)⊤, Z := X × Y , (2.15)

which can be expressed as the VI model VI(F ;Z).
If z∗ = (x∗, y∗) ∈ Sol(VI(F ;Z)), i.e.

〈F (z∗), z − z∗〉 = 〈∇xθx(x
∗, y∗), x− x∗〉+ 〈∇yθy(x

∗, y∗), y − y∗〉 ≥ 0, ∀z ∈ Z,

it is obvious that (x∗, y∗) is a pair of quasi-Nash equilibrium of the original two-player game
by taking x = x∗ and y = y∗ in the above inequality. On the other hand, if (x∗, y∗) is a
pair of quasi-Nash equilibrium, then the above inequality holds trivially and z∗ = (x∗, y∗) ∈
Sol(VI(F ;Z)). Therefore, quasi-Nash equilibrium of the game is equivalent to the (strong)
solution to the VI formulation.

Now if z∗ = (x∗, y∗) ∈ Solm(VI(F ;Z)), i.e.

〈F (z), z − z∗〉 = 〈∇xθx(x, y), x− x∗〉+ 〈∇yθy(x, y), y − y∗〉 ≥ 0, ∀z ∈ Z, (2.16)

by taking any arbitrary x ∈ X and y = y∗ in the above inequality, we have

〈∇xθx(x, y
∗), x− x∗〉 ≥ 0, ∀x ∈ X .

Similarly we have

〈∇yθy(x
∗, y), y − y∗〉 ≥ 0, ∀y ∈ Y .

The above two inequalities combined indicates that (x∗, y∗) is a pair of Minty Nash equi-
librium of the original two-player game. However, we note that the opposite direction is
in general not true, since a Minty solution z∗ to VI(F ;X ) requires the inequality (2.16) to
be satisfied with ∇xθx(x, y) (resp.∇yθy(x, y)) while the Minty Nash equilibrium only de-
fines on ∇xθx(x, y

∗) (resp.∇yθy(x
∗, y)), in which the opponent’s strategy is fixed to be the

equilibrium strategy.
We can include the two solution concepts in the VI formulation, Sol(VI(F ;Z)) and

Solm(VI(F ;Z)), in the previous relation and obtain

Solm(VI(F ;Z)) =⇒ MNE =⇒ NE =⇒ QNE = Sol(VI(F ;Z)).

In the case where both θx(x, y) and θy(x, y) are bock multiconvex, then

Solm(VI(F ;Z)) =⇒ MNE = NE = QNE = Sol(VI(F ;Z)).

Note that it is not sufficient to state the equivalence between the Minty solution in VI and
others even if the objective functions are block multiconvex. However, the above relation
does offer a quick argument for the existence of Nash equilibrium for non-cooperative games
where the payoff functions are block multiconvex and continuously differentiable, and the
constraints are convex compact sets. Indeed, the latter two conditions are exactly given in
Assumption 2.1, which guarantees that Sol(VI(F ;Z)) 6= ∅. The functions being block mul-
ticonvex indicates that NE= Sol(VI(F ;Z)), which proves the existence of Nash equilibrium.
This conclusion is summarized in the next proposition.
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Proposition 2.14. For the two-player game (2.14), if both θx(x, y) and θy(x, y) are block
multiconvex and continuously differentiable, and X ,Y are convex compact sets, then a Nash
equilibrium exists.

Remark 2.15. Indeed, the celebrated Nash Theorem has shown that a mixed strategy
Nash equilibrium exists in n-player multilinear games using Brouwer’s fixed-point theorem.
The above discussion only points out an alternative route for showing the same conclusion
with a potentially lighter algebraic derivation. The equivalence between NE and QNE as
well as between QNE and Sol(VI(F ;Z)) is straightforward. Proving Sol(VI(F ;Z)) 6= ∅ can
be accomplished via the same Brouwer’s fixed-point theorem or degree theory [5], where the
details are omitted here.

We note that restricting the number of players to be two in this section is only for the
purpose of clear illustrations of the ideas. All the discussions can be easily extended to
general n-player games.

3 Algorithm-Based Conditions on VI

In the discussion thus far, we have focused on non-monotone VI with the condition
Solm(VI(F ;X )) 6= ∅, and we show that it is sufficient for a projection-type method such
as ARE to converge globally with a guaranteed rate. In this section, we continue to ask
the question: Are there other sufficient conditions different from the existing ones that are
able to guarantee the convergence of algorithms of certain class? It turns out that through
an algorithm-based approach, it is possible to characterize structures of the VI model by
deriving sufficient conditions for which the algorithms converge. These VI problems can be
of special interest since they are not necessarily monotone or satisfy the Minty condition,
nonetheless the algorithms converge regardless. In particular, we present conditions on VI
models based on projection-type methods, analyze their convergence behavior, and provide
examples of problems satisfying these conditions.

3.1 Conditions for projection-type methods

In order to present the conditions to be introduced later with more precise expressions, let us
first define two projection-type mappings, which play a central role in these conditions since
the purpose is to characterize VI problems with guaranteed convergence for projection-type
methods.

Definition 3.1 (Gradient projection mapping). For a given t > 0, assuming X is a closed
convex set, define the “gradient projection mapping” as

M(x; t) := ProjX (x− tF (x)). (3.1)

Note that the term “gradient” follows the convention in optimization, while in general
F can be any vector mapping that is not necessarily a gradient mapping.

It is a well-known fact that for a fixed t > 0, x∗ ∈ X is a fixed point of the gradient
projection mapping M(·; t) if and only if x∗ ∈ Sol(VI(F ;X )). It is then natural to use a
third merit function other than the (dual) gap function introduced in Section 2.1.2:

P (x) := ‖M(x; t)− x‖2.

We summarize the above observations in the next proposition and provide a proof for com-
pleteness.
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Proposition 3.2. x∗ = M(x∗; t) if and only if x∗ ∈ Sol(VI(F ;X )). Therefore, P (x) = 0 if
and only if x ∈ Sol(VI(F ;X )).

Proof. By the optimality condition of the projection operation, we have

(y −M(x; t))⊤(M(x; t)− x+ tF (x)) ≥ 0, ∀y ∈ X . (3.2)

If M(x; t) 6= x, then by setting y = x in (3.2) we observe

(M(x; t)− x)⊤F (x) ≤ −1

t
‖M(x; t)− x‖2 < 0

implying that x 6∈ Sol(VI(F ;X )). On the other hand, if M(x; t) = x, then (3.2) yields

t(y − x)⊤F (x) ≥ 0, ∀y ∈ X ,

and so x ∈ Sol(VI(F ;X )).

Remark 3.3. In the literature, the mapping M(x; 1)− x is also referred to as the “natural
map” and solving M(x; 1) − x = 0 can be used as an equation reformulation of the VI
model VI(F ;X ). In our discussion, we do not explicitly adopt the equation reformulation
approach, but only use P (x) as one of the measurements of convergence.

In view of the gradient projection mapping defined earlier, let us also define the following
“extra-gradient projection mapping”, which expresses the extra-gradient-type methods and
the sufficient condition for convergence more succinctly.

Definition 3.4 (Extra-gradient projection mapping). For a given t > 0, assuming X is a
closed convex set, define the “extra-gradient mapping” as

M+(x; t) := ProjX (x− tF (M(x; t))),

where M(x; t) is the gradient projection mapping defined in (3.1).

We are now ready to introduce conditions that can guarantee the convergence for dif-
ferent projection-type methods. These conditions provide additional characterizations of
the structure of a VI problem when in general we do not assume monotonicity nor Minty
condition.

Definition 3.5. Condition (Local Minty).
For some fixed t > 0 and any x ∈ X there is x∗ ∈ Sol(VI(F ;X )) such that

〈F (x), x− x∗〉 ≥ 0,

and for the same x∗ the above inequality also holds if we replace x by M(x; t).

Definition 3.6. Condition (Local Minty+).
For some fixed t > 0 and any x ∈ X there is x∗ ∈ Sol(VI(F ;X )) such that

〈F (M(x; t)),M(x; t)− x∗〉 ≥ 0,

and for the same x∗ the above inequality also holds if we replace x by M+(x; t).
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Definition 3.7. Condition (Local Minty*).
For some fixed t > 0 and any x ∈ X there is x∗ ∈ Sol(VI(F ;X )) such that

〈F (x),M(x; t)− x∗〉 ≥ 0,

and for the same x∗ the above inequality also holds if we replace x by M(x; t).

Definition 3.8. Condition (GP).
For some fixed δ > 0 and t > 0, and any x ∈ X there is x∗ ∈ Sol(VI(F ;X )) such that

4(1 + δ)t〈F (M(x; t)),M(x; t)− x∗〉+ ‖M(x; t)− x‖2 ≥ 0,

and for the same x∗ the above inequality also holds if we replace x by M(x; t).

Definition 3.9. Condition (GP+).
For some fixed δ > 0 and t > 0, and any x ∈ X there is x∗ ∈ Sol(VI(F ;X )) such that

4(1 + δ)t〈F (M(x; t)),M(x; t)− x∗〉+ ‖M(x; t)− x‖2 ≥ 0,

and for the same x∗ the above inequality also holds if we replace x by M+(x; t).

Definition 3.10. Condition (GP*).
For some fixed δ > 0 and t > 0, and any x ∈ X there is x∗ ∈ Sol(VI(F ;X )) such that

2(1 + δ)t〈F (x),M(x; t)− x∗〉+ ‖M(x; t)− x‖2 ≥ 0,

and for the same x∗ the above inequality also holds if we replace x by M(x; t).

We make the following remarks on the conditions introduced above.

Remark 3.11.

• Condition (Local Minty) (Local Minty*): Unlike other conditions that are seen before,
both conditions are defined on sequences in X rather than arbitrary points. In partic-
ular these sequences are generated by the gradient projection mapping M(x; t). For
any specific sequence, there is a “local Minty solution” for which the inequality defined
in the respective condition continues to hold.

• Condition (Local Minty+): When generating a sequence from the extra-gradient pro-
jection mapping M+(x; t), we immediately obtain another sequence that maps the
previous sequence to their gradient projection mapping M(x; t). (Local Minty+) is
defined on the latter sequences.

• Condition (GP), (GP+), (GP*): These three conditions can be viewed as relaxations of
Condition (Local Minty), (Local Minty+), and (Local Minty*), by allowing a positive
term P (x) in the defining inequality.

The conditions introduced above have one property in common: they all require the
defining inequality to hold for the whole sequence generated from some pre-determined
mapping. In other words, a solution x∗ ∈ Sol(VI(F ;X )) can “attract” some x ∈ X following
the particular sequence. Condition (Local Minty)/(Local Minty+)/(Local Minty*) (Defini-
tion 3.5, 3.6, and 3.7) guarantee the existence of such “local Minty solution” x∗ with respect
to arbitrary x ∈ X , while Condition (GP)/(GP+)/(GP*) (Definition 3.8, 3.9, and 3.10)
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relax the previous three conditions. The term “local” is in contrast to the normal Minty
solution, which is “global” since any x∗ ∈ Solm(VI(F ;X )) is able to attract every point in
X in terms of the Minty inequality 〈F (x), x−x∗〉 ≥ 0 in the definition. This property turns
out to be critical to derive these algorithm-based conditions, which helps establish conver-
gence of projection-type methods for those problems with more general structures than the
common monotonicity or Minty condition.

Remark 3.12.

• If F is monotone, then Condition (Local Minty) and Condition (Local Minty+) hold
trivially (therefore so do Conditions (GP) and (GP+)).

• If Solm(VI(F ;X )) 6= ∅, then Condition (Local Minty) and Condition (Local Minty+)
hold trivially (therefore so do Condition (GP) and (GP+)).

• It is possible that F is monotone but Conditions (Local Minty*) and (GP*) do not
hold. Conversely, it is also possible that Conditions (Local Minty*) and (GP*) hold
but F is not monotone or Solm(VI(F ;X )) = ∅.

The next two examples demonstrate problem instances where Solm(VI(F )) = ∅ while
Condition (GP)/(GP+)/(GP*) still hold.

Example 3.13. Consider X = [−1, 1], F (x) = −x. In that case, Sol(VI(F ;X )) = {−1, 0,+1}
and Solm(VI(F ;X )) = ∅. Note that

M(x; t) =

 min{1, (1 + t)x}, if x > 0 ;
0, if x = 0 ;
max{−1, (1 + t)x}, if x < 0 .

In particular, for x > 0 we choose x∗ = 1; for x < 0 we choose x∗ = −1; for x = 0 we choose
x∗ = 0. It is now easy to verify that Condition (GP)/(GP+)/(GP*) hold in this case. In
fact, Condition (Local Minty)/(Local Minty+)/(Local Minty*) all hold in this example.

Example 3.14. Consider X = ‖x‖ ≤ 1, F (x) = Qx, where Q =

(
−1 0
0 1

)
. In this case,

Sol(VI(F ;X )) =
{
(1, 0)⊤, (0, 0)⊤, (−1, 0)⊤

}
. None of them is a Minty solution, but we can

show that VI(F ;X ) satisfies (Local Minty)/(Local Minty+)/(Local Minty+) for any fixed
t ∈ (0, 1]. For the first two conditions, it suffices to provide the following two observations
as the proof. Also note that we can focus on x1 ≥ 0, since the behavior is symmetric for the
case x1 ≤ 0.

1. For any x = (x1, x2)
⊤ ∈ X such that x1 ≥ 0, the whole sequence generated by M(x; t)

and M+(x; t) will remain x1 ≥ 0. This can be easily verified.

2. For any x = (x1, x2)
⊤ ∈ X such that x1 ≥ 0, we have

〈F (x), x− x∗〉 ≥ 0,

for x∗ = (1, 0)⊤. Since the above inequality results in x2
2 ≥ x1(x1 − 1), which always

holds for any 0 ≤ x1 ≤ 1.
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It remains to show that Condition (Local Minty*) also holds. Similarly, let us focus on
x1 ≥ 0 and use x∗ = (1, 0)⊤. Let us denote x+ = x− tF (x) = ((1 + t)x1, (1− t)x2)

⊤, then
we have

M(x; t) =

{
x+, if ‖x+‖ ≤ 1 ;
x+/‖x+‖, if ‖x+‖ > 1 .

For the case ‖x+‖ ≤ 1, the condition

〈F (x),M(x; t)− x∗〉 ≥ 0 (3.3)

reduces to
(1− t)x2

2 ≥ (1 + t)x2
1 − x1,

where the RHS is always non-positive for x1 ≤ 1
1+t , which is the case for ‖x+‖ ≤ 1. Therefore

inequality (3.3) holds. For ‖x+‖ > 1, condition (3.3) can be reduced to

(1− t)x2
2 ≥ (1 + t)x2

1 − x1 · ‖x+‖.

Since ‖x+‖ ≥ (1 + t)x1, the RHS is always non-positive and condition (3.3) holds.

The next example shows that, even if F is monotone, Condition (GP*) does not necessar-
ily hold. Otherwise, since Condition (GP*) is sufficient for the gradient projection method
to converge (as will be shown in the next section), monotonicity would have been sufficient
for the convergence as well (which is not the case for the gradient projection method).

Example 3.15. Consider X = ‖x‖ ≤ 1, F (x) = Qx, where Q =

(
0 1
−1 0

)
. In this

case, Sol(VI(F ;X )) =
{
(0, 0)⊤

}
. This problem is originated from the saddle point problem

minmax∥x∥2+∥y∥2≤1 xy and is monotone. For a small ϵ > 0, consider x = (ϵ, 0)⊤, where

F (x) = (0,−ϵ)⊤.

Consider first t ≤
√
1−ϵ2

ϵ . In this case, M(x; t) = x− tF (x) = ϵ · (1, t)⊤. Therefore,

2(1 + δ)t〈F (x),M(x; t)− x∗〉+ ‖M(x; t)− x‖2 = −2(1 + δ)t2ϵ2 + t2ϵ2 < 0.

On the other hand, if t >
√
1−ϵ2

ϵ , then M(x; t) = (1, t)⊤ · (1 + t2)−
1
2 , and

‖M(x; t)− x‖2 =

∥∥∥∥∥ (1− ϵ
√
1 + t2, t)⊤√
1 + t2

∥∥∥∥∥
2

= 1 + ϵ2 − 2ϵ√
1 + t2

≤ 1 + ϵ2,

whereas

2(1 + δ)t〈F (x),M(x; t)− x∗〉 = −2(1 + δ)ϵ · t2 · (1 + t2)−
1
2 < −2(1 + δ) · (1− ϵ2),

where the last inequality we take t =
√
1−ϵ2

ϵ . It is then clear that for small enough ϵ,
Condition (GP*) will not hold, even if F is monotone.

3.2 Convergence of projection-type methods

In the previous section, we present several algorithm-based conditions that are defined for
sequences generated from either the gradient projection mapping or the extra-gradient pro-
jection mapping. In this section we show how these conditions are applied in the convergence
analysis for two projection-type methods, the vanilla gradient projection method and the
extra-gradient method.
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3.2.1 The gradient projection method

Consider the gradient projection method:

xk+1 := argmin
x∈X

〈F (xk), x− xk〉+ 1

2t
‖x− xk‖2,

or equivalently written as

xk+1 := M(xk; t).

It is now clear why the conditions (Local Minty)/(Local Minty*) and their relaxations
(GP)/(GP*) are defined for sequences generated from the gradient projection mapping.
They assume that for each sequence generated by the gradient projection method there ex-
ists at least one solution x∗ ∈ Sol(VI(F ;X )) such that their respective defining inequalities
continue to hold. We first derive a key intermediate inequality from the gradient projec-
tion update itself, which makes it clearer the exact condition to be used in the following
convergence analysis.

Lemma 3.16. For the gradient projection method, we have

1

2
‖xk − x∗‖2 ≥ 1

2
‖xk+1 − x∗‖2 + t〈F (xk), xk+1 − x∗〉+ 1

2
‖xk+1 − xk‖2. (3.4)

for any x∗ ∈ Sol(VI(F ;X )).

Proof. Since

〈tF (xk) + xk+1 − xk, x− xk+1〉 ≥ 0 ∀x ∈ X ,

with x = x∗, we have

〈tF (xk), x∗ − xk+1〉 ≥ 1

2

(
‖xk+1 − xk‖2 + ‖xk+1 − x∗‖2 − ‖xk − x∗‖2

)
.

Rearranging terms gives the result.

In view of the inequality (3.4), it is straightforward that Conditions (Local Minty*) and
(GP*) can provide a bound on 〈F (xk), xk+1 − x∗〉 for the whole sequence with respect to
some x∗ ∈ Sol(VI(F ;X )), thus the convergence follows. The results are summarized in the
next theorem.

Theorem 3.17. Under Condition (GP*), and assume F is Lipschitz continuous with con-
stant L, the gradient projection algorithm is convergent for VI(F ;X ). Moreover,

min
1≤k≤N

P (xk) = O(1/N), min
1≤k≤N

G(xk) = O(1/N
1
2 ).

Proof. In view of Lemma 3.16 and Condition (GP*), we have:

1

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
≥ t〈F (xk), xk+1 − x∗〉+ 1

2
‖xk+1 − xk‖2

(GP*)

≥ − 1

2(1 + δ)
‖xk+1 − xk‖2 + 1

2
‖xk+1 − xk‖2

=
δ

2(1 + δ)
‖xk+1 − xk‖2.
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By Condition (GP), there exists an x∗ such that the above inequality holds for k = 1, ..., N .
Therefore, summing up the inequality for k = 1, ..., N , we have:

N∑
k=1

‖xk+1 − xk‖2 ≤
(
1 +

1

δ

)
‖x1 − x∗‖2,

which implies

min
1≤k≤N

P (xk) ≤ 1

N

N∑
k=1

‖xk+1 − xk‖2 ≤ 1

N
·
(
1 +

1

δ

)
‖x1 − x∗‖2 = O(1/N).

Moreover, we can transform the measurement in min
1≤k≤N

P (xk) into min
1≤k≤N

G(xk). Since

〈tF (xk) + xk+1 − xk, x− xk+1〉 ≥ 0 ∀x ∈ X ,

we have

〈F (xk), xk+1 − x〉 ≤ −1

t
(xk+1 − x)⊤(xk+1 − xk) ≤ D

t
‖xk+1 − xk‖.

Therefore,

〈F (xk+1), xk+1 − x〉 = 〈F (xk), xk+1 − x〉+ 〈F (xk+1)− F (xk), xk+1 − x〉

≤ D

t
‖xk+1 − xk‖+ ‖F (xk+1)− F (xk)‖ · ‖xk+1 − x‖

≤ D

(
1

t
+ L

)
‖xk+1 − xk‖.

Define kN := arg min
1≤k≤N

P (xk), then

〈F (xkN+1), xkN+1 − x〉 ≤ D

(
1

t
+ L

)
‖xkN+1 − xkN ‖

≤ D

(
1

t
+ L

)
1

N
1
2

(
1 +

1

δ

) 1
2

‖x1 − x∗‖

≤ D2

(
1

t
+ L

)
1

N
1
2

(
1 +

1

δ

) 1
2

,

which holds for all x ∈ X . This implies

min
1≤k≤N

G(xk) = max
x∈X

〈F (xkN ), xkN − x〉 ≤ D2

(
1

t
+ L

)
1

N
1
2

(
1 +

1

δ

) 1
2

= O(1/N
1
2 ).

It is well-known that if F is strongly monotone, gradient projection method can be guar-

anteed to converge with iteration complexity O
(

L2

µ2 log 1
ϵ

)
, while F being merely monotone

is insufficient for the convergence. On the other hand, Theorem 3.17 provides a different
sufficient condition (GP*) such that gradient projection method converges globally in terms
of min1≤k≤N G(xk) = G(xkN ). As shown in the previous examples, there exist problems
which are not monotone but Condition (GP*) is satisfied.
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3.3 The extra-gradient method

Consider {
xk+0.5 := argmin

x∈X
〈F (xk), x− xk〉+ 1

2t‖x− xk‖2

xk+1 := argmin
x∈X

〈F (xk+0.5), x− xk〉+ 1
2t‖x− xk‖2,

or it can be equivalently written as{
xk+0.5 := M(xk; t)
xk+1 := M+(xk; t),

Note that the extra-gradient method can be viewed as a special case of the ARE update
discussed in Section 2.2 with p = 1. Below we introduce a key inequality derived from the
update, which also appears with a similar form in the analysis for ARE (cf. (2.7)). Both
the notation and the parameter constraint are slightly adjusted in the following lemma,
therefore a proof is provided for completeness.

Lemma 3.18. For the extra-gradient method, assume that F is Lipschitz continuous with
constant L, and t ≤ 1√

2L
, the following inequality holds:

〈F (xk+0.5), xk+0.5 − x〉+ 1

4t
‖xk+0.5 − xk‖2 ≤ 1

2t

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
. (3.5)

Proof. Optimality of xk+0.5:

〈F (xk) +
1

t
(xk+0.5 − xk), x− xk+0.5〉 ≥ 0, ∀x ∈ X . (3.6)

Substituting x = xk+1 in (3.6) we have

〈F (xk), xk+1 − xk+0.5〉

≥ 1

t
〈xk+0.5 − xk, xk+0.5 − xk+1〉

=
1

2t

(
‖xk+0.5 − xk‖2 + ‖xk+1 − xk+0.5‖2 − ‖xk+1 − xk‖2

)
. (3.7)

On the other hand, by the optimality condition at xk+1 we have

〈F (xk+0.5) +
1

t
(xk+1 − xk), x− xk+1〉 ≥ 0, for all x ∈ X .

Hence,

〈F (xk+0.5), x− xk+1〉

≥ 1

t
〈xk+1 − xk, xk+1 − x〉

=
1

2t

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
, for all x ∈ X . (3.8)
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Continue with the above inequality, for any given x ∈ X we have

1

2t

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
(3.8)

≤ 〈F (xk+0.5), x− xk+1〉
= 〈F (xk+0.5), x− xk+0.5〉+ 〈F (xk+0.5), xk+0.5 − xk+1〉
= 〈F (xk+0.5), x− xk+0.5〉+ 〈F (xk+0.5)− F (xk), xk+0.5 − xk+1〉

+〈F (xk), xk+0.5 − xk+1〉
≤ 〈F (xk+0.5), x− xk+0.5〉+ ‖F (xk+0.5)− F (xk)‖ · ‖xk+0.5 − xk+1‖

+〈F (xk), xk+0.5 − xk+1〉

≤ 〈F (xk+0.5), x− xk+0.5〉+ t‖F (xk+0.5)− F (xk)‖2

2
+

‖xk+0.5 − xk+1‖2

2t

+〈F (xk), xk+0.5 − xk+1〉

≤ 〈F (xk+0.5), x− xk+0.5〉+ tL2‖xk+0.5 − xk‖2

2
+

‖xk+0.5 − xk+1‖2

2t

+〈F (xk), xk+0.5 − xk+1〉.

Since t ≤ 1√
2L

, and with (3.7) we have

1

2t

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
≤ 〈F (xk+0.5), x− xk+0.5〉+ ‖xk+0.5 − xk‖2

4t
+

‖xk+0.5 − xk+1‖2

2t

+
1

2t

[
−‖xk+0.5 − xk‖2 − ‖xk+1 − xk+0.5‖2 + ‖xk+1 − xk‖2

]
.

Canceling out terms, we simplify the above inequality into

〈F (xk+0.5), xk+0.5 − x〉+ 1

4t
‖xk+0.5 − xk‖2 ≤ 1

2t

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
.

One can immediately identify the connections between inequality (3.5) and Condition
(GP+). In fact, inequality (3.5) plays the central role in the convergence of the extra-
gradient method (or in general, the extra-gradient-type method such as ARE), and iteration
complexities of different orders can be established following this inequality based on the
conditions imposed on the VI model. The most conventional assumption will be the (strong)
monotonicity of F , while in Section 2.2 it is relaxed to be Minty condition Solm(VI(F ;X )) 6=
∅. Here, Condition (GP+) provides a more direct way to guide the convergence analysis of
the extra-gradient method based on inequality (3.5), as summarized in the next theorem.

Theorem 3.19. Under Condition (GP+), and assume F is Lipschitz continuous with con-
stant L, the extra-gradient method with t ≤ 1√

2L
is convergent for VI(F ;X ). Moreover,

min
1≤k≤N

P (xk) = O(1/N), min
1≤k≤N

G(xk+0.5) = O(1/N
1
2 ).
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Proof. In view of Lemma 3.18 and Condition (GP+), we have:

1

2t

[
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

]
≥ 〈F (xk+0.5), xk+0.5 − x∗〉+ 1

4t
‖xk+0.5 − xk‖2

(GP+)

≥ − 1

4t(1 + δ)
‖xk+0.5 − xk‖2 + 1

4t
‖xk+0.5 − xk‖2

=
δ

1 + δ

1

4t
‖xk+0.5 − xk‖2.

Since Condition (GP+) also asserts that there exists an x∗ such that the above inequality
holds for k = 1, ..., N , summing up the inequality for k = 1, ..., N gives us:

N∑
k=1

‖xk+0.5 − xk‖2 ≤ 2

(
1 +

1

δ

)
‖x1 − x∗‖2,

which implies

min
1≤k≤N

P (xk) ≤ 1

N

N∑
k=1

‖xk+0.5 − xk‖2 ≤ 2

N
·
(
1 +

1

δ

)
‖x1 − x∗‖2 = O(1/N).

Moreover, we can transform the measurement in min
1≤k≤N

P (xk) into min
1≤k≤N

G(xk+0.5). Since

〈tF (xk) + xk+0.5 − xk, x− xk+0.5〉 ≥ 0 ∀x ∈ X ,

we have

〈F (xk), xk+0.5 − x〉 ≤ −1

t
(xk+0.5 − x)⊤(xk+0.5 − xk) ≤ D

t
‖xk+0.5 − xk‖.

Therefore,

〈F (xk+0.5), xk+0.5 − x〉 = 〈F (xk), xk+0.5 − x〉+ 〈F (xk+0.5)− F (xk), xk+0.5 − x〉

≤ D

t
‖xk+0.5 − xk‖+ ‖F (xk+0.5)− F (xk)‖ · ‖xk+0.5 − x‖

≤ D

(
1

t
+ L

)
‖xk+0.5 − xk‖.

Define kN := arg min
1≤k≤N

P (xk), then

〈F (xkN+0.5), xkN+0.5 − x〉 ≤ D

(
1

t
+ L

)
‖xkN+0.5 − xkN ‖

≤ D

(
1

t
+ L

) √
2

N
1
2

(
1 +

1

δ

) 1
2

‖x1 − x∗‖

≤ D2

(
1

t
+ L

) √
2

N
1
2

(
1 +

1

δ

) 1
2

,

which holds for all x ∈ X . This implies

min
1≤k≤N

G(xk+0.5) = max
x∈X

〈F (xkN+0.5), xkN+0.5 − x〉 ≤ D2

(
1

t
+ L

) √
2

N
1
2

(
1 +

1

δ

) 1
2

= O(1/N
1
2 ).
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The convergence rate in Theorem 3.19 turns out to be the same as the rate in Theo-
rem 3.17 for gradient projection method when Condition (GP*) is satisfied instead, as well
as the rate in Theorem 2.7 for ARE (p = 1) when the Minty condition is satisfied. As dis-
cussed in the earlier examples, there exists problems where Conditions (GP+) or (GP*) are
satisfied but no Minty solution exists. On the other hand, while these assumptions are able
to provide alternative sufficient conditions for the convergence of certain class of algorithms,
in general they can be difficult to verify a priori due to the requirement to hold for the whole
sequence.

4 Conclusion

In this paper, we discuss sufficient conditions for projection-type methods to converge in
VI problems that are not necessarily monotone. We first focus on the problem where a
Minty solution exists, which is a relaxation of the monotonicity assumption. We derive the
guaranteed global convergence rate for a general extra-gradient type method ARE under the
Minty condition, and then we extend the discussion to properties and implications of Minty
solutions in more specific problem classes such as optimization and Nash games. Finally, we
present conditions on VI problems that are algorithm-based, in the sense that they are closely
connected to the algorithms we are interested in (in particular, projection-type methods)
and can suitably serve as sufficient conditions to guarantee the convergence. Conventionally,
the algorithms are designed for problems where assumptions on the structure are made a
priori, and the convergence is only guaranteed under these assumptions. In this paper, we
provide an alternative aspect, by “desinging” conditions on the VI model such that they
are sufficient to guarantee convergence of certain class of algorithms. We show that this
approach is indeed capable of characterizing different classes of VI problems (potentially
broader) from the existing ones such as monotone VI or VI with Minty solutions. We
analyze the convergence of gradient projection method and extra-gradient method under
the proposed conditions. There are still questions remaining, such as: if there are other
algorithm-based conditions that can be derived for different projection-type methods or
non-projection-type methods; if there exist different characterizations of these conditions
such that they can be more easily verified. Answering these questions require some efforts
in the future research.
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