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for (S, t) ∈ (0, Smax) × [0, T ) with appropriate boundary and terminal conditions, where S
denotes the underling asset price, T is the expiring date, Smax is a sufficiently large positive
number, r is the risk-free interest rate, and σ1 and σ2 are two positive constants, defining
the lower bound and upper bound of the volatility σ.

Eq. (1.1) is defined in infinite dimensions, which, in general, can be hardly solved
analytically. Thus, a proper discretization technique needs to be applied to (1.1) so that we
can find approximations to its exact solution. The application of a discretization technique
to (1.1) yields an HJB equation of the following form:

Problem 1.1. Find x ∈ RN such that

max

{
min
q∈Q

(A(q)x− b(q)) , x− g

}
= 0, (1.3)

where Q ⊂ RM is the set of all admissible controls, A (q) and b (q) are respectively N ×N
and N × 1 matrices whose entries depend on q = (q1, . . . , qN )⊤ ∈ Q, and g ∈ RN is a given
vector. More specifically, A(q) := (aij(qi)) and b(q) := (b1(q1), . . . , bN (qN ))⊤.

We now introduce some symbols to be used in the rest of this work. Denote by M the
set of real-valued N×N matrices, and let I := {1, . . . , N}. Throughout this paper, for every
x, y ∈ RN , y ≥ x means that yi ≥ xi, ∀i ∈ I. We also denote by min {x, y} (resp. max {x, y})
the vector with components min(xi, yi) (resp. max{xi, yi}). The definitions extend trivially
to other relational operators.

Problem 1.1 is also regarded as a Hamilton-Jacobi-Bellman-Issac equation [4]. HJB equa-
tions can hardly be solved analytically due to their complex structure. Thus, a numerical
method needs to be used for finding approximate solutions to such a problem. However, to
the our best our knowledge, there are very few efficient numerical methods for (1.3) in the
open literature. In general, the policy iteration method is regarded as the best one to solve
Problem 1.1 [3]. This method is a Newton-like method which, however, is far from being
efficient and effective as pointed out in [16] and [19]. Thus, it is necessary to develop better
numerical methods for the HJB CP.

Equivalently, eq. (1.3) can be rewritten as the following complementarity form:

min
q∈Q

(A (q)x− b (q)) ≤ 0,

x− g ≤ 0,

(x− g)⊤
(
min
q∈Q

(A (q)x− b (q))

)
= 0.

This is a standard complementarity form [5, 15]. This equivalent form inspires us to propose
a power penalty approach to solving Problem 1.1, since the power penalty method has
been well developed to approximate both the standard complementarity problems and HJB
equations, see [8, 11, 12, 14, 19], etc.

Before further discussion, we make the following assumptions on A(q) in the rest of this
paper:

(A) The matrix A (q) is a strictly diagonally dominant M -matrix for every q ∈ Q., i.e.,

aii > 0, aij ≤ 0, for i 6= j, and |aii| >
∑
i ̸=j

aij , i, j = 1, 2, . . . , N.

(B) A : Q 7→ M and b : q 7→ RN are continuous functions.
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Remark 1.2. It has been shown in [16] that, under the above assumptions, Problem 1.1
has a unique solution. Moreover, for any q ∈ Q, both A (q) and A−1 (q) can be bounded,
since each A(q) is an M -matrix and there are only finitely many compositions that can
be assumed. Similarly, b(q) can be bounded as well. In the same way, we can infer that
‖A(q)‖ ≤ C and ‖A−1(q)‖ ≤ C with C a constant.

2 Power Penalty Approach

Motivated by the [17], we propose the following problem approximating Problem 1.1:

Problem 2.1. Find xλ ∈ RN , such that

min
q∈Q

(A (q)xλ − b (q)) + λ[xλ − g]
1/k
+ = 0, (2.1)

where 1/k > 0 is the power of the penalty term [·]+, λ > 1 is the penalty parameter,
[u]+ := max{u, 0}, and for any y = (y1, . . . , yN )⊤ ∈ RN

+ , yα = [yα1 , . . . , y
α
N ]⊤.

Problem 2.1 is the penalization of Problem 1.1. The second term in (2.1) is used to
penalize the part of x − g violating the constraint x − g ≤ 0. The essence of this penalty
approach is to force the constraint xλ ≤ g to be satisfied up to a tolerance by taking
λ→ ∞. More specifically, we expect that the solution xλ of Problem 2.1 converges to that
of Problem 1.1. Before we present a detailed convergence analysis of the power penalty
approach to Problem 1.1, we first show that (2.1) is uniquely solvable. We start this with by
showing solutions to Problem 2.1 are bounded uniformly in λ and k in the following lemma.

Lemma 2.2. Under Assumptions (A) and (B), the solution to Problem 2.1 satisfies

‖xλ‖∞ ≤ C (2.2)

for some constant C > 0, independent of λ.

Proof. Define Qλ = (q1λ, ..., q
N
λ )⊤ to be such that

(Qλ)i = qiλ = argmin
Q∈Q

(A (Q)xλ − b(Q))i (2.3)

for all i = 1, 2, ..., N . Then, we have

A (Qλ)xλ − b (Qλ) = min
q∈Q

(A (q)xλ − b (q)) . (2.4)

Hence, (2.1) becomes

A (Qλ)xλ − b (Qλ) + λ[xλ − g]
1/k
+ = 0. (2.5)

Therefore

A (Qλ)xλ − b (Qλ) = −λ[xλ − g]
1/k
+ ≤ 0,

implying A (Qλ)xλ ≤ b (Qλ).
Note that it follows from Assumption (A) that A (q) is a strictly diagonally dominant

M -matrix for every q ∈ Q. Thus, A−1(Qλ) > 0. From this, we immediately get that

xλ ≤ A−1 (Qλ) b (Qλ) . (2.6)
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From (2.5) we also see that, for every i ∈ I, either

(A (Qλ)xλ)i = (b (Qλ))i ,

or,
(xλ)i ≥ gi.

Now, we introduce the matrix A∗ ∈ M whose ith row is (A(Qλ))i when (A (Qλ)xλ)i =
(b (Qλ))i, and that of the identity matrix I when (xλ)i ≥ gi. We also let b∗ be the N × 1
matrix whose ith row is b (Qλ)i when (A (Qλ)xλ)i = (b (Qλ))i and gi if (xλ)i ≥ gi. These
two matrices satisfy

A∗xλ ≥ b∗.

From its construction, we see that A∗ is also a strictly diagonally dominant M -matrix, and
thus the above inequality gives

xλ ≥ (A∗)
−1
b∗. (2.7)

Combining (2.6) and (2.7), and using the fact that A(q), A−1(q) and b(q) can be bounded
for any q ∈ Q (see Remark 1.2), we infer that (2.2) holds true for some positive constant,
independent of λ.

Now, we are ready to establish the unique solvability of Problem 2.1 in the following
Proposition.

Proposition 2.3. For any λ > 0, there exists a unique solution xλ to Problem 2.1 if
Assumptions (A) and (B) are satisfied.

Proof. For clarity, we omit the subscript λ of xλ in this proof. Let

F (x) := min
q∈Q

(A (q)x− b (q)) + λ[x− g]
1/k
+ .

We will show that F (x) = 0 has a solution in the bounded region S := {x ∈ RN : −Le <
x < Le}, where e = (1, ..., 1)⊤ ∈ RN and L is a sufficiently large positive constant. Clearly,
F = (f1, . . . , fn) : S̄ ⊂ RN 7→ RN is continuous. To prove this theorem, it suffices to verify
that F satisfies all of the conditions of Miranda’s theorem .

We first show that F (x) 6= 0 for any x on the boundary ∂S of S. More specifically,
we will show that 0 /∈ F (∂S) when L is sufficiently large. Suppose this is not true, i.e.,
0 ∈ F (∂S). Then, there exists an x∗ ∈ ∂S such that F (x∗) = 0. In this case, there must
be an l ∈ I such that either x∗l = L or x∗l = −L. From Lemma 2.2 we see that ‖x∗‖∞ ≤ C
for a constant C since x∗ is a solution to (2.5). However, we see ‖x∗‖∞ > C when L > C,
contradicting ‖x∗‖∞ ≤ C in Lemma 2.2. Therefore, F (x) = 0 has no solutions on ∂S when
L > C.

Now, we show, for any x = (x1, ..., xn)
⊤ ∈ S and i ∈ I, the inequalities

fi(x1, . . . , xi−1,−L, xi+1, . . . , xn) ≤ 0

and fi(x1, . . . , xi−1, L, xi+1, . . . , xn) ≥ 0

Let G = {x ∈ Rn : |xi| < L, for 1 ≤ i ≤ n} and suppose the mapping F = (f1, . . . , fn) : Ḡ → Rn is
continuous on the closure Ḡ of G such that F (x) ̸= 0 for x on the boundary ∂G of G, and

• fi(x1, . . . , xi−1,−L, xi+1, . . . , xn) ≤ 0, for 1 ≤ i ≤ n,

• fi(x1, . . . , xi−1, L, xi+1, . . . , xn) ≥ 0, for 1 ≤ i ≤ n.

Then, F (x) = 0 has a solution in G. See [2].
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are also satisfied. In fact, from Assumption (A) we know that the entries of the matrix A
satisfy aii > 0, ai,j ≤ 0 for i 6= j, and aii −

∑
i ̸=j |aij | ≥ 0, for i, j ∈ I. Hence, combining

this property and ‖x‖∞ ≤ C, we have for 1 ≤ i ≤ n

fi(x1, . . . , xi−1,−L, xi+1, . . . , xn)

= (A (Qλ) (x+ (−L− xi)e)− b (Qλ))i + λ[−L− gi]
1/k
+

=
∑
i ̸=j

aijxi − ai,iL− bi

≤− C

ai,i −∑
i ̸=j

aij

− (L− C)ai,i − bi ≤ 0,

when L is sufficiently large. Similarly, when L > C, where C is the constant in (2.2), we
have

fi(x1, . . . , xi−1, L, xi+1, . . . , xn)

= (A (Qλ) (x+ (L− xi)e)− b (Qλ))i + λ[L− gi]
1/k
+

=
∑
i ̸=j

aijxi + ai,iL− bi + λ [L− gi]
1/k

≥C

ai,i −∑
i ̸=j

aij

+ (L− C)ai,i + λ [L− gi]
1/k

> 0.

From the above analysis, we see that all the conditions of Miranda’s theorem are satisfied.
Hence, the existence of the solution to the penalized Problem 2.1 is proved.

We then show the uniqueness of the solution to the penalized Problem 2.1. To this end,
we suppose xλ and yλ are two solutions to Problem 2.1. Then,

min
q∈Q

(A (q)xλ − b (q)) + λ[xλ − g]
1/k
+ = 0, (2.8)

min
q∈Q

(A (q) yλ − b (q)) + λ[yλ − g]
1/k
+ = 0. (2.9)

As we did in the proof of Lemma 2.2, we define Qx and Qy to be such that

A (Qx)xλ − b (Qx) = min
q∈Q

(A (q)xλ − b (q)) ,

A (Qy) yλ − b (Qy) = min
q∈Q

(A (q) yλ − b (q)) .

Thus, it follows from (2.8), (2.9) and the definition of Qx and Qy that

A (Qy)xλ − b (Qy) + λ[xλ − g]
1/k
+ ≥ A (Qx)xλ − b (Qx) + λ[xλ − g]

1/k
+ = 0, (2.10)

A (Qx) yλ − b (Qx) + λ[yλ − g]
1/k
+ ≥ A (Qy) yλ − b (Qy) + λ[yλ − g]

1/k
+ = 0. (2.11)

Manipulating (2.10) and (2.11) gives

A (Qy) (xλ − yλ) + λ
(
[xλ − g]

1/k
+ − [yλ − g]

1/k
+

)
≥ 0,

A (Qx) (xλ − yλ) + λ
(
[xλ − g]

1/k
+ − [yλ − g]

1/k
+

)
≤ 0.
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Define two disjoint nonempty index subsets K1 and K2 of I as follows

K1 = {i |(xλ)i ≤ (yλ)i } , K2 = {i |(xλ)i > (yλ)i } .

Then, by virtue of the monotonicity of the operator [·]1/k+ , we have

(A (Qy) (xλ − yλ))i ≥ 0, ∀i ∈ K1.

(A (Qx) (xλ − yλ))i ≤ 0, ∀i ∈ K2.

Now, introducing a matrix, denoting A∗
1 ∈ M, to be the matrix having the ith row as

that of (A (Qy))i, i ∈ K1 and of the identity matrix I when i ∈ K2. Therefore, we have

A∗
1 (xλ − yλ) ≥ 0.

Nevertheless, it follows from the definition of M -matric and Assumption (A) that A∗
1 is also

a strictly diagonally dominant M -matrix. Hence, (A∗
1)

−1 > 0. Therefore, we have on the
whole index set I

xλ ≥ yλ.

Conversely, by introducing another matrix, denoting A∗
2 ∈ M, to be the matrix having

the ith row as that of (A (Qx))i, i ∈ K2 and of the identity matrix I when i ∈ K1, we also
have

A∗
2 (xλ − yλ) ≤ 0.

since A∗
2 is also a strictly diagonally dominant M -matrix. Therefore, we have on the whole

index set I
xλ ≤ yλ.

Thus, the uniqueness of a solution to Problem 2.1 is proved.

3 Convergence Analysis

3.1 Monotonic convergence property

Before establishing the monotonic convergence property of the power penalty method, we
first give two lemmas. The first lemma is to show that the solution of the penalized Problem
2.1 is always not less than that of the discrete HJB complementary Problem 1.1, component-
wisely.

Lemma 3.1. Let λ > 1 and k > 0. Assume that xλ and x are the solutions of the penalized
Problem 2.1 and that of the discrete HJB complementary Problem 1.1, respectively. Then

xλ ≥ x.

Proof. Since x is the solution of the discrete HJB complementary Problem 1.1, we always
have

x− g ≤ 0, min
q∈Q

(A (q)x− b (q)) ≤ 0. (3.1)

Meanwhile, from the fact xλ is the solution of the penalized Problem 2.1, it follows

min
q∈Q

(A (q)xλ − b (q)) = −λ[xλ − g]
1/k
+ ≤ 0. (3.2)
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Define two disjoint non-empty index subsets I1 and I2 of I as follows

I1 = {i |(xλ − g)i > 0} , I2 = {i |(xλ − g)i ≤ 0} .

We have the following two cases.

• For i ∈ I1, we have

(xλ)i > gi ≥ xi.

• For i ∈ I2, it follows from (3.2) that minq∈Q (A (q)xλ − b (q))i = 0,

which, along with (3.1), further implies that

min
q∈Q

(A (q)xλ − b (q))i −min
q∈Q

(A (q)x− b (q))i ≥ 0. (3.3)

On the other hand, we have

min
q∈Q

(A (q)xλ − b (q))i −min
q∈Q

(A (q)x− b (q))i

= min
q∈Q

(A (q)xλ − b (q))i +max
q∈Q

(−A (q)x+ b(q))i

= min
q∈Q

(A (q)xλ − b (q))i + (−A(Q̄)x+ b(Q̄))i

≤
(
A(Q̄)(xλ − x)

)
i
,

where Q̄ = argmaxq∈Q (−A(q)xλ + b(q))) . Thus, combining this inequality with (3.3),
we eventually have (

A(Q̄)(xλ − x)
)
i
≥ 0, ∀i ∈ I2.

Now, again introduce a matrix, still denoting A∗ ∈ M, to be the matrix having the ith
row as that of the identity matrix I when i ∈ I1 and of A(Q̄) when i ∈ I2. Therefore, we
have

A∗ (xλ − x) ≥ 0.

Since A(Q̄) is an M -matrix by Assumption (A), replacing some of its rows with the cor-
responding rows of the identity matrix should still yield an M -matrix. Thus, A∗ is an
M -matrix, and we have

xλ ≥ x,

since (A∗)−1 ≥ 0.

The next lemma is to show that the solution xλ of the penalized Problem 2.1 is mono-
tonically decreasing with respect to the penalty parameter λ.

Lemma 3.2. Let λ2 > λ1 > 1, and xλ1
and xλ2

be the solutions of Problem 2.1 correspond-
ing to λ = λ1 and λ2, respectively. Then

xλ1 ≥ xλ2 .
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Proof. Let Qλ2
∈ Q be the optimal control corresponding to the solution xλ2

to Problem
2.1. We have that

0 =A (Qλ2
)xλ2

− b (Qλ2
) + λ2 [xλ2

− g]
1/k
+

=min
q∈Q

(A (q)xλ2 − b (q)) + λ2 [xλ2 − g]
1/k
+

=min
q∈Q

(A (q)xλ1
− b (q)) + λ1 [xλ1

− g]
1/k
+

≤A (Qλ2
)xλ1

− b (Qλ2
) + λ2 [xλ1

− g]
1/k
+ .

This implies that

A (Qλ2
) (xλ2

− xλ1
) ≤ λ2

(
[xλ1

− g]
1/k
+ − [xλ2

− g]
1/k
+

)
. (3.4)

Defining two disjoint nonempty index subsets J1 and J2 of I as follows

J1 =

{
j

∣∣∣∣([xλ1
− g]

1/k
+

)
j
≤

(
[xλ2

− g]
1/k
+

)
j

}
,

J2 =

{
j

∣∣∣∣([xλ1 − g]
1/k
+

)
j
>

(
[xλ2 − g]

1/k
+

)
j

}
.

Using these two index sets we see, from (3.4), that when j ∈ J1,

(A (Qλ2
) (xλ2

− xλ1
))j ≤ 0,

and when j ∈ J2,(
[xλ1

− g]
1/k
+

)
j
>

(
[xλ2

− g]
1/k
+

)
j

⇒ (xλ1
)j ≥ (xλ2

)j ,

since [·]+ is a monotonically increasing function.
Now, as in the proof of Lemma 3.1, introduce a matrix A∗ ∈ M such that its jth row is

(A (Qλ2
))j when j ∈ J1 and (I)j if j ∈ J2. Hence, from the above analysis we have

A∗ (xλ2
− xλ1

) ≤ 0,

from which we obtain
xλ1

≥ xλ2
,

since A∗ is also an M -matrix.

With the above two lemmas, we now establish the following monotonic convergence result
for the power penalty method.

Theorem 3.3. Let {λm} ,m = 1, 2, . . . , be a monotonically increasing sequence approaching
positive infinity as m → ∞. Assume that xλm

is the solution to Problem 2.1 with λ = λm,
and x∗ is solution to Problem 1.1. Then the sequence {xλm

} is monotonically decreasing
and convergent to x∗.

Proof. It follows from Lemmas 3.1 and 3.2 that

xλ1 ≥ xλ2 ≥ · · · ≥ xλi ≥ · · · ≥ x∗.
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This implies that there exists an x̂ ∈ RN such that

lim
m→∞

xλm = x̂.

We now prove x̂ is the solution to Problem 1.1. As xλm
is the solution of Problem 2.1,

there must hold

min
q∈Q

(A (q)xλm
− b (q)) = −λm[xλm

− g]
1/k
+ ≤ 0. (3.5)

Thus, it follows from Assumption (B) and (3.5) that as m→ ∞

min
q∈Q

(A (q) x̂− b (q)) = lim
m→∞

(
−λm[xλm

− g]
1/k
+

)
≤ 0. (3.6)

Rewriting (3.5) as

[xλm
− g]+ =

(
−minq∈Q (A (q)xλm − b (q))

λm

)k

,

we see that

lim
m→∞

[xλm − g]+ = [x̂− g]+ = lim
m→∞

(
−minq∈Q (A (q)xλm

− b (q))

λm

)k

= 0, (3.7)

since all the terms A (q), b (q) and xλm
are bounded. This implies that x̂ ≤ g. (In fact (3.6)

also implies x̂ ≤ g has to be satisfied, as otherwise, the right-hand side of (3.5) approaches
−∞ while its left-hand side approaches a fixed vector.)

Now, multiplying both side of (3.5) from the left by (xλm
− g)⊤ gives

(xλm − g)⊤
[
min
q∈Q

(A (q)xλm − b(q))

]
= −λm(xλm − g)⊤[xλm − g]

1/k
+ = −λm‖[xλm − g]

1+1/k
+ ‖2,

where ‖ · ‖2 denotes the Euclidean norm on RN . Therefore, letting m→ ∞ and using (3.7)
we have

(x̂− g)⊤
[
min
q∈Q

(A (q) x̂− b (q))

]
= 0.

Combining this equation with (3.5) and x̂ ≤ g we see that x̂ is a solution to Problem
1.1. Finally, since Problem 1.1 is uniquely solvable, x̂ = x∗.

3.2 Exponential convergence rate

To establish the exponential convergence rate of the power penalty approach, we first present
an error estimation for the solution to Problem 2.1.

Theorem 3.4. Assume that xλ is the solution to Problem 2.1 for every λ > 1. There exists
a constant C > 0, independent of λ and xλ, such that∥∥∥∥max

{
min
q∈Q

(A(q)xλ − b(q)) , xλ − g

}∥∥∥∥
∞

≤ C

λk
. (3.8)
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Proof. Let C > 0 be a generic constant, independent of λ and xλ. It follows from (2.1) that

min
q∈Q

(A(q)xλ − b(q)) = −λ[xλ − g]
1/k
+ ≤ 0.

Furthermore, for every j ∈ I, we either have (xλ − g)j ≤ 0 and

min
q∈Q

(A(q)xλ − b(q))j = (A (Qλ)xλ − b (Qλ))j = 0 ≤ C

λk
,

or (xλ − g)j > 0 and

min
q∈Q

(A(q)xλ − b(q))j = (A (Qλ)xλ − b (Qλ))j

= −λ (xλ − g)
1/k
j < 0.

• For the first case, we have,

− C

λk
≤ 0 = max

{
min
q∈Q

(A(q)xλ − b(q))j , (xλ − g)j

}
= min

q∈Q
(A(q)xλ − b(q))j ≤

C

λk
,

where Qλ is the optimal control defined in (2.3).

• For the second case, it follows from Remark 1.2 and (2.2) that xλ, A (Qλ) and b (Qλ)
are all bounded. Hence, we have

− C

λk
≤ 0 < (xλ − g)j =

(b (Qλ)−A (Qλ)xλ)
k
j

λk
≤ C

λk
. (3.9)

Since minq∈Q (A(q)xλ − b(q))j < 0, from (3.9) we have

− C

λk
≤ max

{
min
q∈Q

(A(q)xλ − b(q))j , (xλ − g)j

}
= (xλ − g)j ≤

C

λk
.

Combining the above two cases we see that (3.8) is satisfied.

Now, with Theorem 3.4, we establish in the following theorem the exponential rate of
convergence of the solution of Problem 2.1 to that of Problem 1.1 in terms of the penalty
parameter.

Theorem 3.5. Assume that xλ and x are the solution of Problem 2.1 and that of Problem
1.1, respectively. Then, when λ is sufficiently large, we have

‖x− xλ‖∞ ≤ C

λk
, (3.10)

where C is a positive constant, independent of x, xλ and λ.
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Proof. We first define Q∗ ∈ Q to be such that for

A (Q∗)x− b (Q∗) = min
q∈Q

(A (q)x− b (q)) . (3.11)

For λ > 0, we also define four disjoint nonempty index subsets J ′
1, J

′
2, J

′
3, and J ′

4 of I as
follows

J ′
1 =

{
j
∣∣∣(x− g)j = 0 and (xλ − g)j > 0

}
,

J ′
2 =

{
j
∣∣∣(x− g)j = 0 and (xλ − g)j ≤ 0

}
,

J ′
3 =

{
j
∣∣∣(x− g)j < 0 and (xλ − g)j > 0

}
,

J ′
4 =

{
j
∣∣∣(x− g)j < 0 and (xλ − g)j ≤ 0

}
.

We consider the following four cases.

• For j ∈ J ′
1, it follows from Remark 1.2 and (2.2) that xλ, A (Qλ) and b (Qλ) are all

bounded. Hence,

− C

λk
≤ 0 < (xλ − x)j = (xλ − g)j =

(b (Qλ)−A (Qλ)xλ)
k
j

λk
≤ C

λk
.

• For j ∈ J ′
2, it follows from (2.1) that

(xλ − g)j ≤ 0 and (A (Qλ)xλ − b (Qλ))j = 0,

hence,

max

{
min
q∈Q

(A(q)xλ − b(q))j , (xλ − g)j

}
= (A (Qλ)xλ − b (Qλ))j , (3.12)

with Qλ defined in (2.3). Thus, we have

(xλ − x)j = (xλ − g)j ≤ (A (Qλ)xλ − b (Qλ))j = 0 ≤ C

λk
.

Meanwhile, from (3.11), the definition of J ′
2 and the fact

max

{
min
q∈Q

(A(q)x− b(q))j , (x− g)j

}
= 0,

it follows

(x− g)j = 0 and A (Q∗)x− b (Q∗)j ≤ 0.

Thus, using (2.1), (2.4), (3.8) and (3.12), we have

(A (Q∗) (xλ − x))j = (A (Q∗)xλ − b (Q∗))j

− (A (Q∗)x− b (Q∗))j ≥ (A (Q∗)xλ − b (Q∗))j

≥ (A (Qλ)xλ − b (Qλ))j ≥ − C

λk
.
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• For j ∈ J ′
3, we easily obtain

(xλ − x)j = (xλ − g)j − (x− g)j ≥ (xλ − g)j ≥ 0 ≥ − C

λk
.

Meanwhile, it follows from (1.3) and (2.1) that

(A (Q∗)x− b (Q∗))j = 0 > (x− g)j .

and
(A (Qλ)xλ − b (Qλ))j = −λ(xλ − g)

1/k
j < 0.

Therefore, considering (3.11) we have

(A (Qλ) (xλ − x))j = (A (Qλ)xλ − b (Qλ))j − (A (Qλ)x− b (Qλ))j

≤ −(A (Qλ)x− b (Qλ))j ≤ −(A (Q∗)x− b (Q∗))j = 0 ≤ C

λk
.

• For j ∈ J ′
4, it follows from (1.3) and (2.1) that

(A (Q∗)x− b (Q∗))j = max {(A (Q∗)x− b (Q∗))j , (x− g)j} = 0,

and
(A (Qλ)x− b (Qλ))j = max {(A (Qλ)xλ − b (Qλ))j , (xλ − g)j} = 0.

Hence, combining (2.4) and (3.11) that we get

(A (Qλ) (xλ − x))j = (A (Qλ)xλ − b (Qλ))j − (A (Qλ)x− b (Qλ))j

= −(A (Qλ)x− b (Qλ))j

≤ −(A (Q∗)x− b (Q∗))j

= 0 ≤ C

λk
,

and

(A (Q∗) (xλ − x))j = (A (Q∗)xλ − b (Q∗))j − (A (Q∗)x− b (Q∗))j

= (A (Q∗)xλ − b (Q∗))j

≥ (A (Qλ)xλ − b (Qλ))j

= 0 ≥ − C

λk
.

Now, we introduce a matrix, denoting A∗
1, whose ith row is that of the identity matrix

I when i ∈ J ′
1 ∪ J ′

2, and the ith row as that of A (Qλ) when i ∈ J ′
3 ∪ J ′

4. Similarly, we
introduce matrix A∗

2 to be the matrix having the ith row as that of the identity matrix I
when i ∈ J ′

1 ∪ J ′
3, and having the ith row as that of A (Q∗) when i ∈ J ′

2 ∪ J ′
4.

Summarizing the above results, we obtain that

xλ − x∗ ≤
C1

∥∥(A∗
1)

−1
∥∥
∞

λk
, and xλ − x∗ ≥ −

C2

∥∥(A∗
2)

−1
∥∥
∞

λk
,

where we utilize the fact that both A∗
1 and A∗

2 are strictly diagonally dominant M -matrices.
Considering the boundedness of both A∗

1 and A∗
2 , we eventually have

‖x∗ − xλ‖∞ ≤ C

λk
,

for some constant C > 0 independent of λ, xλ and x∗.
Combining the above four cases we have that (3.10) holds true.
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4 Solution of the Nonlinear Penalized System

Due to the nonlinearity of the power penalty term, the analytical solution to the penalized
equation (2.1) is generally not available. Moreover, in the case of k ≥ 1, (2.1) becomes
nonsmooth, which makes the classic Newton method inapplicable. To overcome this difficult,
we apply the smoothing technique, developed in [14], to smoothing out the penalty term

[z]
1/k
+ with

W (z) =

{
[z]

1/k
+ , z ≥ ϵ,

(3− 1/k) ϵ1/k−2[z]2+ + (1/k − 2) ϵ1/k−3[z]3+, z < ϵ,

where 0 < ϵ� 1 is a regularization parameter.
With this smoothing technique, (2.1) becomes

min
q∈Q

(A (q)xλ − b (q)) + P (xλ) = 0, (4.1)

where P (x) is a vector defined by

[P (xλ)]i = λW ([xλ − g]i)

for i = 1, . . . , N . We then design an iterative method for the numerical solution of (4.1).
The new method is a combination of the Newton method and the policy iteration method,
which is commonly used to numerically solve the nonlinear HJB equations, cf. [9]. The new
method yields the following algorithm. (For clarity, we omit the subscript λ of xλ in the
algorithm.)

Algorithm 4.1.

Step 1. Choose ϵ, ε > 0 sufficiently small; Set l = 0 and choose an initial guess x0 such
that x0 ≤ g.

Step 2. Find Ql = (ql1, . . . , q
l
N )⊤, such that

qli = argminq∈Q (A (q)x− b (q))i

and solve the following linear system for pl+1:[
A(Ql) + JP (x

l)
]
pl+1 = b(Ql)−A(Ql)xl − P (xl),

where JP (x) is the Jacobian matrices of P (x) defined by

[JP (x)]ij =

{
λW ′(xi − gi), i = j,

0, i 6= j.

Step 3. Set xl+1 = xl + νpl+1, where 0 < ν < 1 is a damping parameter determined by the
Armijo linear search method.

Step 4. If maxi∈I
|xl+1

i −xl
i|

max(1,|xl+1
i |) < ε, then stop. Otherwise, set l := l + 1 and go to Step 2.
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5 Numerical Experiments

In this section, we present numerical experiments using three different test examples to
illustrate the exponential convergence property, effectiveness and efficiency of the power
penalty method. The first example is a discrete double obstacle problem, of which the
exact solution is known. By comparing the approximate solution and the exact solution, the
convergence rate of the power penalty method is carefully examined. The second example is
a one-dimensional discrete HJB complementarity problem, which cannot be solved correctly
by the classical policy iteration method under some circumstances. We will show that the
penalty can overcome this difficulty effectively. The third example is to price American
options under uncertain volatility model, which is studied in [17]. After discretization using
the method proposed in [17], the pricing problem is formed as a series of large scale of HJB
complementarity problems. In this example, we will examine both the convergence property
and the usefulness of the power penalty method proposed.

Example 5.1. Consider the following discrete double obstacle problem:

max

{
min
q∈Q

{A(q)x− b(q), x− f} , x− g

}
= 0,

where Q = {1, 2}, A(q) ∈ R4×4, b ∈ R4, f = (0, 0, 0, 0)⊤ and g = (5, 5, 5, 5)⊤. The matrices
A and b are defined by A(q1) = B, A(q2) = I4×4, b(q1) = d and b(q2) = f with I4×4 the
4× 4 identity matrix,

B =


1 2 2 2
2 5 6 6
2 6 9 10
2 6 10 13

 and d =


11
30
50
100

 .
The above double obstacle problem can be expressed as the following HJB CP

x− g ≤ 0, min
q∈Q

(A (q)x− b (q)) ≤ 0,

(x− g)⊤
(

min
q∈{q1,q2}

(A (q)x− b (q))

)
= 0.

The exact solution is x = (1, 0, 0, 5)⊤. The power penalty approach to this problem is stated
as

min
q∈Q

(A (q)xλ − b (q)) + λ[xλ − g]
1/k
+ = 0.

To obtain the numerical convergence rate of the power penalty method, we use Algorithm
4.1 to solve the above nonlinear system by setting k = 1 and 2, and compare the approximate
solutions with the exact solution, respectively. By setting λ = 102, 103, 104, and 105, the l∞-
norms of the errors between the numerical solutions and the exact solution are calculated.
Then, the ratios of errors from two consecutive values of λ are presented. All the computed
results are listed in Table 1.

The results in Table 1 clearly shows that the numerical rates of convergence are close to
O(λ−k), which is consistence with the theoretical result in (3.10). Note that the convergence
rate in the case of k = 2 is less than 2. This is due to the effect caused by the application
of the smoothing technique (4.1) in Algorithm 4.1. Note that this example is for illustrative
purposes rather than for performance of the method.
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Table 1: Results computed by the power penalty method. ε = 10−6 and ϵ = 10−3 are chosen
in Algorithm 4.1.

k = 1 k = 2
λi ‖x− xλi‖∞ Rate λi ‖x− xλi‖∞ Rate
102 6.06× 10−1 102 2.05× 10−1

103 6.54× 10−2 0.98 103 1.26× 10−3 1.99
104 6.59× 10−3 0.99 104 5.64× 10−5 1.76
105 6.60× 10−4 1.00 105 1.12× 10−6 1.69

It is worth noting that in this example the matrix B is not an M -matrix. However, the
exponential convergence property is still observed, which implies that the assumption (A)
is only a sufficient condition.

In the next example we will show that the penalty approach to the HJB complementarity
problem is more effective than the classical policy iteration method.

Example 5.2. Consider the following one-dimensional (N = 1) HJB complementarity prob-
lem

max {min {Ax− b, x− g} , x− h} = 0, (5.1)

with A > 1 and b, g, h are given constants with g < h.

This example is from Remark 5.7 in [3]. Obviously, in the case that x∗ := b/A ∈ (g, h),
the solution to the above problem is x∗. It is pointed in [3] that the classical policy iteration
method fails if the initial guess x0 /∈ (g, h). However, this difficulty can be overcome by
applying the power penalty method. Specifically, the power penalty approach to (5.1) results
in the following nonlinear equation

min {Axλ − b, xλ − g}+ λ[xλ − h]
1/k
+ = 0. (5.2)

We use Algorithm 4.1 to solve the above equation with the chosen data, starting from an
initial guess x0 satisfying x0 < g, g < x0 < h and x0 > h. The results are listed in Table 2.
From the table, we can see that no matter whether the initial guess belongs to (g, h) or not,
the penalty method with both k = 1 and k = 2 can solve the HJB complementarity problem
(5.2) correctly. We also list the solutions from the policy iteration in the last column of
Table 2 to show that the policy iteration algorithm fails to solve the problem when x0 is no
in (g, h).

Table 2: Results computed by the power penalty methods and iteration method with differ-
ent initial guesses. A = −2, b = 1, g = −1 and h = 1 are set in (5.2). In Algorithm 4.1, we
choose ε = 10−6, ϵ = 10−3 and λ = 100 for k = 1, λ = 10 for k = 2.

initial guess k = 1 k = 2 policy iteration
x0 x∗ x∗ x∗

−2 −0.5 −0.5 −1
0 −0.5 −0.5 −0.5
2 −0.5 −0.5 1

Example 5.3. Consider an American-style butterfly spread option under uncertainty volatil-
ity pricing model in which the option value V satisfies (1.2).
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A butterfly option has the nonconvex payoff

V ∗ = max(S −K1, 0)− 2max(S − (K1 +K2)/2, 0) + max(S −K2, 0).

This corresponds to a long position in two calls at strikes K1 and K2 respectively, and a
short position in one cal at the strike (K1 +K2)/2. The parameters used for this butterfly
option under uncertain volatility model are listed in Table 3.

This example was examined in [17], where the linear penalty method is directly ap-
plied, but without any convergence analysis. In this experiment, we will carefully examine
the numerical convergence property of both linear and lower order penalty methods, and
investigate their difference.

Table 3: Data used to value an American butterfly spread option under uncertain volatility
model

Parameter values
r 0.10
σmin 0.15
σmax 0.25
K1 90
K2 110
T 0.25

To numerically solve the above pricing equation, we first discretize it following a standard
fitted finite volume approach in space and a fully implicit scheme in time (cf. [13]), on the
uniform mesh with M = 1600 space steps and N = 800 time steps. With this discretization
scheme, the Assumption (A) is guaranteed automatically (see the analysis in [17]). Then,
we solve the problem backwards in time starting from the expiry date T . This means that,
for every time step, we have to solve a large scale of discrete HJB complementarity problems
as given in Problem 1.3, where A(q) represents the system coefficient matrix from the fitted
finite volume discretization, b(q) represents the solution vector known from the previous
time step, and g represents the payoff vector. The power penalty approach to this problem
results in a large scale of discrete nonlinear systems as given in Problem 2.1 at every time
step. We then apply Algorithm 4.1 to sequentially solve these nonlinear systems.

In this numerical experiment, by setting λi = 10i for i = 2, 3, 4, 5, the l∞-norms of
the errors between the numerical solutions with two consecutive λ values are calculated as
follows.

‖Vλi − Vλi−1‖∞ = max
1≤m≤M,1≤n≤N

|Vλi(Sm, tn)− Vλi−1(Sm, tn)|.

Then, the ratios (denoted by ‘Rate’ in Table 4) of errors from two consecutive values of λ
are presented. We also present the computational time (denoted by ‘CPU(s)’ in Table 4)
for each penalty method.

Columns ‘Rate’ in Table 4 clearly shows that the numerical convergence rates of the linear
(k = 1) and lower order penalty method (k = 2) with respect to the penalty parameter are
respectively close to 1 and 2, which is consistent with the theoretical result O(λ−k) in (3.10).
Moreover, from the columns ‘CPU’, we can see that both the linear penalty method (k = 1)
and the lower order penalty method (k = 2) are very effective, since both methods only
need very litter computational time. An additional interesting result can be observed from
Table 4, that is, under the same level of accuracy, the lower order penalty method (k = 2)
requires much less penalty parameter than the linear penalty method (k = 1) needs. This



A PENALTY-BASED METHOD FOR SOLVING A DISCRETE HJB CP 115

Table 4: Results computed by the power penalty method. ε = 10−6 and ϵ = 10−3 are chosen
in Algorithm 4.1.

k = 1 k = 2
λi ‖Vλi − Vλi−1‖∞ Rate CPU(s) λi ‖Vλi − Vλi−1‖∞ Rate CPU(s)
102 6.06× 10−1 16 102 2.05× 10−1 21
103 6.54× 10−2 0.98 18 103 1.26× 10−3 1.99 23
104 6.59× 10−3 0.99 21 104 5.64× 10−5 1.76 25
105 6.60× 10−4 1.00 23 105 1.12× 10−6 1.69 29

illustrates that the lower order penalty method is more promising than the classic linear
penalty method.

Finally, we plot the option value and risk parameters: delta and gamma, respectively, at
the last time step of the butterfly spread option with a particular choice of parameter set.
These figures are consistent with those in [17], which again demonstrate the usefulness of
the power penalty method.
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Figure 1: Solution U(s) with N = 99. The solution is obtained with the lower order penalty
method (k = 2). ε = 10−6, ϵ = 10−3 and λ = 1000 are chosen in Algorithm 4.1.

6 Conclusions

We have developed a solution method to numerically solving the discrete HJB complemen-
tarity problem. The new method is based on a power penalty approach to the complemen-
tarity problem, where the complementarity condition are penalized and combined into a
nonlinear system. Moreover, the unique solvability and exponential convergence rate of the
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power penalty approach was established. We also presented a combined solution method
with a smoothing technique to solve the nonlinear penalized system. Finally, we carried out
three numerical experiments to demonstrate the rates of convergence and effectiveness of
the power penalty method.
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