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Qk in place of C and Q, where Ck, Qk depend on the k-th iterative point xk. In comparison,
it is easy to compute the projections onto Ck and Qk. Qu and Xiu [18] presented a modified
version of the relaxed CQ algorithm by adopting the Armijo-type search that need not to
compute the eigenvalues of the matrix ATA.

With the development of technology, applications of the SFP are not limited to convex
sets. Many applications are associated with non-convex split feasibility problems, for exam-
ple, an outlier detection problem [9,17]. This class of problem arises in compressed sensing,
such as reconstructing electrocardiogram (ECG) signals in the presence of electromyographic
(EMG) noise. Let x0 and x = x0+n be original signal and contaminated signal, respectively,
and n is an EMG noise. Here, b = Ax = Ax0 + An = b0 + An. We use bi to represent the
i-th entry of b, that is, some bi are recorded incorrectly. Now, we transform the problem
into a non-convex split feasibility problem:

x ∈ C , Ax ∈ Q,

where C = {x ∈ Rn : ||x||0 ≤ s}, ||x||0 is the number of nonzero entries of the vector x,
s > 0 is a given integer regulating the sparsity level and Q = {y ∈ Rm : ||y||0 ≤ r} + b0,
with r being an upper estimate of the number of incorrect bi. Obviously, C and Q are two
closed sets but not convex.

Another example is Sudoku puzzle [20]. The objective is to use known information to
fill a 9× 9 grid so that each column, each row and each of the nine 3 × 3 sub-grids contain
all of the digits from 1 to 9. According to the rules, Sudoku puzzle can be transformed into
a non-convex feasibility problem. The first step is data initialization, which is to convert
two-dimensional data information into three-dimensional data. Since only nine numbers
from 1 to 9 will be placed in the original Sudoku disk, these nine digits will be used as the
index information of the third dimension. We now have a 9× 9× 9 cube. After conversion,
specific digital information is no longer needed on each layer, but only (0,1) is stored. Two
numbers respectively mean the absence or presence of a number in the position. The second
step is to design variables. Let xi,j,k, i, j, k ∈ {1, 2, . . . , 9} be the digital information at the
i-th row, the j-th column and the k-th layer. Finally, we construct constraints. Each digit
from 1 to 9 is lifted to the set [0, 1]9, namely, any digit from 1 to 9 is a permutation of unit
vector e = {1, 0, . . . , 0}. This leads to four Sudoku feasibility constraints:

(i) Each row of the cube, i.e. C1(i, j, :), i, j ∈ {1, 2, . . . , 9}, is the permutation of e;
(ii) Each column of the cube, i.e. C2(:, j, k), j, k ∈ {1, 2, . . . , 9}, is the permutation of e;
(iii)Each pillar of the cube, i.e. C3(i, :, k), i, k ∈ {1, 2, . . . , 9}, is the permutation of e;
(iv) Each k ∈ {1, 2, . . . , 9}, each of the nine sub-grids is the permutation of e, i.e. C4(3(i−

1) + 1 : 3i, 3(j − 1) + 1 : 3j, k), i, j ∈ {1, 2, 3};
(v) C5 is the constraint of the provided numbers.
Then, the Sudoku will be transformed into the following problem: find x ∈ Rs×s×s, such

that
x ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5.

Let H = Rs×s×s × · · · × Rs×s×s, C = C1 × · · · × C5,Q = {x = (xi)i ∈ H, x1 = · · · = x5},
where C is a non-convex set. Eventually, the non-convex feasibility problem is formulated
as follows:

x ∈ C ∩ Q.
It is easy to see that the above problem is a special case of the non-convex split feasibility
problem, where the matrix A is identity matrix.

In conclusion, the theoretical research and algorithm design of non-convex split feasibil-
ity problem have important practical significance. A large part of the optimization commu-
nity has been devoted to the development of the related issues and achieved some results.
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Chen [9] rewrote objective function via the model using techniques of Difference-of-Convex
(DC) programming and utilized NPGmajor to derive the CQ Algorithm in the fully non-
convex setting. Using the indicator function and distance function, Gibali [15] presented
four optimization models for the SFP and proposed some corresponding algorithms, such as
Projected Gradient (PG) method, Alternating Minimization (AM) method and Weighted
Proximal ADMM method. What is more worth mentioning is Semi Alternating Projected
Gradient (SAPG) method for the model

min
x∈Rn,u∈Rm

{δC(x) + δQ(u) : Ax = u},

where δC , δQ are indicator functions of C,Q, respectively. It derives the CQ Algorithm in
non-convex setting from the perspective of algorithm.

It is worth noting that the SAPG method uses a fixed stepsize related to the largest
eigenvalue of the matrix ATA. However, if the dimension of the matrix is very large or in
some other cases, it needs too much work to compute or estimate the eigenvalue. Although
Chen [5] adopted a linear search to avoid the high computational cost, in the theorem of
global convergence, he assumed that the objective function is a KL function and the distance
function y 7−→ 1

2d
2(y,D) is continuously differentiable at Ax∗ with locally Lipschitz gradient,

where x∗ is an accumulation point of {xt}. This greatly reduces the application field of the
algorithm. In this paper, we present a projection algorithm with an Armijo-type search to
overcome the difficulties. We also show the convergence of the projection algorithm under
Kurdyka-Lojasiewicz (KL) property.

The rest of this paper is organized as follows. The mathematical formulation of non-
convex split feasibility problem and some preliminaries are given in Section 2. In Section 3,
we introduce a projection algorithm with line-search and prove its convergence.

2 The Problem and Some Preliminaries

In this section, we show some preliminaries, definitions, the mathematical formulation of
the SFP and KL property, uniformized KL property.

Definition 2.1 ( [19]). Given a nonempty closed set D ⊆ Rn, the indicator function is
defined by

δD(x) =

{
0 x ∈ D

+∞ x 6∈ D
.

An extended real-valued function h : Rn → R ∪ {∞} is said to be proper if dom h :=
{x : h(x) < ∞} 6= ∅, and closed if it is lower semicontinuous, i.e. f(x) ≤ lim inf

k→∞
f(xk), as

xk → x.

In this paper, we are interested in solving the following non-convex and non-smooth
minimization problem

min
x∈Rn,y∈Rm

{ψ(x, y) = δC(x) + δQ(y) +
1

2
||Ax− y||2}. (2.1)

It can be easy to see that a point x∗ ∈ C is a solution of problem (1.1) if and only if it is a
minimizer of problem (2.1) and its optimal value is 0. Therefore, we can solve the problem
(1.1) by solving the problem (2.1).



48 Y. YANG, B. QU AND M. QIU

Remark 2.2. (1). When D is a nonempty and closed set, the indicator function of D is
a lower semicontinuous and proper function [15]. Hence, the objective function ψ(x, y) is a
closed and proper function.

(2). Let f(x, y) = 1
2 ||Ax− y||2, then

∇xf(x, y) = AT (Ax− y) , ∇yf(x, y) = y −Ax.

For a given nonempty and closed sets Ω in Rn, the projection from Rn onto Ω is defined
by

PΩ(x) = argmin{‖x− y‖ : y ∈ Ω}.

Since the Ω is not necessarily convex, the projector PΩ(x) may be a set-valued operator, as
opposed to the convex case where projections are guaranteed to be single-valued.

Definition 2.3 ([1]). Let f : Rn → (−∞,+∞] be a proper lower semicontinuous function.

(i) For each x ∈ dom f , the Fréchet subdifferential of f at x, written ∂̂f(x), is the set
of vectors u ∈ Rn which satisfy

liminf
y→x,y ̸=x

f(y)− f(x)− 〈u, y − x〉
||y − x||

≥ 0.

If x 6∈ dom f , then ∂̂f(x) = ∅.
(ii) The limiting-subdifferential, or simply the subdifferential for short, of f at x ∈ domf ,

written ∂f(x), is defined as follows

∂f(x) = {u ∈ Rn : ∃xk → x, f(xk) → f(x), uk ∈ ∂̂f(xk) → u}.

Remark 2.4 ([1]). (1) Let (xk, uk)k∈N be a sequence that converges to (x, u) as k → ∞.
By the definition of ∂f(x), if f(xk) converges to f(x) as k → ∞, then (x, u) ∈ Graph ∂f :=
{(x, u) ∈ Rn ×Rm : u ∈ ∂f(x)}.

(2) A necessary (but not sufficient) condition for x ∈ Rn to be a minimizer of f is

0 ∈ ∂ f(x). (2.2)

A point that satisfies (2.2) is called limiting-critical or simply critical. The set of critical
points of f is denoted by crit f .

Proposition 2.5 ([5]). Assume that the coupling function H(x, y) in problem min{ψ(x, y) =
f(x)+H(x, y)+g(y)} is continuously differentiable. Then for all (x, y) ∈ Rn×Rm, we have

∂ψ(x, y) = (∂f(x) +∇xH(x, y), ∂g(y) +∇yH(x, y)) = (∂xψ(x, y), ∂yψ(x, y)).

Definition 2.6 ([1]). Let C be a nonempty closed subset of Rn.
(i) For any x ∈ C the Fréchet normal cone to C at x is defined by

N̂C(x) = {v ∈ Rn : 〈v, y − x〉 ≤ o(x− y), y ∈ C}.

(ii) The (limiting) normal cone to C at x is denoted NC(x) and is defined by

v ∈ NC(x) ⇔ ∃xk ∈ C, xk → x, ∃vk ∈ N̂C(xk), vk → v.

When x 6∈ C, we set NC(x) = ∅.
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Remark 2.7 ([1]). An elementary but important fact about normal cone and subdifferential
is the following

∂δC = NC .

Definition 2.8 ( [9]). Let η ∈ (0,+∞). We denote by Φη the class of all concave and
continuous functions φ : [0, η) → R+ which satisfy the following conditions

(i) φ(0) = 0;
(ii) φ is continuously differentiable on (0, η) with φ′ > 0;

Definition 2.9 ([3]). Let f : Rn → R ∪ {+∞} be proper and lower semicontinuous.
(i) The function f is said to have the Kurdyka-Lojasiewicz property at u ∈ dom ∂f if

there exist η ∈ (0,+∞], a neighborhood U of u and a function φ ∈ Φη such that for all

u ∈ U ∩ [f(u) < f < f(u) + η],

the following inequality holds

φ′(f(u)− f(u))dist(0, ∂f(u)) ≥ 1.

(ii) If f satisfies the KL property at each point of dom ∂f then f is called KL function.

Lemma 2.10 ([3]). Let Ω be a compact set and let f : Rn → R ∪ {+∞} be a proper and
low semicontinuous function. Assume that f is constant on Ω and satisfies the KL property
at each point of Ω. Then, there exist ε > 0, η > 0, and φ ∈ Φη such that for all u in Ω and
all u in the following intersection:

{u ∈ Rn : dist(u,Ω) < ε} ∩ {u ∈ Rn : f(u) < f(u) < f(u) + η}, (2.3)

one has,
φ′(f(u)− f(u))dist(0, ∂f(u)) ≥ 1.

Definition 2.11 ([2]). (i) A subset S of Rn is a real semialgebraic if there exists a finite
number of real polynomial functions Pij , Qij : R

n → R such that

S =
p
∪

j=1

q
∩
i=1

{x ∈ Rn : Pij = 0, Qij < 0};

(ii) A function f : Rn → R∪ {+∞} is called semi-algebraic if its graph {(x, λ) ∈ Rn+1 :
f(x) = λ} is a semialgebraic subset of Rn+1.

Remark 2.12. (1) ([1,3,4]) If a function is semialgebraic, it satisfies the KL property with
φ(s) = cs1−θ, for some θ ∈ [0, 1) ∩Q, and some c > 0 .

(2) ([1]) The indicator function of semialgebraic sets are semialgebraic.

3 A Projection Algorithm and Convergence Analysis

We now formally state our projection algorithm with an Armijo-like search.

Algorithm 3.1.

Step 0 Given constants l ∈ (0, 1) , µ ∈ (0, 12 ) , ε > 0. Let x0 ∈ C. Set k = 0.
Step 1 Compute

yk+1 ∈ PQ(Ax
k),
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xk+1 ∈ PC(x
k − αkA

T (Axk − yk+1)),

where αk = lmk , mk is the smallest nonnegative integer m such that

||∇xf(x
k, yk+1)−∇xf(x

k+1, yk+1)|| ≤ µ||xk − xk+1||
αk

.

Step 2 If ||Axk+1 − yk+1|| = 0, stop. Otherwise let k = k + 1. Go to Step 1

Remark 3.1. Algorithm 3.1 can be seen as the CQ algorithm which solves the convex split
feasibility problem in the non-convex setting. Also, in Algorithm 3.1, we can obtain clearly
that if ||Axk+1 − yk+1|| = 0, then xk+1 is the optimal solution of the problem (1.1).

Theorem 3.2. For all k = 0, 1, . . ., the Armijo-like search rule is well defined.

Proof. When αk > 0 is sufficiently small, αk ≤ µ
||ATA|| , then ||ATA|| ≤ µ

αk
. Therefore,

||∇xf(x
k, yk+1)−∇xf(x

k+1, yk+1)|| = ||ATA(xk − xk+1)||
≤ ||ATA||||xk − xk+1||

≤ µ||xk − xk+1||
αk

.

The proof is completed.

Remark 3.3. Remark 3.1 and Theorem 3.2 illustrate that Algorithm 3.1 is practicable.

Lemma 3.4.

αk ≥ min{1, µl

||ATA||
}, k = 0, 1, . . . .

Proof. If αk = 1, then the lemma is proved.
If αk < 1, from the search rule, we know that exist ∃ x̂k ∈ PC(x

k − αk

l ∇xf(x
k, yk+1))

such that

||∇xf(x
k, yk+1)−∇xf(x̂

k, yk+1)|| > µl||xk − x̂k||
αk

.

Then, we can get the following inequality

||ATA|| > µl

αk
,

namely,

αk >
µl

||ATA||
.

This completes the proof.

Definition 3.5 ([15]). (Gradient-like Descent Sequence). Let F : Rd×Rp → (−∞,+∞] be
a proper and lower semicontinuous function which is bounded from below and {(uk, vk)}k∈N

be a sequence generated by a certain algorithm for solving the problem

inf{F (u, v) : u ∈ Rd, v ∈ Rp}.
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We say that {(uk, vk)}k∈N is a gradient-like descent sequence for minimizing F if the fol-
lowing three conditions hold:

(C1) (Sufficient decrease property). There exists a positive scalar ρ1, such that ρ1||uk+1−
uk||2 ≤ F (uk, vk)− F (uk+1, vk+1);

(C2) (A subgradient lower bound for the iterates gap). There exists a positive scalar ρ2,
such that ||wk+1|| ≤ ρ2||uk+1 − uk||;

(C3) Let (u, v) be a limit point of a subsequence {(uk, vk)}k∈K , then lim sup
k∈K⊆N

F (uk, vk) ≤

F (u, v).

Theorem 3.6 ( [15]). Let {(uk, vk)}k∈N be a bounded gradient-like descent sequence for
minimizing F . If F is semialgebraic, then the sequence {uk}k∈N converges to some u∗. In
addition, for any limit point v∗ of {vk}k∈N we have that (u∗, v∗) ∈ crit F .

Now we establish the convergence of Algorithm 3.1.

Theorem 3.7. Let {(xk, yk)}k∈N be a bounded sequence generated by Algorithm 3.1. If
C,Q are semialgebraic sets, then the sequence {xk}k∈N converges globally to some point x∗

such that for any limit point y∗ of the sequence {yk}k∈N , the pair (x∗, y∗) ∈ crit ψ.

Proof. We only prove that the sequence {(xk, yk)}k∈N is a gradient-like descent sequence
according to Theorem 3.6 and Remark 2.12. We begin with the first condition (C1). From
the definition of projection, we have that

xk+1 ∈ argmin
x

{δC(x) + αk〈x− xk,∇xf(x
k, yk+1)〉+ 1

2
||x− xk||2}. (3.1)

This implies

δC(x
k+1) + αk〈xk+1 − xk,∇xf(x

k, yk+1)〉+ 1

2
||xk+1 − xk||2 ≤ δC(x

k).

Therefore, we have

δC(x
k+1) +

1

2
||xk+1 − xk||2 ≤ δC(x

k) + αk〈xk − xk+1,∇xf(x
k, yk+1)〉.

By subtracting αk〈xk − xk+1,∇xf(x
k+1, yk+1)〉 on both side of the above inequality, we

arrive at

δC(x
k+1) + 1

2 ||x
k+1 − xk||2 − αk〈xk − xk+1,∇xf(x

k+1, yk+1)〉
≤ δC(x

k) + αk〈xk − xk+1,∇xf(x
k, yk+1)−∇xf(x

k+1, yk+1)〉
≤ δC(x

k) + αk||xk − xk+1||||∇xf(x
k, yk+1)−∇xf(x

k+1, yk+1)||
≤ δC(x

k) + µ||xk − xk+1||2.

Also, we can get when y is fixed, f(x, y) is a convex function of x. From the search rule, we
obtain that αk ≤ 1. Thus,

δC(x
k+1) + ( 12 − µ)||xk+1 − xk||2

≤ δC(x
k) + αk〈xk − xk+1 , ∇xf(x

k+1, yk+1)〉
≤ δC(x

k) + f(xk, yk+1)− f(xk+1, yk+1),

namely,

δC(x
k+1) + (

1

2
− µ)||xk+1 − xk||2 + f(xk+1, yk+1) ≤ δC(x

k) + f(xk, yk+1).
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Moreover, in a similar way, we have

δQ(y
k+1) + f(xk, yk+1) ≤ δQ(y

k) + f(xk, yk).

Combining the last two inequalities yields the desired result with ρ1 = 1
2 − µ.

For proving condition (C2) we use the optimality condition associated with the (3.1),
meaning

(xk − xk+1)− αk∇xf(x
k, yk+1) ∈ ∂δC(x

k+1).

Multiplying both sides by 1
αk

and from Remark 2.7, we obtain that

1

αk
(xk − xk+1)−∇xf(x

k, yk+1) ∈ ∂δC(x
k+1).

By using that ∇xf(x
k, yk+1) = AT (Axk − yk+1) and adding ATAxk+1 on both side, we

arrive at

1

αk
(xk − xk+1)−ATAxk +ATAxk+1 ∈ ∂δC(x

k+1) +ATAxk+1 −AT yk+1.

Also, we can have the following inequality via applying the same method to y,

Axk ∈ δQ(y
k+1) + yk+1.

By subtracting both sides by Axk+1, we get that

A(xk − xk+1) ∈ ∂δQ(y
k+1)−Axk+1 + yk+1.

Letting

Ak+1
x =

1

αk
(xk − xk+1) +ATA(xk+1 − xk), Ak+1

y = A(xk − xk+1),

from Proposition 2.5, we obtain that (Ak+1
x , Ak+1

y ) ∈ ∂ψ(xk+1, yk+1). Therefore,

||Ak+1
x || ≤ 1

αk
||xk+1 − xk||+ ||ATA||||xk+1 − xk|| ≤ (

||ATA||
µl

+ ||ATA||)||xk+1 − xk||,

||Ak+1
y || ≤ ||A||||xk+1 − xk||.

Letting wk+1 = (Ak+1
x , Ak+1

y ). And combining the last two inequalities yields that

||wk+1|| ≤ ||Ak+1
x ||+ ||Ak+1

y || ≤ (
||ATA||
µl

+ ||ATA||+ ||A||)||xk+1 − xk||.

Letting ρ2 = ( 1
µl + 1)||ATA||+ ||A||, we can obtain the desired result.

Lastly, from the structural properties of objective function and Step 1 in Algorithm 3.1,
we deduce that ψ(xk, yk) = 1

2 ||Ax
k − yk||2 is continuous. Therefore, condition (C3) easily

follows. This completes the proof.

From Algorithm 3.1, it may be seen that the sequence {(xk, yk)}k∈N generated by Al-
gorithm 3.1 only has the global convergence for the variable {xk}k∈N . Thus, we consider
adding the necessary line search to y in order to obtain the global convergence of the whole
sequence.
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Algorithm 3.2.

Step 0 Given constants l ∈ (0, 1) , µ ∈ (0, 12 ) , ε > 0. Let x0 ∈ C , y0 ∈ Q. Set k = 0.
Step 1 Compute

xk+1 ∈ PC(x
k − αk∇xf(x

k, yk)),

where αk = lmk , mk is the smallest nonnegative integer m such that

||∇xf(x
k, yk)−∇xf(x

k+1, yk)|| ≤ µ||xk − xk+1||
αk

.

Step 2 Compute
yk+1 ∈ PQ(y

k − βk∇yf(x
k+1, yk)),

where βk = lnk , nk is the smallest nonnegative integer n such that

||∇yf(x
k+1, yk)−∇yf(x

k+1, yk+1)|| ≤ µ||yk − yk+1||
βk

.

Step 3 If ||Axk+1 − yk+1|| = 0, stop. Otherwise let k = k + 1. Go to Step 1

By the similar proof process with Theorem 3.2 and Lemma 3.4, we can obtain that the
search rule in Step 2 is well defined and

βk > µl, k = 0, 1, . . . .

Theorem 3.8. Let {zk}k∈N = {(xk, yk)}k∈N be a sequence generated by Algorithm 3.2
which is assumed to be bounded. Suppose that C,Q are semialgebraic sets. The following
assertions hold:

(i)
∞∑
k=1

||zk+1 − zk|| <∞.

(ii) The sequence {zk}k∈N converges to a critical point z∗ = (x∗, y∗) ∈ crit ψ.

Proof. By using the method that is similar to Theorem 3.7, we obtain that

ψ(zk)− ψ(zk+1) ≥ ρ1||zk+1 − zk||2,with ρ1 =
1

2
− µ. (3.2)

||wk|| ≤ ρ2||zk − zk−1||,with ρ2 =
√
2max{ ||A||

2

µl
+ ||A||2, 1

µl
+ 1 + ||A||}. (3.3)

(i) Since {zk}k∈N is bounded there exists a subsequence {zkj} → z, kj → ∞, we get

lim
kj→∞

ψ(zkj ) = ψ(z).

From (3.2), we can get that lim
k→∞

ψ(zk) exists. So

lim
k→∞

ψ(zk) = ψ(z). (3.4)

If there exists an integer k for which ψ(zk) = ψ(z), then the decreasing property would

imply that zk+1 = zk. Thus, the conclusion is obvious.
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If ψ(zk) 6= ψ(z) always holds for each k = 0, 1, 2, . . . , then, because {ψ(zk)}k∈N is a
nonincreasing sequence, it is clear from (3.4) that

ψ(z) < ψ(zk).

Again from (3.4), for any η > 0 there exists k0 such that

ψ(zk) < ψ(z) + η, ∀k > k0.

We denote by ω(z0) the set of all limit points. This implies

lim
k→+∞

dist(zk, ω(z0)) = 0.

Therefore, for any ε > 0 there exists k1 such that

dist(zk, ω(z0)) < ε, ∀k > k1.

Combining the above two formulas, we find that {zk}k∈N satisfies (2.3) for all k > l =
max{k0, k1}.

Moreover, since ω(z0) is nonempty and compact, and ψ(zk) is finite and constant on
ω(z0), we can apply Lemma 2.10 with Ω = ω(z0). Therefore, for any k > l, we have

φ′(ψ(zk)− ψ(z))dist(0 , ∂ψ(zk)) ≥ 1.

Using (3.3), we get that

φ′(ψ(zk)− ψ(z)) ≥ 1

ρ2||zk − zk−1||
.

On the other hand, from the concavity of φ, we get that

φ(ψ(zk)− ψ(z))− φ(ψ(zk+1)− ψ(z)) ≥ φ′(ψ(zk)− ψ(z))(ψ(zk)− ψ(zk+1)).

For convenience, for all p, q ∈ N and z, we define

4p,q = φ(ψ(zp)− ψ(z))− φ(ψ(zq)− ψ(z)).

Combining the above two inequalities with (3.2) yields for any k > l that

4k,k+1 ≥ φ′(ψ(zk)− ψ(z))(ψ(zk)− ψ(zk+1)) ≥ ρ1||zk+1 − zk||2

ρ2||zk − zk−1||
,

and hence

||zk+1 − zk|| ≤
√
c4k,k+1||zk − zk−1||

with c = ρ2

ρ1
. Using the fact that 2

√
ab ≤ a+ b for all a, b ≥ 0, we infer

2||zk+1 − zk|| ≤ ||zk − zk−1||+ c4k,k+1. (3.5)

Summing up (3.5) for i = l + 1, . . . , k yields

2
k∑

i=l+1

||zi+1 − zi|| ≤
k∑

i=l+1

||zi − zi−1||+ c
k∑

i=l+1

4i,i+1

=
k∑

i=l+1

||zi+1 − zi||+ ||zl+1 − zl||+ c
k∑

i=l+1

4i,i+1

=
k∑

i=l+1

||zi+1 − zi||+ ||zl+1 − zl||+ c4l+1,k+1,
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where the last equality follows from the fact that 4p,q + 4q,r = 4p,r for all p, q, r ∈ N .
Since φ ≥ 0, we thus have for all k > l that

k∑
i=l+1

||zi+1 − zi|| ≤ ||zl+1 − zl||+ c(φ(ψ(zl+1)− ψ(z))− φ(ψ(zk+1)− ψ(z)))

≤ ||zl+1 − zl||+ cφ(ψ(zl+1)− ψ(z))
≤ ||zl+1 − zl||+ cφ(ψ(zl)− ψ(z)).

Since the right hand-side of the inequality above does not depend on k at all, it is easily

shows that
∞∑
k=1

||zk+1 − zk|| < +∞.

(ii) From (i), we know that {zk}k∈N is a Cauchy sequence. So we can get that {zk}k∈N →
z = z∗, and ωk → 0. We finally conclude from (3.4) and Remark 2.4 (1) that 0 ∈ ∂ψ(z∗).
Hence, z∗ is a critical point of φ. The proof is completed.
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