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equations and many other applications, see, e.g., [23,27–29,31] and references therein. Fur-
thermore, if B = 0, then the GAVE (1.1) reduces to a system of linear equations Ax = b
which has general applications in scientific computation.

In recent years, much more attention has been paid to the GAVE (1.1) and the AVE (1.2).
On one hand, many researchers have concentrated on formulating conditions that ensure
the existence, nonexistence and the uniqueness of solutions of GAVE (1.1) or of the type
AVE (1.2), see [19, 21, 26, 36–38] and references therein. Particularly, one of the known
sufficient conditions for the GAVE (1.1) is described in Lemma 1.1.

Lemma 1.1 ([37]). If matrices A and B satisfy σmax(B) < σmin(A), then the GAVE (1.1)
has a unique solution for any b.

It is worth mentioning that the well-known linear complementarity problem (LCP), the
generalized LCP (GLCP) and the horizontal LCP (HLCP) can be transformed into the
GAVE (1.1) or the AVE (1.2) which owns a very special and simple structure, and vice
versa [19, 21]. On the other hand, to efficiently solve the GAVE (1.1) and the AVE (1.2),
many numerical methods have been developed, such as the Newton-type methods [5,17,18,
22,39,40], the neural network approaches (also known as dynamic models in the literature) [2,
6,24,25], SOR-like iteration methods [8,14,16], the concave minimization methods [1,20,44],
the Gauss–Seidel iteration method [9] and so forth. More versions of numerical iteration
methods for solving the GAVE (1.1) and the AVE (1.2) include, but are not limited to, those
in [4, 42,43,45].

The GAVE (1.1) can be viewed as the special case of the following system of nonlinear
equations

F (x) = 0 with F (x) := Ax+B|x| − b. (1.3)

With regard to the nonlinear equations (1.3), the efficient solver calling to mind is the
well-known Newton method

F (xk) + F ′(xk)(xk+1 − xk) = 0, k = 0, 1, 2, . . . , (1.4)

which can be used provided that the Jacobian matrix F ′(x) of F (x) exists and is invert-
ible. However, the Newton iterative method (1.4) can not be used directly to solve the
GAVE (1.1) on account of the fact that the non-differentiable term B|x| in (1.3). To ad-
dress the problem, some smoothing Newton-type methods have been investigated for solving
the GAVE (1.1). For example, Jiang and Zhang [15] proposed a smoothing–type algorithm
for the GAVE (1.1). Saheya et al. [34] recast the GAVE (1.1) as a system of nonsmooth
equations and proposed four new smoothing functions along with a smoothing–type algo-
rithm to solve the GAVE (1.1). Tang and Zhou [35] proposed a quadratically convergent
descent method for the GAVE (1.1). Mangasarian [22] utilized the generalized Jacobian
∂|x| of |x| based on a subgradient of its components and directly proposed the following
generalized Newton (GN) iterative method to solve the AVE (1.2)

xk+1 = [A−D(xk)]−1b, k = 0, 1, 2, . . . , (1.5)

where D(xk)
.
= diag(sign(xk)) with sign(x) denotes a vector with components equal to

−1, 0 or 1, respectively, depending on whether the corresponding component of the vector x is
negative, zero or positive. Whereafter, Hu et al. [13] extended the GN iteration scheme (1.5)
to solve the GAVE (1.1), then the GN iterative scheme becomes

xk+1 = [A+BD(xk)]−1b, k = 0, 1, 2, . . . . (1.6)
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Under appropriate hypotheses, the convergence theory of the exact GN iterative method was
established which confirmed that the computational efficiency overmatches the successive
linearization method by some numerical experiments in [21]. Furthermore, some effective
improvements on the GN iterative method have been presented, such as the modified GN
iterative method [17, 18], the inexact semi-smooth Newton iterative method [5]. However,
from the GN iterative scheme (1.5) or (1.6), we can see that the coefficient matrix A−D(xk)
or A+BD(xk) is changed at each iteration step. For large problems, it is difficult especially
if the coefficient matrix is ill-conditioned. In addition, if the generalized Jacobian matrix
is singular, then the GN iterative method fails. To address these shortcomings and further
accelerate the convergence of the GN iterative method, we present a new version of the GN
iterative method in this paper, which is named as the relaxed generalized Newton (RGN)
iterative method, by introducing a relaxation matrix for solving the GAVE (1.1). Also,
the inexact version of the RGN (IRGN) iterative method is investigated for solving the
GAVE (1.1). We discuss the convergence properties of the presented method in detail and
give some convergence conditions under suitable assumptions. Numerical experiments are
given to illustrate the performance and effectiveness of the proposed iterative methods.

This paper is structured as follows. Section 2 is devoted to the development of the
RGN and the IRGN iterative methods for solving the GAVE (1.1). In Section 3, the linear
convergence of the IRGN iterative method is explored. Section 4 reports the numerical
results. Finally, some concluding remarks are given in Section 5.

At the end of this section, we present some notations which will be used throughout this
paper. Let Rn×n be the set of all n × n real matrices and Rn = Rn×1. I represents the
identity matrix with suitable dimension. The transposition of a matrix or vector is denoted
by ·⊤. For a vector x = (x1, x2, . . . , xn)

⊤ ∈ Rn, xi refers to its i-th entry, |x| is in Rn

with its i-th entry |xi|, and | · | denotes the absolute value for real scalar. For x ∈ Rn, ∥x∥
denotes its 2-norm and diag(x) indicates a diagonal matrix with xi as its diagonal entries
for every i = 1, 2, . . . , n. We use tridiag(a, b, c) to denote a matrix that has a, b, c as
the subdiagonal, main diagonal and superdiagonal entries, respectively. Tridiag(A,B,C)
denotes a block tridiagonal matrix that has A,B,C as the subdiagonal, main diagonal and
superdiagonal block entries in the matrix, respectively. By default, ∥A∥ denotes the spectral
norm of A and is defined by the formula ∥A∥ .

= max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1}. σmin(·) and
σmax(·) denotes the minimum and the maximum singular value of the matrix, respectively.
ρ(·) denotes the spectral radius of the matrix.

2 The RGN and IRGN Iterative Methods

In this section, we will describe our methods for solving the GAVE (1.1) and prove their
convergence.

Let Ω ∈ Rn×n be a positive semi-definite matrix, based on the Newton method (1.4), a
relaxed generalized Newton iterative scheme is developed to solve the GAVE (1.1)

F (xk) + (F ′(xk) + Ω)(xk+1 − xk) = 0, k = 0, 1, 2, . . . . (2.1)

Substituting (1.3) and the generalized Jacobian F ′(xk) = A + BD(xk) into (2.1), the re-
laxed generalized Newton (RGN) iterative method is established and the detail is given in
Algorithm 2.1.

Algorithm 2.1. (The RGN iterative method) Let A,B ∈ Rn×n and b ∈ Rn. Given a
positive semi-definite matrix Ω ∈ Rn×n such that A + Ω + BD(xk) is invertible. Assume
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that x0 ∈ Rn is an arbitrary initial guess, compute

xk+1 = [A+Ω+BD(xk)]−1(Ωxk + b) (2.2)

for k = 0, 1, 2, . . . until the iterative sequence {xk} is convergent.

From Algorithm 2.1, the introducing matrix Ω can be regarded as a role of relaxation,
which can avoid the singularity and adjust the condition number of the coefficient matrix
A+Ω+BD(xk) so as to accelerate the convergence rate of the GN iterative method (1.6).
In particular, if Ω = 0, then the RGN iterative method (2.2) reduces to the GN iterative
method (1.6). If Ω = I and B = −I, then the RGN iterative method (2.2) reduces to the
modified GN (MGN) iterative method in [17]. The iteration sequence {xk} generated by
Algorithm 2.1 has the following general convergence property.

Theorem 2.2. Let A,B ∈ Rn×n, b ∈ Rn and Ω ∈ Rn×n be a positive semi-definite matrix
such that A+Ω+BD(x) is invertible for x ∈ Rn. If A is invertible and

∥A−1∥ <
1

2∥Ω∥+ 3∥B∥
, (2.3)

then the iteration sequence {xk} generated by Algorithm 2.1 converges linearly from any
starting point to a unique solution x∗ ∈ Rn of the GAVE (1.1).

Proof. Let x∗ ∈ Rn be a solution of the GAVE (1.1), then we have

[A+Ω+BD(x∗)]x∗ = Ωx∗ + b. (2.4)

Subtracting (2.4) from (2.2), we obtain

[A+Ω+BD(xk)](xk+1 − x∗) = Ω(xk − x∗)−BD(xk)x∗ +BD(x∗)x∗

= Ω(xk − x∗) +BD(xk)(xk − x∗) +B(|x∗| − |xk|).

Taking norms on both sides and using certain properties of vector norm, we obtain

∥xk+1 − x∗∥ ≤ ∥[A+Ω+BD(xk)]−1∥∥Ω(xk − x∗) +BD(xk)(xk − x∗) +B(|x∗| − |xk|)∥
≤ ∥[A+Ω+BD(xk)]−1∥(∥Ω∥+ 2∥B∥)∥xk − x∗∥
< ∥xk − x∗∥,

where the first inequality follows from ∥|x| − |x∗|∥ ≤ ∥x− x∗∥ and the last inequality holds
from ∥[A+Ω+BD(xk)]−1∥(∥Ω∥+ 2∥B∥) < 1, that is

∥[A+Ω+BD(x)]−1∥ <
1

∥Ω∥+ 2∥B∥
. (2.5)

For each x ∈ Rn, we get

A+Ω+BD(x) = A[I +A−1(Ω +BD(x))],

from which we take norms on both sides of above equality and use certain properties of
matrix norm, then

∥[A+Ω+BD(x)]−1∥ = ∥[I +A−1(Ω +BD(x))]−1A−1∥
≤ ∥[I +A−1(Ω +BD(x))]−1∥∥A−1∥. (2.6)
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Based on the Banach perturbation [10, Lemma 2.3.3], since

∥A−1(Ω +BD(x))∥ < ∥A−1∥∥Ω+BD(x)∥ < ∥A−1∥(∥Ω∥+ ∥B∥) < 1,

which implies

∥A−1∥ <
1

∥Ω∥+ ∥B∥
,

it follows that

∥[I +A−1(Ω +BD(x))]−1∥ ≤ 1

1− ∥A−1(Ω +BD(x))∥

≤ 1

1− ∥A−1∥(∥Ω∥+ ∥B∥)
. (2.7)

According to (2.5), (2.6) and (2.7), a sufficient condition of (2.5) is that

∥A−1∥
1− ∥A−1∥(∥Ω∥+ ∥B∥)

<
1

∥Ω∥+ 2∥B∥
,

which is satisfied if and only if (2.3) holds.
According to [41], since ∥A−1∥ = σmax(A

−1) = 1
σmin(A) and ∥B∥ = σmax(B), then

σmin(A) > σmax(B) holds if (2.3) satisfies. It follows from Lemma 1.1 that the RGN
iterative method converges linearly from any starting point to a unique solution x∗ of the
GAVE (1.1).

Based on Algorithm 2.1, at each iteration step, the RGN iterative method requires the
exact solution of the linear system with coefficient matrix A + Ω + BD(x) depends on x,
which might be computationally expensive. To alleviate the burden of each step and further
improve the computational efficiency, we propose an inexact version of Algorithm 2.1 for
solving the GAVE (1.1).

Algorithm 2.3. (The IRGN iterative method) Let A,B ∈ Rn×n and b ∈ Rn. Given
an initial guess x0 ∈ Rn, a residual relative error tolerance θ ∈ [0, 1) and a positive semi-
definite matrix Ω ∈ Rn×n such that A+ Ω + BD(xk) is invertible, for k = 0, 1, 2, . . . until
the iteration sequence {xk} is convergent, compute xk+1 in terms of (2.2), satisfying the
relative residual error criteria

∥[A+Ω+BD(xk)]xk+1 − Ωxk − b∥ ≤ θ∥F (xk)∥. (2.8)

It is noteworthy that, in absence of errors, i.e., θ = 0, the IRGN iterative method (2.8)
will retrieve the RGN iterative method (2.2). Consequently, Algorithm 2.3 also involves the
inexact versions of the GN iterative method (1.6) and the MGN iterative method in [17] as
special cases. In the next section, we will analyze the convergence properties of the iteration
sequence {xk} generated by the IRGN iterative method.

3 Convergence Analysis

The aim of this section is to analyze the general convergence of the IRGN iterative method
in the context of solving the GAVE (1.1).

Before establishing the convergence of the sequence {xk} generated by Algorithm 2.3,
we define the concept of a family of maps according to (2.8) which is crucial in our study
and explore their properties.
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Definition 3.1. For 0 ≤ θ < 1, Nθ is the family of maps Nθ: Rn → Rn such that

∥[A+Ω+BD(x)]Nθ(x)− Ωx− b∥ ≤ θ∥F (x)∥, ∀x ∈ Rn.

If A+Ω+BD(x) is invertible, then the family N0 has a single element for each x ∈ Rn,
that is to say, the RGN iteration map N0: Rn → Rn defined by

N0(x) = [A+Ω+BD(x)]−1(Ωx+ b).

From Definition 3.1, if 0 ≤ θ ≤ θ′ < 1 then N0 ⊆ Nθ ⊆ Nθ′ , where θ′ is the upper bound
of θ. This means that θ′∥F (x)∥ is the maximum relative error that we can tolerate. Hence
Nθ is non-empty for all 0 ≤ θ < 1. For any 0 < θ < 1 and Nθ ∈ Nθ, Nθ(x) = x if and only
if F (x) = 0.

This indicates that the fixed points of the IRGN iteration map Nθ are the same as fixed
points of the exact RGN iteration map.

From Algorithm 2.3 and Definition 3.1, the outcome of the IRGN iterative method is

xk+1 = Nθ(x
k), k = 0, 1, 2, . . . (3.1)

with Nθ ∈ Nθ and θ ∈ [0, 1). The following lemma lays the foundation of the convergence
analysis hereinafter, which is inspired by [5].

Lemma 3.2. Suppose that A+Ω+BD(x) is invertible for each x ∈ Rn. Let 0 ≤ θ < 1 and
Nθ ∈ Nθ. If F (x∗) = 0 then for any x ∈ Rn satisfying

∥Nθ(x)− x∗∥ ≤∥[A+Ω+BD(x)]−1∥[θ(∥A+Ω+BD(x)∥
+ 2∥B∥+ ∥Ω∥) + 2∥B∥+ ∥Ω∥]∥x− x∗∥. (3.2)

Proof. Let x ∈ Rn. In the light of F (x∗) = 0 and the fact that [A + Ω + BD(x)]x =
F (x) + (Ωx+ b), we can derive that

Nθ(x)− x∗ =[A+Ω+BD(x)]−1([A+Ω+BD(x)]Nθ(x)− (Ωx+ b)

+ [F (x∗)− F (x) + [A+Ω+BD(x)](x− x∗)]).

Taking norms on both sides and utilizing the triangle inequality, one can obtain

∥Nθ(x)− x∗∥ ≤∥[A+Ω+BD(x)]−1∥(∥[A+Ω+BD(x)]Nθ(x)− (Ωx+ b)∥
+ ∥F (x∗)− F (x) + [A+Ω+BD(x)](x− x∗)∥). (3.3)

In view of Definition 3.1, then it follows from (3.3) that

∥Nθ(x)−x∗∥ ≤ ∥[A+Ω+BD(x)]−1∥(θ∥F (x)∥+∥F (x∗)−F (x)+[A+Ω+BD(x)](x−x∗)∥).
(3.4)

On the other hand, note that F (x∗) = 0 implies that

F (x) = (A+Ω+BD(x))(x− x∗)− [F (x∗)− F (x)− [A+Ω+BD(x)](x∗ − x)],

from which we obtain

∥F (x)∥ ≤ ∥A+Ω+BD(x)∥∥x− x∗∥+ ∥F (x∗)− F (x)− [A+Ω+BD(x)](x∗ − x)∥. (3.5)

Furthermore, by some calculations, it holds that

F (x∗)− F (x)− [A+Ω+BD(x)](x∗ − x) = B(|x∗| − |x|)−BD(x)(x∗ − x)− Ω(x∗ − x),
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then it can be concluded that

∥F (x∗)− F (x)− [A+Ω+BD(x)](x∗ − x)∥ ≤ (2∥B∥+ ∥Ω∥)∥x∗ − x∥, (3.6)

where ∥|x| − |x∗|∥ ≤ ∥x− x∗∥ is utilized.
Combining (3.5) and (3.6), we get

∥F (x)∥ ≤ (∥A+Ω+BD(x)∥+ 2∥B∥+ ∥Ω∥)∥x− x∗∥. (3.7)

Substituting the inequalities (3.6) and (3.7) into (3.4), one obtains (3.2), thus achieving the
desired assertion immediately.

Now, we are in position to prove the main results of this section.

Theorem 3.3. Let A,B ∈ Rn×n, Ω ∈ Rn×n be a positive semi-definite matrix, b ∈ Rn.
Assume that A+Ω+BD(x) is invertible for all x ∈ Rn. Then, every sequence {xk} generated
by Algorithm 2.3 starting at x0 ∈ Rn with the residual relative error tolerance 0 ≤ θ < 1.
Additionally, for any x ∈ Rn, if A is invertible and

∥A−1∥ <
1

θ(∥A∥+ 3∥B∥+ 2∥Ω∥) + 3∥B∥+ 2∥Ω∥
, (3.8)

then the sequence {xk} converges linearly to x∗ ∈ Rn, the unique solution of the GAVE (1.1).

Proof. For any starting point x0 ∈ Rn, according to Definition 3.1 and Algorithm 2.3, the
well-defineness of {xk} follows from invertibility of A+Ω+BD(x). In the light of (3.1) and
(3.2), since x∗ is the solution of the GAVE (1.1), together with F (x∗) = 0, we conclude that
for k = 1, 2, . . ., the sequence {xk} satisfies

∥xk+1 − x∗∥ ≤∥[A+Ω+BD(xk)]−1∥(θ(∥A+Ω+BD(xk)∥
+ 2∥B∥+ ∥Ω∥) + 2∥B∥+ ∥Ω∥)∥xk − x∗∥. (3.9)

Taking (3.9) into account, we obtain

∥[A+Ω+BD(xk)]−1∥(θ(∥A+Ω+BD(xk)∥+ 2∥B∥+ ∥Ω∥) + 2∥B∥+ ∥Ω∥) < 1, (3.10)

which is a sufficient condition that the sequence {xk} converges linearly to x∗.
Similarly to the proof of the Theorem 2.2, combining (2.6), (2.7), and (3.2), we can

deduce that

∥Nθ(x
k)− x∗∥ ≤∥[A+Ω+BD(xk)]−1∥[θ(∥A+Ω+BD(xk)∥+ 2∥B∥+ ∥Ω∥)

+2∥B∥+ ∥Ω∥]∥xk − x∗∥
≤∥[I +A−1(Ω +BD(xk))]−1∥∥A−1∥[θ(∥A∥+ ∥Ω∥+ ∥B∥+ 2∥B∥+ ∥Ω∥)
+2∥B∥+ ∥Ω∥]∥xk − x∗∥

≤ ∥A−1∥
1− ∥A−1∥(∥Ω∥+ ∥B∥)

[θ(∥A∥+ 3∥B∥+ 2∥Ω∥) + 2∥B∥+ ∥Ω∥]∥xk − x∗∥.

Therefore, a sufficient condition of (3.10) is

∥A−1∥
1− ∥A−1∥(∥Ω∥+ ∥B∥)

[θ(∥A∥+ 3∥B∥+ 2∥Ω∥) + 2∥B∥+ ∥Ω∥] < 1,

which is equivalent to (3.8), and (3.8) is also a sufficient condition of σmin(A) > σmax(B).
It follows from Lemma 1.1 that the IRGN iterative method converges linearly from any
starting point to a unique solution x∗ of the GAVE (1.1).
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Remark 3.4. If θ = 0, (3.8) reduces to (2.3), a sufficient convergence condition for the
RGN iterative method. Moreover, according to (3.8), we get

0 ≤ θ <
1− ∥A−1∥(3∥B∥+ 2∥Ω∥)

∥A−1∥(∥A∥+ 3∥B∥+ 2∥Ω∥)
. (3.11)

When Ω = 0 and B = −I, (3.11) reduces to 0 ≤ θ < 1−3∥A−1∥
∥A−1∥(∥A∥+3) , when Ω = 0, B = −I

and θ = 0, (3.8) reduces to ∥A−1∥ < 1
3 , then Theorem 3.3 reduces to [5, Theorem 2] for the

AVE (1.2). When Ω = I and B = −I, (2.5) reduces to ∥(A+ I −D)−1∥ < 1
3 , which is the

result of [17, Theorem 3.1] for the AVE (1.2).

Remark 3.5. For the relaxation matrix Ω involved in the RGN and IRGN methods, we give
some parameter choices for the GAVE (1.1) being uniquely solvable. When θ ̸= 0, according
to Theorem 3.3, we know (3.8) herein has an implicit condition of ∥Ω∥ > 1

(2θ+2)∥A−1∥ −
3
2∥B∥ − θ

2θ+2∥A∥. Similarly, when θ = 0, i.e. the RGN method, we have ∥Ω∥ > 1
2∥A−1∥ −

3
2∥B∥.

Remark 3.6. Theoretically, according to (3.11), 1−∥A−1∥(3∥B∥+2∥Ω∥)
∥A−1∥(∥A∥+3∥B∥+2∥Ω∥) which is the upper

bound of θ, is generally expensive to compute or hard to estimate. During the practice,
based on this theoretical guidance,

θk = min{0.9, 1

max{1, k − lmax}
} (3.12)

with lmax = 10 is utilized in the next section. Here, k counts the number of outer iteration
steps.

Finally, we will go deeper in the choice of the relaxation matrix Ω. If the setting of Ω
is too complicated (for instance, if Ω is dense or ill-conditioned), it will further increase the
cost of each iterative step. One way to choose Ω is let it be a diagonal matrix, especially
be a scalar matrix, that is, let Ω = ωI(ω ≥ 0). In this case, we consider the convergence
conditions of the IRGN iterative method for solving the GAVE (1.1) and the AVE (1.2),
which also provides the existence of the relaxation matrix Ω under some mild conditions.

Theorem 3.7. Let A ∈ Rn×n be a symmetric positive definite matrix, B ∈ Rn×n, Ω =
ωI(ω ≥ 0) such that A+Ω+BD(x) is invertible for x ∈ Rn. Let λmin(A) and λmax(A) be
the minimum and the maximum eigenvalues of the matrix A, respectively, and ϱ = ∥B∥. If

θλmax(A) + 3(θ + 1)ϱ+ 2(θ + 1)ω < λmin(A), (3.13)

then the IRGN iterative method converges linearly from any starting point to a unique solu-
tion x∗ ∈ Rn of the GAVE (1.1).

Proof. According to [41], we get

ϱ = sup
x ̸=0

∥Bx∥
∥x∥

= max
∥x∥=1

∥Bx∥ = σmax(B).

Since A is a symmetric positive definite matrix, we get λmin(A) = σmin(A), then (3.13) is
obtained from (3.8), which guarantees the uniqueness of solution.
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Corollary 3.8. Let A ∈ Rn×n be a symmetric positive definite matrix, Ω = ωI(ω ≥ 0) such
that A+Ω−D(x) is invertible for x ∈ Rn. Let λmin(A) and λmax(A) be the minimum and
the maximum eigenvalues of the matrix A, respectively. If

θλmax(A) + 3θ + 3 + 2(θ + 1)ω < λmin(A),

then the IRGN iterative method converges linearly from any starting point to a unique solu-
tion x∗ ∈ Rn of the AVE (1.2).

4 Numerical Results

In this section, we will report some concrete examples for solving the GAVE (1.1) to illustrate
the performance of the suggested methods. We compare our methods with some existing
algorithms which indicate that the proposed methods are very promising. Concretely, the
following six algorithms will be tested.

1. GN: Mangasarian’s generalized Newton method for the AVE (1.2) [22]. Given an initial
guess x0 ∈ Rn, for k = 0, 1, 2 . . . until the iteration sequence {xk} is convergent, compute[

A−D(xk)
]
xk+1 = b. (4.1)

For the GAVE (1.1), the iterative scheme (4.1) becomes [39][
A+BD(xk)

]
xk+1 = b.

It should be mentioned that a generalized Newton method is proposed for solving the
GAVE associated with second–order cone in [13]. In addition, the sufficient condition
that the GAVE (1.1) has a unique solution generalizes to a sufficient condition that
∥A−1∥ < 1

3∥B∥ and ∥B∥ > 1.

2. MGN: the modified generalized Newton method for the AVE (1.2) [17]. Given an initial
guess x0 ∈ Rn, find some step xk+1 satisfying[

A+ I −D(xk)
]
xk+1 = xk + b (4.2)

for k = 0, 1, 2, . . . until convergence. For the GAVE (1.1), the iteration scheme (4.2)
changes to [39] [

A+ I +BD(xk)
]
xk+1 = xk + b.

3. RGN: the exact relaxed generalized Newton iterative method, i.e., Algorithm 2.1.

4. Picard: the Picard iteration method for the GAVE (1.1) [33]. Given an initial guess
x0 ∈ Rn, for k = 0, 1, 2, . . . until convergence, compute

xk+1 = A−1(B|xk|+ b).

5. IGN: the inexact semi-smooth Newton method for the AVE (1.2) [5]. Given an initial
guess x0 ∈ Rn, if F (xk) ̸= 0, the iteration sequence {xk} is generated by[

A−D(xk)
]
xk+1 = b+ rk with ∥rk∥ ≤ θk

∥∥Axk − |xk| − b
∥∥ (4.3)

for k = 0, 1, 2, . . . until convergence. Here, θk ≥ 0 is the residual relative error tolerance.
For the GAVE (1.1), (4.3) is slightly modified as
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[
A−BD(xk)

]
xk+1 = b+ rk with ∥rk∥ ≤ θk

∥∥F (xk)
∥∥ .

Here, θk ≥ 0 is the residual relative error tolerance, which derives the generalized upper
bound calculated from [5], and is defined as

θk = 0.999 · 1− 3∥A−1∥∥B∥
∥A−1∥(∥A∥+ 3∥B∥)

.

6. IRGN: the inexact relaxed generalized Newton iterative method, i.e., Algorithm 2.3,
where θk is calculated according to (3.12).

The numerical experiments are explained in several aspects in the following. In this paper,
considering that the matrix Ω = ωI is a scalar matrix, the choice of parameters ω are
particularly important, which greatly affects the CPU time of numerical experiments. In
order to facilitate the comparison of algorithms, the parameter ω in this paper is the optimal
parameter ωexp obtained directly through experiments, which leads to the smallest number
of iteration steps of the IRGN iterative method, herein ω = [0.01 : 0.01 : 2] in Example 4.1
and Example 4.2, ω = [0.05 : 0.05 : 1] in Example 4.3.

On the other hand, compared with the iteration schemes of the GN, MGN, RGN and
Picard methods, each step of these methods requires the exact solution of a system of linear
equations with A+BD(xk), A+ I +BD(xk), A+ωI +BD(xk) and A being the coefficient
matrix, respectively. It is proposed in [22] that the algorithm can be further optimized by
the sparse LU factorization in combination with column AMD reordering if all coefficient
matrices are not guaranteed to be positive. In addition, for the inexact iterative methods, the
approximate solution of the system of linear equation is also obtained with A+BD(xk) and
A+ ωI +BD(xk) being the coefficient matrix of the IGN and IRGN methods, respectively.
The CG [11] or LSQR [30] algorithm is utilized to solve the equations approximately in [22].

All test problems are conducted under MATLAB R2016a on a personal computer with
1.19 GHz central processing unit (Intel(R) Core(TM) i5-1035U), 8.00 GB memory and Win-
dows 10 operating system. “IT” denotes the number of iterations, “CPU” denotes the
elapsed CPU time in seconds and “RES” denotes the residual relative error. In actual com-
putations, we use (1, 0, 1, 0, . . .)⊤ ∈ Rn as the initial vector x0 in Example 4.1 and Example
4.2, and (0, 0, . . . , 0, 0, )⊤ ∈ Rn as the initial vector x0 in Example 4.3. The stopping criterion
is set to be

RES(xk)
.
=

∥Axk +B|xk| − b∥2
∥b∥2

< 10−7

or up to the preset maximum number of outer iteration steps kmax = 500 (the symbol “–”
is utilized in the following tables to illustrate this case). In order to compare the superiority
of algorithms for solving the GAVE, and to show that the algorithms solving the GAVE
can also be applied to LCP, we choose the equivalent problem (i.e. LCP) of the GAVE for
comparison in Example 4.1 and Example 4.2.

Example 4.1 ([3]). This example comes from the following LCP. Given a matrix M ∈ Rn×n

and a vector q ∈ Rn, finding a pair of real vectors z ∈ Rn and w ∈ Rn such that

z ≥ 0, w = Mz + q ≥ 0 and z⊤w = 0, (4.4)

where M = M̂ + µI ∈ Rn×n and q = −Mz∗. Here

M̂ = Tridiag(−Im, Sm,−Im) ∈ Rn×n, Sm = tridiag(−1, 4,−1) ∈ Rm×m,
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z∗ = (1.2, 0, 1.2, 0, . . . , 1.2, 0, . . .)⊤ ∈ Rn with n = m2. From [19, 21], LCP (4.4) can be
reduced to

(M + I)x+ (I −M)|x| = q with x =
1

2
[(M − I)z + q],

which belongs to the GAVE (1.1). In particular, A = M + I, B = I −M and b = q. In this
paper, µ = 4,−4 are considered. The parameter µ is chosen to ensure that the iteration
coefficient matrix is positive definite and then the inverse decomposition is changed by LU
factorization.

When µ = 4, A and M are symmetric positive definite matrices. Therefore, the inexact
methods all use CG method to solve the internal linear system. The numerical results are
shown in Table 1, from which we find that the number of iteration steps of the GN method
is the smallest. Although the number of iteration steps of the IGN method is larger than
that of the GN method, the CPU time is reduced to some extent. Compared with the MGN
method, the RGN method increases the optimal selection of parameters, so to a certain
extent, it not only reduces the number of iterations, but also reduces the CPU time. It
shows that the RGN method is superior to the MGN method. Although the IRGN method
has more iterations than the RGN method, but the CPU time is greatly reduced, and the
IRGN method is better than other tested methods in terms of CPU time. In conclusion,
under our setting, the IRGN method is a competitive method for solving the GAVE (1.1).

Table 1: Numerical results for Example 4.1 with µ = 4

Method
m

60 70 80 90 100
ωexp 0.21 0.22 0.28 0.28 0.26

GN
IT 2 2 2 2 2

CPU 0.0182 0.0282 0.0474 0.0950 0.0971
RES 1.6100× 10−16 1.6728× 10−16 1.7062× 10−16 1.6045× 10−16 1.5968× 10−16

MGN
IT 9 9 9 9 9

CPU 0.1114 0.1819 0.2537 0.5530 0.4864
RES 1.9008× 10−8 1.9127× 10−8 1.9217× 10−8 1.9287× 10−8 1.9343× 10−8

RGN
IT 6 6 6 4 4

CPU 0.0663 0.1100 0.1490 0.1643 0.1506
RES 2.3984× 10−8 2.9859× 10−8 8.9727× 10−8 5.5920× 10−9 5.5981× 10−9

Picard
IT 57 56 56 56 56

CPU 0.0339 0.0597 0.0845 0.1556 0.1516
RES 8.4279× 10−8 9.7218× 10−8 9.0805× 10−8 8.5514× 10−8 8.1051× 10−8

IGN
IT 20 18 18 17 16

CPU 0.0094 0.0114 0.0174 0.0341 0.0283
RES 3.9137× 10−9 4.1742× 10−8 6.9371× 10−8 6.6205× 10−8 3.8782× 10−8

IRGN
IT 15 13 14 15 15

CPU 0.0084 0.0110 0.0157 0.0332 0.0259
RES 5.5863× 10−8 6.0704× 10−8 7.3012× 10−8 2.5509× 10−8 3.7447× 10−8

When µ = −4, A andM are symmetric indefinite matrices. Therefore, the LSQR method
is used to solve the internal linear system for the inexact methods. The other programs are
designed the same as µ = 4. The numerical results are shown in Table 2, from which we can
find that the GN, IGN and Picard methods are failed. Compared with the MGN method,
the RGN method increases the optimal selection of parameters, which reduces not only the
number of iteration steps but also the CPU time to a certain extent. It shows that the RGN
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method is superior to the MGN method, and the IRGN method is better than other tested
methods in terms of CPU time.

Table 2: Numerical results for Example 4.1 with µ = −4

Method
m

60 70 80 90 100
ωexp 1.12 1.01 1.13 1.02 1.02

GN
IT − − − − −

CPU − − − − −
RES − − − − −

MGN
IT 22 22 22 23 23

CPU 0.0361 0.0342 0.0455 0.0606 0.0940
RES 5.5470× 10−8 7.5103× 10−8 9.7704× 10−8 4.1090× 10−8 5.0601× 10−8

RGN
IT 20 21 20 20 20

CPU 0.0347 0.0324 0.0418 0.0535 0.0810
RES 4.3743× 10−8 4.2353× 10−8 4.5749× 10−8 8.1717× 10−8 8.2914× 10−8

Picard
IT − − − − −

CPU − − − − −
RES − − − − −

IGN
IT − − − − −

CPU − − − − −
RES − − − − −

IRGN
IT 17 18 17 18 18

CPU 0.0161 0.0208 0.0162 0.0278 0.0384
RES 9.8291× 10−8 8.5102× 10−8 9.9811× 10−8 7.0584× 10−8 7.5483× 10−8

Example 4.2 ([3]). Considering the LCP (4.4), where the matrix M̂ is slightly different.
Here

M̂ = Tridiag(−1.5Im, Sm,−0.5Im) ∈ Rn×n, Sm = tridiag(−1.5, 4,−0.5) ∈ Rm×m

and z∗ = (1.2, 0, 1.2, 0, . . . , 1.2, 0, . . .)⊤ ∈ Rn with n = m2. In this example, when µ = 4, A
and M are asymmetric positive definite matrices. Therefore, LU factorization can be used
to assist the inverse computation and the inexact methods all use CG method to solve the
internal linear system. The numerical results are shown in Table 3.

From Table 3, we see that the IRGN method is slightly superior to the IGN method
in terms of CPU time and iteration steps. Compared with the MGN method, the RGN
method increases the optimal selection of parameters, which reduces not only the number
of iteration steps but also the CPU time to a certain extent. Although the IRGN method
has more iterations than the RGN method, but the CPU time is greatly reduced, and the
IRGN method is better than other tested methods in terms of CPU time. This shows that
the selection of parameter in the iterative scheme has a good performance in the face of
specific problems.

Example 4.1 and Example 4.2 show that, for the cases that A and M are special matrices
(symmetric positive definite matrices, symmetric indefinite matrices and asymmetric positive
definite matrices), the IRGN method has superior performance. But most of actual data
matrices have not special forms. In the following, we generate randomly the data matrices by
using MATLAB software rand function to confirm the advantages of the proposed methods
under certain conditions. We will illustrate it by Example 4.3.
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Table 3: Numerical results for Example 4.2 with µ = 4

Method
m

60 70 80 90 100
ωexp 0.01 0.04 0.05 0.05 0.05

GN
IT 2 2 2 2 2

CPU 0.0165 0.0252 0.0380 0.0564 0.1265
RES 3.2158× 10−16 3.2012× 10−16 3.1775× 10−16 3.1653× 10−16 3.2214× 10−16

MGN
IT 9 9 9 9 9

CPU 0.1062 0.1799 0.2481 0.3600 0.6084
RES 1.9000× 10−8 1.9120× 10−8 1.9211× 10−8 1.9281× 10−8 1.9338× 10−8

RGN
IT 4 5 5 5 5

CPU 0.0348 0.0825 0.1107 0.1603 0.2717
RES 5.5755× 10−9 1.6767× 10−9 4.0332× 10−9 4.0414× 10−9 4.0480× 10−9

Picard
IT 59 58 58 58 57

CPU 0.0361 0.0572 0.0860 0.1139 0.1980
RES 8.4267× 10−8 9.6624× 10−8 9.0238× 10−8 8.4971× 10−8 9.9995× 10−8

IGN
IT 19 19 18 21 21

CPU 0.0088 0.0112 0.0129 0.0212 0.0382
RES 9.7574× 10−8 6.4348× 10−8 9.0976× 10−8 5.9690× 10−8 4.8267× 10−8

IRGN
IT 16 15 15 16 16

CPU 0.0087 0.0108 0.0125 0.0184 0.0352
RES 1.8022× 10−8 7.2566× 10−8 7.1436× 10−8 7.7978× 10−8 8.4821× 10−8

Example 4.3. This example belongs to the GAVE (1.1) with certain dimension. For each
n we generate 100 GAVEs with ∥B∥ > 1 and ∥A−1∥ < 1

3∥B∥ , herein guarantees the GN

and IGN methods to converge to the unique solution of the GAVE (1.1). In this example
the development generating the GAVE (1.1) parallels the recent work by [5] on the IGN
method for solving the AVE (1.2). In programming, let singval(·) be the singular value

vector of matrix, singval(B) = singval
rand·min(singval) and singval(A) = 3·singval·∥B∥

rand·min(singval) such

that ∥B∥ > 1 and ∥A−1∥ < 1
3∥B∥ . The influence of the condition number of A and B on the

tests will be discussed during the numerical implements.

In order to assess the computational behaviour of the proposed methods, we plot the
performance profile graphics [7], and the performance measurement is the running CPU
time, namely, we use the performance ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s defines as the mean of the CPU time by using method s to solve problem p five
times, S and P are the set of corresponding solvers and problems, respectively. For the
overall evaluation of the solvers, ρs(τ) is defined as the probability of the solver s ∈ S,
which is the best possible radio that a performance radio rp,s is within a factor τ ∈ R.
For large-scale sparse matrices, ρs(τ) = 1

np
size{p ∈ P : rp,s ≤ τ}. However, in order

to accurately judge the difference between solvers for general minitype matrices, we use
logarithmic function to increase the gap between solvers, and ρs(τ) is defined as ρs(τ) =
1
np

size{p ∈ P : log2(rp,s) ≤ τ}. We set rp,s = rM = 20 if and only if solver s does not

successfully solve problem p within 50 iterations.
For general minitype data matrices, using the density (3n − 2)/n2 of the tridiagonal

matrix to determine the density of A and B. For example, when n = 1000, the density of
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A and B both approximately equal to 0.003 (the actual density is 0.0029). When both the
condition numbers of A and B are greater than or equal to 10, 102 or 104, respectively, the
performance ratio images and results are used to analyze the effectiveness and robustness
of the methods. Let x∗ = −100 + 200 × rand(n, 1) and b = Ax∗ + B|x∗| is generated.
The average condition numbers, maximum and minimum condition numbers of 100 GAVE
problems under specific conditions obtained by numerical experiments are shown in Table
4.

Table 4: Basic information of numerical results for Example 4.3 with n = 1000
cond(A) ≈ 10 cond(A) ≈ 102 cond(A) ≈ 104

cond(B)
10 102 104 10 102 104 10 102 104

mean(cond(A)) 28.4594 26.3420 26.0373 239.5526 238.7155 243.2022 19279 18813 19766
min(cond(A)) 10.0215 10.0210 10.0881 100.2478 100.1344 100.6710 10007 10016 10003
max(cond(A)) 98.7427 99.5035 93.2042 969.4184 985.0541 995.7401 99492 92251 91296

mean(cond(B)) 26.3489 236.3534 18341 27.7889 237.2793 18984 27.1965 233.1595 18396
min(cond(B)) 10.0093 100 10019 10.3195 100.1026 10012 10.0445 100.2196 10006
max(cond(B)) 99.9168 959.6709 83750 94.9021 905.7980 84652 99.6455 938.8491 85791

Numerical results for Example 4.3 are reported in Table 5, Figure 1 and Figure 2. For the
case that the average condition number of A is relatively small with any B, that the IRGN
method performs best, and the probability of the IRGN method winning on a given problem
is approximately equal to 0.99, which is slightly more efficient than the IGN method. All
methods have high robustness of 100%. In addition, when the average condition number
of B is relatively small, robustness rates of the IRGN method are 99%, 98% and 39% for
cond(A) ≈ 10, 102, 104, respectively. Moreover, it can be seen from Figure 1 and 2 that
the IRGN method is also better than the exact methods. The numerical results also show
that the inexact methods are more sensitive to the increase of the condition numbers of A
than the exact methods, and the same phenomenon is reported in [5]. Unfortunately, its
theoretical basis remains to be further studied.

Moreover, we find that the condition number of B has little influence on the effectiveness
and robustness of the method, which is mainly determined by the state of A. Therefore,
when the matrix A is ill-conditioned, the GN method can have high effectiveness. For the
case that the matrix A is in good state, the IRGN method has good effectiveness and achieves
the target robust value (100%) firstly.

In order to study the advantage of the inexact methods (IGN and IRGN), when the
minimum value of condition number of A and B is set to 10, the influence of matrix density
on the method is discussed by changing the matrix density of A and B. We specify that
the density of A and B matrices is approximatively equal (from the point of view of the
complementarity problem, the density of A and B is roughly equal). The basic results of
numerical experiments are presented in Table 6.

Table 7 and Figure 3 show the influence of the density of matrix A and matrix B on
the methods. On the whole, the inexact methods (IGN and IRGN) outperform accurate
methods (GN, MGN and RGN). The smaller the density of matrix A and matrix B, the
better the effectiveness and robustness of the inexact method (the effectiveness is more than
98% and the robustness is 100%). In a word, the IRGN method has better problem-solving
ability when A and B matrices are large sparse matrices, and reaches the stable state first.

Consider the large-scale sparse matrices of A and B with certain condition number. Here,
n = 6000 is used and density(A) = density(B) ≈ 2/n and rM = 20. The average condition
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Table 5: Numerical results for Example 4.3 with n = 1000

Method
cond(A) ≈ 10 cond(A) ≈ 102 cond(A) ≈ 104

cond(B)
10 102 104 10 102 104 10 102 104

GN
Efficiency(%) 0 1 0 64 67 74 99 99 99
Robustness(%) 100 100 100 100 100 100 100 100 100

MGN
Efficiency(%) 0 0 0 2 0 1 7 4 2
Robustness(%) 100 100 100 100 100 100 100 100 100

RGN
Efficiency(%) 0 1 0 10 11 7 21 23 48
Robustness(%) 100 100 100 100 100 100 100 100 100

IGN
Efficiency(%) 98 98 99 98 97 99 40 38 1
Robustness(%) 100 100 100 100 100 100 100 100 100

IRGN
Efficiency(%) 99 99 99 98 97 100 39 37 1
Robustness(%) 100 100 100 100 100 100 100 100 100

Table 6: Numerical results for Example 4.3
n = 2000 n = 1000

density
0.0015 0.003 0.01 0.01 0.1 0.5

real density 0.0014 0.0029 0.0095 0.0095 0.0952 0.4754

mean(cond(A)) 26.7903 25.2722 27.2399 25.7902 24.8097 27.6787
min(cond(A)) 10.2309 10.0205 10.0996 10.0483 10.1043 10.0030
max(cond(A)) 96.5553 98.0649 99.2338 96.9188 86.0889 94.0312

mean(cond(B)) 27.2792 27.0169 27.2266 26.1242 26.7462 23.7670
min(cond(B)) 10.0101 10.0226 10.0347 10.2438 10.0172 10.1214
max(cond(B)) 95.2796 92.7942 96.5369 97.7455 98.7810 97.5212

Table 7: Numerical results for Example 4.3

Method
n = 2000 n = 1000

density
0.0015 0.003 0.01 0.01 0.1 0.5

GN
Efficiency(%) 0 0 0 0 0 14
Robustness(%) 48 8 100 62 100 100

MGN
Efficiency(%) 0 0 0 0 0 13
Robustness(%) 8 0 0 100 100 100

RGN
Efficiency(%) 0 0 0 0 0 11
Robustness(%) 14 1 0 44 98 100

IGN
Efficiency(%) 98 99 99 99 100 100
Robustness(%) 100 100 100 100 100 100

IRGN
Efficiency(%) 99 99 100 100 100 99
Robustness(%) 100 100 100 100 100 100

numbers of A and B roughly equals 261.5653 and 278.3950 (the smallest and the largest
values of A and B are [103.3240, 948.9985] and [100.2780, 955.4369], respectively) for the
first set and 19878.52 and 16493.29 (the smallest and the largest values of A and B are
[10072.43, 84520.42] and [10057.90, 76134.61], respectively) for the second set. Numerical
results for this example are reported in Table 8 and Figure 4. When the condition number
of A and B are order of 102, the IRGN method performs best and can solve 83% of the
problems. In addition, the IRGN method firstly reach a stable state. For the large-scale
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sparse GAVE with ill-conditioned matrices, the inexact methods are more sensitive to the
increase of the condition number than the exact ones, which is consistent with the results
of experiments in [5].

Table 8: Numerical results for Example 4.3 with n = 6000
Method cond ≈ 102 cond ≈ 104

GN
Efficiency(%) 0 50
Robustness(%) 95 100

MGN
Efficiency(%) 0 0
Robustness(%) 0 46

RGN
Efficiency(%) 0 0
Robustness(%) 0 45

IGN
Efficiency(%) 17 1
Robustness(%) 100 50

IRGN
Efficiency(%) 83 49
Robustness(%) 100 50

5 Concluding Remarks

In this paper, an inexact relaxed generalized Newton (IRGN) iterative method is developed
to solve the generalized absolute value equations. The involved system of linear equations
are inexactly solved by means of adopting a relative error tolerance. Convergence properties
of the new iteration schemes are analyzed in detail. Numerical experiments are reported to
demonstrate the efficiency of the IRGN iteration method.
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Figure 1: Performance profile graphics for Example 4.3 with n = 1000 and density ≈ 0.003
(top-left: cond(A) ≈ 10 and cond(B) ≈ 10; middle-left: cond(A) ≈ 10 and cond(B) ≈ 102;
bottom-left: cond(A) ≈ 10 and cond(B) ≈ 104; top-right: cond(A) ≈ 102 and cond(B) ≈
10; middle-right: cond(A) ≈ 102 and cond(B) ≈ 102; bottom-right: cond(A) ≈ 102 and
cond(B) ≈ 104 .
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Figure 2: Performance profile graphics for Example 4.3 with n = 1000 and density ≈ 0.003
(top-left: cond(A) ≈ 104 and cond(B) ≈ 10; top-right: cond(A) ≈ 104 and cond(B) ≈ 102;
bottom: cond(A) ≈ 104 and cond(B) ≈ 104 .
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Figure 3: Performance profile graphics for Example 4.3 with n = 2000 (left three plots:
top-left, density ≈ 0.0015; middle-left, density ≈ 0.003; bottom-left, density ≈ 0.01) and
n = 1000 (right three plots: top-right, density ≈ 0.01; middle-right, density ≈ 0.1; bottom-
right, density ≈ 0.5) that cond(A) and cond(B) are order of 10.

Figure 4: Performance profile graphics for Example 4.3 with n = 6000 (left plot: cond(A)
and cond(B) are order of 102; right plot: cond(A) and cond(B) are order of 104).


