
2024



164 H. WANG, Y. GAO, J. WANG AND H. LIU

is addressed by minimizing the mixed ℓp/ℓ2-norm with p ∈ (0, 1], yielding the following
problem

min
v

L∑
l=1

√
ρl
zl
∥ṽl∥p2

s.t.

√∑
i ̸=k

∥hH
k vi∥22 + σ2

k ≤
1

γk
ℜ(hH

k vk)

∥ṽl∥2 ≤
√
Pl, l = 1, · · · , L, k = 1, . . . ,K.

Here the Cloud-RAN architecture of this model has L RRHs and K single-antenna
Mobile Users (MUs), where the l-th RRH is equipped with Nl antennas. vlk ∈ CNl is the
transmit beamforming vector from the l-th RRH to the k-th user with the group structure
of transmit vectors ṽl = [vTl1, · · · , vTlK ]T ∈ CKNl×1. Denote the relative fronthaul link
power consumption by ρl, and the inefficient of drain efficiency of the radio frequency power
amplifier by zl. The channel propagation between user k and RRH l is denoted as hlk ∈
CNl . Pl is the maximum transmit power of the l-th RRH. σk is the noise at MU k. γ =
(γ1, ..., γK)T is the target signal-to-interference-plus-noise ratio (SINR).

Example 2. (The ℓp-constrained sparse coding) In the context of sparse coding [20], the
task is to reconstruct the unknown sparse code word x̄ ∈ Rn from the linear measurements
y = Ax̄ + ϵ, where y ∈ Rm represents the data with m features, ϵ ∈ Rm denotes the noise
vector, and A corresponds to the fixed dictionary that consists of n atoms with respect to
its columns. This problem can be formulated as

min
x∈Rn

∥Ax− y∥22 s.t. ∥x∥pp ≤ θ, (1.1)

where the ℓp ball constraint is to induce sparsity in the code word.
In this paper, we consider the following two general forms of constrained nonlinear op-

timization with ℓp norms. The first one is the constrained ℓp regularized problem, meaning
the ℓp norm appears in the objective as a penalty,

min F (x) := f0(x) + λ∥x∥pp s.t. fj(x) ≤ 0, ∀j ∈ I; fj(x) = 0, ∀j ∈ E . (P1)

The second one has the ℓp norm in the constraint and requires it to be smaller than a
prescribed value θ > 0,

min f0(x) s.t. ∥x∥pp ≤ θ; fj(x) ≤ 0, ∀j ∈ I; fj(x) = 0, ∀j ∈ E . (P2)

Here, fj : Rn → R, j ∈ {0} ∪ I ∪ E are continuously differentiable on Rn and ∥x∥p :=(
n∑

i=1

|xi|p
)1/p

with p ∈ (0, 1]. The positive λ is the given regularization parameter and θ is

referred to as the radius of ℓp-ball.
Despite of the advantages of nonconvex ℓp norm in promoting sparse solutions, problems

of the forms (P1) and (P2) are generally not easy to handle. This is largely due to the
nonconvex and non-Lipschitz nature of the ℓp norm which makes it difficult to characterize
the optimal solutions. In particular, verifiable optimality conditions are often difficult to
derive, leaving it an obstacle for designing efficient numerical algorithms. For example,
for (P1), many researchers [7, 15, 25, 24] tend to approximate the ℓp term by Lipschitz
continuous functions and then solve for an approximate solution. As for (P2), to the best
of our knowledge, not much has been done except the special case that only the ℓp ball
constraint presents in the problem [28], meaning the projection onto the ℓp ball.
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1.1 Literature review

The optimality conditions of the unconstrained and inequality constrained versions of (P1)
were studied in [21], which is the immediate predecessor of our work. They derived the
first-order and second-order necessary conditions by assuming the “extended” linear inde-
pendence constraint qualification (ELICQ) is satisfied by (P1), meaning the LICQ is satisfied
at the local minimizer in the subspace consisting of the nonzero variables. They also stated
that the second-order optimality conditions can be derived by considering the reduced prob-
lems after fixing the zero components at a stationary point. In [3], Bian and Chen derived
a first-order necessary optimality condition using the theory of the generalized directional
derivative, which is also closely related to our work. In particular, for the case that the con-
straints are all linear, Gabriel Haeser et al. [10] articulated first- and second-order necessary
optimality conditions for this problem based on the perturbed problem and the limits of per-
turbation. Sufficient conditions for the ϵ-perturbed stationary points are also presented. As
for (P2), [28] derived optimality conditions for the special case where only ℓp ball constraint
exists using the concept of generalized Fréchet normal cone. To the best of our knowledge,
there has been no study on the optimality conditions for more general cases of this problem.

1.2 Contributions

In this paper, we are interested in deriving the optimality conditions to characterize the
local solutions of (P1) and (P2) under different constraint qualifications (CQ). First of
all, we analyze the basic properties of the ℓp norm and the ℓp norm ball. We derive the
regular and general subgradients of the ℓp norm and the regular and general normal of
the ℓp norm ball, which indicate the ℓp norm is subdifferentially regular and the ℓp ball is
Clarke regular. For (P1) and (P2), we derive the Karush-Kuhn-Tucker (KKT) conditions
and discuss the constraint qualifications that ensure that the KKT conditions are satisfied
at a local minimizer. For (P2), we believe this is the first result.

Recently, Andreani et al. [2] introduced the sequential optimality conditions, namely,
the approximate KKT (AKKT) conditions for constrained smooth optimization problems,
which is commonly satisfied by many algorithms. They also proposed the Cone-Continuity
Property (CCP), under which the AKKT conditions implies the KKT conditions. This is
widely believed to be one of the weakest qualification under which KKT conditions hold
at local minimizer. We also define the sequential optimality conditions for (P1) and (P2)
and explore the constraint qualification under which the sequential conditions imply KKT
conditions. We believe these are much stronger results than existing ones.

To demonstrate the applicability of the proposed sequential optimality conditions, we ex-
tend the well-known iteratively reweighted algorithms for solving unconstrained ℓp-regularized
problem to general constrained cases and show that those conditions are satisfied at the limit
points of the generated iterates. Therefore, under the proposed constraint qualification, the
limit points satisfy the KKT conditions.

1.3 Notation and preliminary

We use 0 as the vector filled with all zeros of appropriate size. For N ⊂ {1, . . . , n} and
x ∈ Rn, let R|N | be the reduced subspace of Rn that consists of the components xi, i ∈ N ,
and denote xN ∈ R|N | as the subvector of x containing the elements xi, i ∈ N . Let Z =
{1, . . . , n} \ N .

For a differentiable f : Rn → R, let ∇N f(x) be the vector consisting of ∇if(x), i ∈ N .
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In (P1) and (P2), define the set

Γ = {x | fj(x) ≤ 0, ∀j ∈ I; fj(x) = 0, ∀j ∈ E},

and the index set of active inequalities by A(x) = {j | fj(x) = 0, j ∈ I}. The sets of zeros
and nonzeros in x ∈ Rn are defined as

Z(x) = {i | xi = 0} and N (x) = {i | xi ̸= 0}.

For simplicity, we use shorthands N̄ = N (x̄), Z̄ = Z(x̄) and N k = N (xk), Zk = Z(xk).
For C ⊂ Rn, its horizon cone is defined by

C∞ =

{
{x | ∃xν ∈ C, λν ↘ 0, with λνxν → x} when C ̸= ∅,
{0} when C = ∅.

Another operation on C is the smallest cone containing C, namely the positive hull of C,
which is defined as pos C = {0} ∪ {λx | x ∈ C, λ > 0}. A vector w ∈ Rn is tangent to a set
C ⊂ Rn at x̄ ∈ C, written w ∈ TC(x̄), if (x

ν − x̄)/τν → w for some xν −→
C

x̄, τν ↘ 0. The

interior and the boundary of a set C ⊂ Rn is denoted as int C and ∂C, respectively.

Definition 1.1. [17, Definition 6.3, 6.4]

(a) Let C ⊂ Rn and x̄ ∈ C. A vector v is a regular normal to C at x̄, written v ∈ N̂C(x̄),
if

lim sup
x−→

C
x̄,x ̸=x̄

⟨v, x− x̄⟩
∥x− x̄∥

≤ 0.

It is a (general) normal to C at x̄, written v ∈ NC(x̄), if there are sequences xν −→
C

x̄

and vν → v with vν ∈ N̂C(x
ν). We call N̂C(x̄) the regular normal cone and NC(x̄)

the normal cone to C.

(b) A set C ⊂ Rn is Clarke regular at x̄ ∈ C if it is locally closed at x̄ and NC(x̄) = N̂C(x̄).

For a nonempty convex C ⊆ Rn and x̄ ∈ C, N̂C(x̄) = NC(x̄) = {v | ⟨v, z − x̄⟩ ≤
0, for all z ∈ C}.

Definition 1.2. [17, Definition 8.3] Consider a function f : Rn → R̄ = R ∪ {+∞} and
f(x̄) <∞. For a vector v ∈ Rn, one says that

(a) v is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + ⟨v, x− x̄⟩+ o(|x− x̄|);

(b) v is a (general) subgradient of f at x̄, written v ∈ ∂f(x̄), if there are sequence xν −→
f

x̄

and vν ∈ ∂̂f(xν) with vν → v;

(c) v is a horizon subgradient of f at x̄, written v ∈ ∂∞f(x̄), if there are sequence xν −→
f

x̄

and vν ∈ ∂̂f(xν) with λνvν → v for some sequence λν ↘ 0.

For f : Rn → R, the epigraph of f is the set epi f := {(x, α) ∈ Rn × R | α ≥ f(x)}.

Definition 1.3. [17, Definition 7.25] A function f : Rn → R̄ is called subdifferentially
regular at x̄ if f(x̄) is finite and epi f is Clarke regular at (x̄, f(x̄)) as a subset of Rn × R.
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2 First-Order Necessary Optimality Conditions

In this section, we present the first-order necessary optimality conditions for (P1) and (P2).
Before proceeding to the optimality conditions, we provide some basic properties.

2.1 Basic Properties

Denote ϕ(x) = ∥x∥pp and the ℓp norm ball Θ := {x ∈ Rn | ϕ(x) ≤ θ}. In this subsection,
we provide basic properties about ϕ(x) and Θ. In particular, we derive regular and general
subgradients of ϕ and the regular and the general normal cones of Θ, and then show that
the ϕ is subdifferentially regular and Θ is Clarke regular on Rn.

The regular, general, and horizon subgradients of ϕ can be calculated as follows.

Theorem 2.1. For any x̄ ∈ Rn, it holds that

∂ϕ(x̄) = ∂̂ϕ(x̄) = {v ∈ Rn | vj = sign(x̄j)p|x̄j |p−1, j ∈ N̄}, (2.1)

[∂̂ϕ(x̄)]∞ = ∂∞ϕ(x̄) = {v ∈ Rn | vj = 0, j ∈ N̄}. (2.2)

Therefore, ϕ is subdifferentially regular at every x ∈ Rn.

Proof. We first consider |·|p on R. If x̄ ̸= 0, then ∂|x̄|p = ∂̂|x̄|p = {∇|x̄|p} = {sign(x̄)p|x̄|p−1}.
On the other hand, lim

x→0,x ̸=0

|x|p
|x| = +∞, implying lim inf

x→0,x ̸=0

|x|p−|0|p−v(x−0)
|x−0| ≥ 0 for any

v ∈ R. Therefore, if x̄ = 0, it follows from the definition of regular subgradient that
R ⊂ ∂̂|0|p ⊂ ∂|0|p ⊂ R. Hence, ∂̂|0|p = ∂|0|p = R. By [17, Proposition 10.5] , we have

∂̂ϕ(x̄) = ∂ϕ(x̄) = ∂|x̄1|p × . . .× ∂|x̄n|p = {v ∈ Rn | vj = sign(x̄j)p|x̄j |p−1, j ∈ N̄}.

This proves (2.1).

By the definition of horizon cone and (2.1), it is obvious that [∂̂ϕ(x̄)]∞ = {v ∈ Rn | vj =
0, j ∈ N̄}. We next prove ∂∞ϕ(x̄) = [∂̂ϕ(x̄)]∞.

For any v ∈ [∂̂ϕ(x̄)]∞ and {λν} ↘ 0, we can select sequence xν −→
ϕ

x̄ such that N (xν) =

N̄ . Let vνj = vj/λ
ν . From (2.1), this means vν ∈ ∂̂ϕ(xν) and λνvν → v. Therefore,

v ∈ ∂∞ϕ(x).
On the other hand, for xν sufficiently close to x̄, it holds that N̄ ⊂ N (xν). Therefore, by

(2.1), vνj = sign(x̄j)p|x̄ν
j |p−1, j ∈ N̄ for any vν ∈ ∂̂ϕ(xν). Hence, for any sequence {λν} ↘ 0,

λνvνj → 0, j ∈ N̄ , it holds that vj = 0, j ∈ N̄ for any v ∈ ∂∞ϕ(x̄), or, equivalently,

∂∞ϕ(x̄) ⊂ [∂̂ϕ(x̄)]∞. Overall, we have shown that ∂∞ϕ(x̄) = [∂̂ϕ(x̄)]∞.
It then follows from [17, Corollary 8.11] that ϕ is subdifferentially regular at any x ∈

Rn.

The regular and general normal vectors can be calculated as follows.

Theorem 2.2. For any x̄ ∈ Θ, NΘ(x̄) = pos ∂ϕ(x̄) ∪ ∂∞ϕ(x̄), i.e.,

NΘ(x̄) =

{
{v ∈ Rn | vj = λsign(x̄j)p|x̄j |p−1, j ∈ N̄ ; λ ≥ 0} if x̄ ∈ ∂Θ,

{0} if x̄ ∈ int Θ.
(2.3)

Furthermore, Θ is Clarke regular at any x̄ ∈ Θ, i.e., N̂Θ(x̄) = NΘ(x̄).
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Proof. We only prove the case that x̄ ∈ ∂Θ since the other is trivial. We have x̄ ̸= 0 and
0 ̸∈ ∂ϕ(x̄). Together with Theorem 2.1 and [17, Proposition 10.3], it holds that

N̂Θ(x̄) = NΘ(x̄) = pos ∂ϕ(x̄) ∪ ∂∞ϕ(x̄)

and Θ is Clarke regular at x̄. By the definition of pos and (2.1),

pos ∂ϕ(x̄) = {0} ∪ {λv ∈ Rn | vj = sign(x̄j)p|x̄j |p−1, j ∈ N̄ ; λ > 0}.

Therefore, it holds that

NΘ(x̄) = pos ∂ϕ(x̄) ∪ ∂∞ϕ(x̄) = {v ∈ Rn | vj = λsign(x̄j)p|x̄j |p−1, j ∈ N̄ ; λ ≥ 0}.

From [17, Theorem 8.15], we have the following first-order necessary condition for (P1).
For (P2), we only focus on the local minimizers x̄ on the boundary of the ℓp ball, i.e.,
∥x̄∥pp = θ; otherwise, the characterization of local minimizers reverts to the case of traditional
constrained nonlinear problems.

Theorem 2.3. Suppose f0 is differentiable over Γ. The following statements hold true.

(a) If ∂∞ϕ(x̄) contains no vector v ̸= 0 such that −v ∈ NΓ(x̄), then a necessary condition
for x̄ to be a local minimizer for (P1) is

0 ∈ ∇f0(x̄) + λ∂ϕ(x̄) +NΓ(x̄). (2.4)

(b) Suppose that x̄ is a local minimizer of (P2) with x̄ ∈ ∂Θ. Then

−∇f0(x̄) ∈ N̂Θ∩Γ(x̄) ⊂ NΘ∩Γ(x̄). (2.5)

Figure 1 shows a conterexample for Theorem 2.3. Obviously, to find an optimal solution,
we can only focus on the top semicircle of the given ball, so that the original problem is
equivalent to

min (x1 + 1)2 +
√
x1 +

√
1−

√
−x2

1 + 2x1 s.t. 0 ≤ x1 ≤ 2

The derivative over the domain is always positive, therefore x∗ = (0, 1) is a global minimizer.
However, there exist v ∈ {ν ∈ R2 | ν1 > 0, ν2 = 0}, such that ∂∞(x̄) ∋ v ̸= 0 and
−v ∈ NΓ(x̄). In this case, one can see (2.4) does not hold at x∗.

2.2 Optimality conditions for (P1)

To make condition (2.4) for (P1) informative, we need to clarify when −v ∈ NΓ(x̄) happens
and how to calculate the elements in NΓ(x̄). For this purpose, we define the following
extended Mangasarian-Fromovitz constraint qualification (EMFCQ). The EMFCQ holds at
x̄ ∈ Γ for Γ if the subvectors ∇N̄ fj(x̄), j ∈ E ∪ Ā are linearly independent and there exists

d ∈ R|N̄ | such that

⟨∇N̄ fj(x̄), d⟩ = 0, j ∈ E and ⟨∇N̄ fj(x̄), d⟩ < 0, j ∈ Ā. (2.6)
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Figure 1: A conterexample for Theorem 2.3.For (P1), the contour of ℓp (p = 0.5) regular-
ization problem with F (x) = (x1 + 1)2 + ∥x∥pp and Γ = {(x1 − 1)2 + (x2 − 1)2 ≤ 1}.

Obviously, the EMFCQ is a weaker condition than the ELICQ proposed in [21]. Moreover,
if the EMFCQ holds at x̄ ∈ Γ for Γ, then the MFCQ holds naturally true at x̄ for Γ; letting

ΛΓ(x̄) =

 ∑
j∈E∪Ā

yj∇fj(x̄) | yj ≥ 0, j ∈ Ā

 , (2.7)

we have from [17, Theorem 6.14] that Γ is Clarke regular at x̄ and NΓ(x̄) = ΛΓ(x̄).

Theorem 2.4. (a) Suppose the EMFCQ is satisfied at x̄ ∈ Γ for Γ. Then ∂∞ϕ(x̄) con-
tains no vector v ̸= 0 such that −v ∈ NΓ(x̄). Furthermore, a necessary condition for
x̄ to be a local minimizer for (P1) is that there exist yj , j ∈ E and yj ≥ 0, j ∈ A such
that

∇if0(x̄) + λpsign(x̄i)|x̄i|p−1 +
∑

j∈E∪Ā

yj∇ifj(x̄) = 0, i ∈ N̄ . (2.8)

(b) Suppose Γ is closed and convex in (P1). If x̄ is a local minimizer of (P1) and ∂∞ϕ(x̄)
contains no vector v ̸= 0 such that −v ∈ NΓ(x̄), then it holds that

∇if0(x̄) + λpsign(x̄i)|x̄i|p−1 + vi = 0, i ∈ N̄ ; v ∈ NΓ(x̄). (2.9)

Proof. (a) Assume by contradiction that there exists nonzero v ∈ ∂∞ϕ(x̄) such that −v ∈
NΓ(x̄); then it follows from Theorem 2.1 and (2.7) that∑

j∈E∪Ā

yj∇N̄ fj(x̄) = −vN̄ = 0;
∑

j∈E∪Ā

yj∇Z̄fj(x̄) = −vZ̄ ̸= 0; yj ≥ 0, j ∈ Ā. (2.10)

Since EMFCQ holds true at x̄ ∈ Γ, the dual form [19] of condition (2.6) tells that yj = 0, j ∈
E ∪ Ā is the unique solution of the the system∑

j∈E∪Ā

yj∇fj(x̄) = 0, yj ≥ 0, j ∈ Ā.
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It follows that
∑

j∈E∪Ā yj∇Z̄fj(x̄) = 0, contradicting (2.10). Therefore, for any nonzero
v ∈ ∂∞ϕ(x̄), −v /∈ NΓ(x̄). From Theorem 2.3, at a local minimizer x̄ of (P1), (2.8) is
satisfied.

(b) This is trivially true from Theorem 2.3.

We call the conditions (2.8) the Karush-Kuhn-Tucker (KKT) conditions for (P1). Using
the notation of ΛΓ, it can also be equivalently written as

−∇f0(x̄) ∈ λ∂ϕ(x̄) + ΛΓ(x̄). (2.11)

2.3 Optimality conditions for (P2)

We also consider other verifiable forms of condition (2.5) if some constraint qualification is
satisfied at x̄. For x̄ ∈ Θ ∩ Γ, define the extended linearized cone ΥΘ∩Γ(x̄) as:

ΥΘ∩Γ(x̄) := {d ∈ Rn | ⟨v, d⟩ ≤ 0, ∀v ∈ ∂ϕ(x̄); ⟨∇fj(x̄), d⟩ = 0, j ∈ E ; ⟨∇fj(x̄), d⟩ ≤ 0, j ∈ Ā}.

Obviously,

NΘ(x̄) + ΛΓ(x̄) = ΥΘ∩Γ(x̄)
∗

={v ∈ Rn | vi = y0psign(x̄i)|x̄i|p−1 +
∑

j∈Ā∪E

yj∇ifj(x̄), i ∈ N̄ ; yj ≥ 0, j ∈ {0} ∪ Ā}.

It follows from [17, Theorem 6.14] that ΥΘ∩Γ(x̄)
∗ ⊂ N̂Θ∩Γ(x̄). Hence, we have the following

result.

Proposition 2.5. For x̄ ∈ Γ ∩ Θ with x̄ ∈ ∂Θ, ΥΘ∩Γ(x̄)
∗ ⊂ N̂Θ∩Γ(x̄). Therefore, if

−∇f0(x̄) ∈ ΥΘ∩Γ(x̄)
∗, meaning that there exist yj ≥ 0, j ∈ {0} ∪ Ā such that

∇f0(x̄) + y0psign(x̄i)|x̄i|p−1 +
∑

j∈Ā∪E

yj∇ifj(x̄) = 0, i ∈ N̄ ,

then the first-order necessary condition (2.5) is satisfied at x̄.

The EMFCQ for (P2) holds at x̄ ∈ ∂Θ∩ Γ if the subvectors sign(xN̄ )|xN̄ |p−1, ∇N̄ fj(x̄),

j ∈ E ∪ Ā are linearly independent and there exists d ∈ R|N̄ | such that

⟨psign(xN̄ )|xN̄ |p−1, d⟩ < 0, ⟨∇N̄ fj(x̄), d⟩ = 0, j ∈ E and ⟨∇N̄ fj(x̄), d⟩ < 0, j ∈ Ā.

Equivalently, the dual form of EMFCQ for (P2) holds at x̄ ∈ Θ ∩ Γ if yj = 0, j ∈ {0} ∪ Ā is
the unique solution ofy0psign(x̄i)|x̄i|p−1 +

∑
j∈Ā∪E

yj∇ifj(x̄) = 0, i ∈ Ā; yj ≥ 0, j ∈ {0} ∪ Ā

 .

We now state the necessary optimality conditions for (P2).

Theorem 2.6. Suppose x̄ ∈ Γ ∩Θ with x̄ ∈ ∂Θ is a local minimizer for (P2).

(a) If the EMFCQ holds at x̄, then there exist yj , j ∈ E and yj ≥ 0, j ∈ {0} ∪ Ā, such
that

∇if0(x̄) + y0psign(x̄i)|x̄i|p−1 +
∑

j∈Ā∪E

yj∇ifj(x̄) = 0, i ∈ N̄ . (2.12)
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(b) Suppose Γ is closed and convex. If v = 0 is the only vector such that f v ∈ NΘ(x̄) and
−v ∈ NΓ(x̄), then NΘ∩Γ(x̄) = NΘ(x̄)+NΓ(x̄). Therefore, if x̄ is a local minimizer for
(P2), then

−∇if(x̄) + y0psign(x̄i)|x̄i|p−1 + vi = 0, i ∈ N̄ ; y0 ≥ 0; v ∈ NΓ(x̄).

(c) Suppose Γ = Rn. If x̄ is a local minimizer for (P2), then there exists y0 ≥ 0 such that

−∇if(x̄) + y0psign(x̄i)|x̄i|p−1 = 0, i ∈ N̄ .

Proof. (a) From [17, Theorem 6.14], if the EMFCQ holds for (P2) at x̄ ∈ Γ∩Θ with x̄ ∈ ∂Θ,
then Θ ∩ Γ is regular at x̄ and

N̂Θ∩Γ(x̄) = ΥΘ∩Γ(x̄)
∗. (2.13)

By Theorem 2.3, (a) is true.
(b) By [17, Theorem 6.42], NΘ∩Γ(x̄) = NΘ(x̄) + NΓ(x̄). Therefore, if x̄ is a local mini-

mizer, then x̄ ∈ N̂Θ∩Γ(x̄) ⊂ NΘ∩Γ(x̄) = NΘ(x̄) +NΓ(x̄).
(c) Trivial by (b).

We call the conditions (2.12) the Karush-Kuhn-Tucker (KKT) conditions for (P2). Using
the notation of ΛΓ, it can also be equivalently written as

−∇f0(x̄) ∈ NΘ(x̄) + ΛΓ(x̄). (2.14)

3 First-Order Sequential Optimality Condition

In this section, we study the sequential optimality conditions under the approximate Karush-
Kuhn-Tucker (AKKT) conditions, which are defined as follows.

Definition 3.1. (i) For (P1), we say that x̄ ∈ Γ satisfies the AKKT if there exist {xν} ⊂
Rn, {yνj } ⊂ R, j ∈ E ∪ Ā such that lim

ν→∞
xν = x̄, yνj ≥ 0, j ∈ Ā and

lim
ν→∞

∇if(x
ν) + λpsign(xν

i )|xν
i |p−1 +

∑
j∈E∪Ā

yνj∇ifj(x
ν) = 0, ∀i ∈ N̄ .

(ii) For (P2), we say that x̄ ∈ Θ ∩ Γ with x̄ ∈ ∂Θ satisfies the AKKT if there exist
{xν} ⊂ Rn, {yνj } ⊂ R, j ∈ {0} ∪ E ∪ Ā such that lim

ν→∞
xν = x̄, yνj ≥ 0, j ∈ {0} ∪ Ā and

lim
ν→∞

∇if(x
ν) + yν0psign(x

ν
i )|xν

i |p−1 +
∑

j∈E∪Ā

yνj∇ifj(x
ν) = 0, ∀i ∈ N̄ .

Next we provide properties of (P1) and (P2) under which the AKKT implies the KKT.
This property is named the extended cone-continuity property (ECCP), which is defined as
follows.

Definition 3.2. (a) We say that x̄ ∈ Γ satisfies the ECCP for (P1) if the set-valued
mapping λ∂ϕ(x) + ΛΓ(x) is outer semicontinuous at x̄, that is,

lim sup
xν→x̄

[λ∂ϕ(xν) + ΛΓ(x
ν)] ⊂ λ∂ϕ(x̄) + ΛΓ(x̄).

If Γ is a closed and convex set, ΛΓ can be replaced by NΓ.
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(b) Similarly, we say x̄ ∈ Θ ∩ Γ satisfies the ECCP for (P2) if the set-valued mapping
ΛΘ∩Γ(x) is outer semicontinuous at x̄, that is,

lim sup
xν→x̄

[NΘ(x
ν) + ΛΓ(x

ν)] ⊂ NΘ(x̄) + ΛΓ(x̄).

If Γ is a closed and convex set, ΛΓ can be replaced by NΓ.

Example 3 (ECCP is easy to be satisfied). In R2, consider x∗ = (1, 1)T and the inequality
constraints defined by g1(x1, x2) = (x1 − 1)3, g2(x1, x2) = (x1 − 1)exp(x2 − 1). Therefore,
Γ is not a convex set. Clearly, x∗ is feasible and both constraints are active at x∗.

In the next, we show ECCP is satisfied at x∗ = (1, 1) ∈ Γ for (P1). First, consider a
sequence {xν} → x∗. It holds that

∂ϕ(xν) = {uν} and ∂ϕ(x∗) = {u∗}

with uν = (p(xν
1)

p−1, p(xν
2)

p−1)T and u∗ = (p, p)T . Since

∇g1(xν
1 , x

ν
2) =

[
3(xν

1 − 1)2

0

]
and ∇g2(xν

1 , x
ν
2) =

[
exp(xν

2 − 1)
(xν

1 − 1)exp(xν
2 − 1)

]
,

it holds that ΛΓ(x
ν) = {wν} and ΛΓ(x

∗) = {y1(1, 0)T | y1 ≥ 0} with

wν = (wν
1 , w

ν
2 )

T =

[
µν
13(x

ν
1 − 1)2 + µν

2exp(x
ν
2 − 1)

µν
2(x

ν
1 − 1)exp(xν

2 − 1)

]
.

Now assume uν +wν → u∗+w∗, it suffices to show u∗+w∗ ∈ ∂ϕ(x∗)+ΛΓ(x
∗), which is

equivalent to w∗ ∈ ΛΓ(x
∗). Suppose by contradiction that w∗ = (w∗

1 , w
∗
2)

T does not belong
to ΛΓ(x

∗), so w∗
2 must be nonzero. There exists ρ > 0 such that for k large enough

|wν
2 | = µν

2 |(xν
1 − 1)exp(xν

2 − 1)| > ρ > 0. (3.1)

In particular xν
1 ̸= 0. Using µν

1 ≥ 0 and (3.1), we get

wν
1 = 3µν

1(x
ν
1 − 1)2 + µν

2exp(x
ν
2 − 1) ≥ µν

2exp(x
ν
2 − 1) ≥ |wν

2 |
|xν

1 − 1|
>

ρ

|xν
1 − 1|

> 0. (3.2)

Taking limits in (3.2) we obtain wν
1 →∞, a contradiction with its convergence. Hence, w∗

must be in ΛΓ(x
∗) and thus

lim sup
xν→x̄

[λ∂ϕ(xν) + ΛΓ(x
ν)] ⊂ λ∂ϕ(x∗) + ΛΓ(x

∗).

Now we show ECCP is satisfied at x∗ = (1, 1) ∈ Γ for (P2). If x∗ ∈ int Θ, then for
sufficiently large ν, NΘ(x

ν) = NΘ(x
∗) ≡ {0}. The proof is trivially the same as above.

We only consider the case that x∗ ∈ ∂Θ. In this case, NΘ(x
ν) = {λuν : λ ≥ 0} and

NΘ(x
∗) = {λu∗ : λ ≥ 0}. Suppose hν = λνuν ∈ NΘ(x

ν) with λν ≥ 0 and hν → h∗ with
λν → λ∗ ≥ 0. It suffices to show that h∗ + w∗ ∈ NΘ(x

∗) + ΛΓ(x
∗), which is equivalent to

w∗ ∈ ΛΓ(x
∗). This reverts to the proof for (P1). Hence,

lim sup
xν→x∗

[NΘ(x
ν) + ΛΓ(x

ν)] ⊂ NΘ(x
∗) + ΛΓ(x

∗).

In the following theorem we show that if ECCP holds, the AKKT implies the KKT.
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Theorem 3.3. (a) For (P1), suppose the AKKT holds at x̄ ∈ Γ. If the ECCP holds at
x̄, then the KKT condition (2.11) is satisfied at x̄.

(b) For (P2), suppose the AKKT holds at x̄ ∈ ∂Θ ∩ Γ. If the ECCP holds at x̄, then the
KKT condition (2.14) is satisfied at x̄.

Proof. (a) First of all, N̄ ⊂ N (xν) for xν sufficiently close to x̄. Since the AKKT condition
holds at x̄, there exist {xν} → x̄ and {wν} ⊂ Rn such that ∇f(xν) + wν → 0, where
wν ∈ λ∂ϕ(xν) +ΛΓ(x

ν). Taking limits and using the continuity of the gradient of f near x̄,
we obtain

−∇f(x̄) = lim
ν→∞

wν ∈ lim sup
ν→∞

[λ∂ϕ(xν) + ΛΓ(x
ν)]

⊂ lim sup
x→x̄

[λ∂ϕ(x) + ΛΓ(x)] ⊂ λ∂ϕ(x̄) + ΛΓ(x̄),

where the last inclusion follows from the ECCP. Therefore, −∇f(x̄) ∈ λ∂ϕ(x̄) + ΛΓ(x̄).
(b) Similarly, since the AKKT condition holds at x̄, there exist {xν} → x̄ and {wν} ⊂ Rn

such that ∇f(xν) + wν → 0, where wν ∈ NΘ(x
ν) + ΛΓ(x

ν). Taking limits and using the
continuity of the gradient of f near x̄, we obtain

−∇f(x̄) = lim
ν→∞

wν ∈ lim sup
ν→∞

NΘ(x
ν) + ΛΓ(x

ν) ⊂ lim
x→x̄

NΘ(x) + ΛΓ(x) ⊂ NΘ(x̄) + ΛΓ(x̄),

where the last inclusion follows from the ECCP. Therefore, −∇f(x̄) ∈ NΘ(x̄) + ΛΓ(x̄).

We discuss the cases when the ECCP holds true. For (P1), we have the following results.

Proposition 3.4. For (P1), the ECCP holds true for any of the following cases.

(a) ΛΓ is outer semicontinuous at x̄ and ∂∞ϕ(x̄) contains no vector v ̸= 0 such that
−v ∈ ΛΓ(x̄).

(b) The EMFCQ is satisfied at x̄.

(c) Γ is a closed and convex set and ∂∞ϕ(x̄) contains no vector v ̸= 0 such that −v ∈
NΓ(x̄).

Proof. (a) Let w̄ be an element of lim sup
x→x̄

[λ∂ϕ(x) + ΛΓ(x)], so there are sequences {xν},

{wν}, {uν} such that xν → x̄, wν → w̄ and

wν
i = uν

i +
∑

j∈E∪Ā

yνj∇ifj(x
ν) (3.3)

with uν ∈ ∂λϕ(xν) and yνj ∈ R+, j ∈ Ā.
If {yνj }, j ∈ E ∪ Ā are bounded, then they all have limits ȳj , j ∈ E ∪ Ā; moreover, {uν}

is also bounded and ū := limν→∞ uν ∈ λ∂ϕ(x̄) (taking limis on a convergent subsequence
if necessary) due to the outer semicontinuity of ∂ϕ. By possibly extracting an convergent
subsequence, we have

uν +
∑

j∈E∪Ā

yνj∇ifj(x
ν)→ ū+

∑
j∈E∪Ā

ȳj∇ifj(x̄) ∈ λ∂ϕ(x̄) + ΛΓ(x̄),

meaning λ∂ϕ+ ΛΓ is outer semicontinuous at x̄.
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If {yνj }, j ∈ E ∪ Ā are unbounded, letting Mν = max{|yνj |, j ∈ E ∪ Ā}. Dividing (3.3) by
Mν , we arrive at

wν

Mν
=

uν

Mν
+

∑
j∈E∪Ā

yνj
Mν
∇ifj(x

ν)

Since max{yνj /Mν , j ∈ {0}∪E ∪Ā} = 1 for all ν, they have nonzero limit point ỹj , j ∈ E∪Ā.
Moreover, ū := limν→∞

uν

Mν ∈ λ∂∞ϕ(x̄), we can extract a convergent subsequence. Thus,
taking limits above, we get

λ∂∞ϕ(x̄) ∋ ū = −
∑

j∈E∪Ā

ỹj∇ifj(x̄) ∈ ΛΓ(x̄),

a contradiction.
(b) If the EMFCQ holds at x̄, then ∂∞ϕ(x̄) contains no vector v ̸= 0 such that −v ∈

ΛΓ(x̄) and ΛΓ = NΓ by Theorem 2.4(a). This reverts to (a).
(c) Let w̄ be an element of lim sup

x→x̄
[λ∂ϕ(x) +NΓ(x)], so there are sequences {xν}, {wν},

{uν}, {vν} such that xν → x̄, wν → w̄ and

wν = uν + vν (3.4)

with uν ∈ ∂λϕ(xν) and vν ∈ NΓ(x
ν).

If {vν} are bounded, then {uν} and {vν} all have limits ū and v̄. Moreover, ū :=
lim
ν→∞

uν ∈ λ∂ϕ(x̄) and v̄ ∈ NΓ(x̄) (possibly taking limits on a convergent subsequence) due

to the outer semicontinuity of ∂ϕ andNΓ. By possibly extracting an convergent subsequence,
we have

uν + vν → ū+ v̄ ∈ λ∂ϕ(x̄) + ΛΓ(x̄),

meaning λ∂ϕ+ ΛΓ is outer semicontinuous at x̄.
If {vν} are unbounded, letting Mν = ∥vν∥. Dividing (3.3) by Mν , we arrive at

wν

Mν
=

uν

Mν
+

vν

Mν
.

Since vν

Mν = 1 for all ν, it has nonzero limit point ṽ ∈ NΓ(x̄) due to the outer semicontinuity

of NΓ. Moreover, ū := lim
ν→∞

uν

Mν ∈ λ∂∞ϕ(x̄), we can extract a convergent subsequence.

Thus, taking limits above, we get

λ∂∞ϕ(x̄) ∋ ū = −v̄ ∈ NΓ(x̄),

a contradiction.

As for (P2), we have the following results.

Proposition 3.5. For (P2), the ECCP holds true for any of the following cases.

(a) ΛΓ is outer semicontinuous at x̄ and the only solution for v1+v2 = 0 with v1 ∈ NΘ(x̄)
and v2 ∈ ΛΓ(x̄) is v1 = v2 = 0.

(b) The EMFCQ is satisfied at x̄.

(c) Γ is a closed and convex set and the only solution for v1 + v2 = 0 with v1 ∈ NΘ(x̄)
and v2 ∈ NΓ(x̄) is v1 = v2 = 0.



CONSTRAINED OPTIMIZATION INVOLVING NONCONVEX ℓP NORMS 175

Proof. (a) The proof is similar to the argument for Proposition 3.4(a) by replacing the role
of uν ∈ λ∂ϕ(x̄) with y0psign(x

ν
N̄ )|xν

N̄ |
p−1 ∈ NΘ(x

ν) (xν is selected sufficiently close to x̄
so that N̄ ⊂ N (xν)) and considering the boundedness of {yνj }, j ∈ {0} ∪ E ∪ Ā instead of

{yνj }, j ∈ E ∪ Ā. Therefore, we skip the details of the proof.

(b) The EMFCQ for (P2) is equivalent to saying that the only solution for v1 + v2 = 0
with v1 ∈ NΘ(x̄) and v2 ∈ ΛΓ(x̄) is v1 = v2 = 0. Moreover, notice that the EMFCQ for
(P2) implies the EMFCQ for (P1). Therefore, we have from [17, Theorem 6.14] that Γ is
regular at x̄ and NΓ(x̄) = ΛΓ(x̄). This case then reverts to (a).

(c) The proof is similar to the argument for (3.4)(c) by replacing the role of λ∂ϕ with
NΘ; therefore it is skipped.

4 Convergence Analysis Using AKKT

The research on algorithms for solving general constrained problems involving ℓp norms is
so far limited. To the best of our knowledge, only simple cases such as linearly constrained
or convex set constrained cases have been studied. When solving for general constrained
problems with ℓp norm, many works focus on the reformulations where the constraint viola-
tion is penalized in the objective [15, 5]. We now extend the existing algorithms for solving
unconstrained cases to general constrained cases and prove the global convergence by show-
ing that AKKT conditions discussed in the previous section are satisfied at the limit point.
In fact, the iteratively reweighted proposed here represents a common and popular class of
methods for handling the nonconvex regularization problems. For example, in [5, 13, 22, 23]
iteratively reweighted algorithms for solving the unconstrained nonconvex ℓp norm problems
were proposed. In [8, 11], relaxation parameters were used to transform the nonconvex and
nonsmooth sparsity-inducing terms into smooth approximate functions and in [25] Wang et
al. proposed a general formulation of nonconvex and nonsmooth group-sparse optimization
problems with convex set constraint. Our main purpose here is to show how the proposed
sequential optimality conditions is used in the convergence analysis.

We extend the framework of iteratively reweighted ℓ1 methods for solving unconstrained
ℓp regularization problems [24] to constrained cases (P1),

min F (x) := f0(x) + λ∥x∥pp s.t. fj(x) ≤ 0, ∀j ∈ I; fj(x) = 0, ∀j ∈ E . (4.1)

where f0 : Rn → R is continuously Lipschitz differentiable with constant Lf ≥ 0. Here Γ is
assumed to be closed and convex.

We first formulated a smooth approximation F (x; ϵ) of F (x)

F (x; ϵ) := f0(x) + λ

n∑
i=1

(|xi|+ ϵi)
p,

where ϵ ∈ Rn
++. At kth iteration, a convex local model to approximate F (x; ϵ) is constructed

G(x;xk, ϵk) := Qk(x) + λ

n∑
i=1

w(xk
i , ϵ

k
i )|xi|

where the weights are given by w(xk
i , ϵ

k
i ) = p(|xk

i | + ϵki )
p−1 and Qk(x) represents a local

approximation mode to f at xk and is generally assumed to be smooth and convex.

As in [24], we make the following assumptions about the choice of (x0, ϵ0) and Qk(·).
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Algorithm 1 General framework of iteratively reweighted ℓ1 approach

Require: α ∈ (0, 1), ϵ0 ∈ Rn
++ and x0.

1: Initialization: Set k = 0.
2: repeat

3: (Reweighing) Compute wk
i = p(|xk

i |+ ϵ
k

i )
p−1, i = 1, · · · , n.

4: (Solving the Subproblem) xk+1 ← argmin
x∈Γ

{Qk(x) + λ
n∑

i=1

wk
i |xi|}.

5: (Update ϵ) Set ϵk+1 ∈ (0, αϵk).
6: Set k ← k + 1 and go to step 3.
7: until Convergence

Assumption 4.1. The initial point (x0, ϵ0) and local model Qk(·) are such that
(i) The level set L(F 0) := {x | F (x) ≤ F 0} is bounded where F 0 := F (x0; ϵ0).
(ii) For all k ∈ N,∇Qk(x

k) = ∇f(xk), Qk(·) is strongly convex with constant M > Lf/2 >
0.

First, we show that F (x, ϵ) is monotonically decreasing over the iterates (xk, ϵk). Define
the following two terms

∆F (xk+1, ϵk+1) := F (xk, ϵk)− F (xk+1, ϵk+1)

∆G(xk+1;xk, ϵk) := G(xk;xk, ϵk)−G(xk+1;xk, ϵk),

and use the shorthands W k := diag
(
wk

1 , . . . , w
k
n

)
.

Proposition 4.1. Suppose Assumption 4.1 holds. Let {(xk, ϵk)} be the sequence generated
by Algorithm 1 . It follows that F (x, ϵ) is monotonically decreasing over {(xk, ϵk)} and

(M − Lf

2
)

k−1∑
t=0

∥xt+1 − xt∥22 ≤ F (x0, ϵ0)− F (xk, ϵk). (4.2)

Hence, lim
k→∞

∥xk+1 − xk∥2 = 0.

Proof. From the same argument as the proof for [24, Proposition 1], we have

∆F (xk+1, ϵk+1) ≥ ∆G(xk+1;xk, ϵk) +
M − Lf

2
∥xk − xk+1∥22. (4.3)

Assumption 4.1 implies the subproblem solution xk+1 satisfies the optimality condition

∇Qk(x
k+1) + λW kyk+1 + zk+1 = 0 (4.4)
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with zk+1 ∈ NΓ(x
k+1) and yk+1 ∈ ∂∥xk+1∥1. Hence,

∆G(xk+1;xk, ϵk)

= Qk(x
k)−Qk(x

k+1) + λ

n∑
i=1

wk
i (|xk

i | − |xk+1
i |)

≥ ⟨∇Qk(x
k+1), xk − xk+1⟩+ M

2
∥xk+1 − xk∥22 + λ

n∑
i=1

wk
i y

k+1
i (xk

i − xk+1
i )

+ zk+1
i (xk

i − xk+1
i )

= ⟨∇Qk(x
k+1) + λW kyk+1 + zk+1, xk − xk+1⟩+ M

2
∥xk+1 − xk∥22

=
M

2
∥xk+1 − xk∥22,

(4.5)

where the inequality is by Assumption 4.1, the convexity of | · | and the definition of normal
cone, and the last equality is by (4.4). Combining (4.3) and (4.5), we have

∆F (xk+1, ϵk+1) ≥ (M − Lf

2
)∥xk − xk+1∥22. (4.6)

Replacing k with t and summing up from t = 0 to k − 1, we have

k−1∑
t=0

(F (xt, ϵt)− F (xt+1, ϵt+1)) ≥ (M − Lf

2
)

k−1∑
t=0

∥xt − xt+1∥22,

completing the proof of (4.2).

Now we prove that every cluster point x̄ of {xk} generated by Algorithm 1 satisfied the
AKKT. As a result, it satisfies the first-order necessary optimality condition of (P1) by
Theorem 3.3 if the CCP condition holds at x̄.

Theorem 4.2. Suppose {xk} is the sequence generated by Algorithm 1 for solving (P1). It
holds that every cluster point of {xk} satisfies the AKKT condition.

Proof. Let x̄ be a cluster point of {xk} with subsequence {xk}S → x̄. By Proposition 4.1,
{xk+1}S → x̄. From the optimality condition of the subproblem of Algorithm 1 , we have

∇if(x
k) +M(xk+1

i − xk
i ) + λp(|xk

i |+ ϵki )
p−1sign(xk+1

i ) + zk+1
i = 0, ∀i ∈ N k+1, (4.7)

where zk+1 ∈ NΓ(x
k+1). For any i ∈ N k+1,

|∇if(x
k+1) + λp|xk+1

i |p−1sign(xk+1
i ) + zk+1

i |
= |(∇if(x

k+1)−∇if(x
k)) + λpsign(xk+1

i )(|xk+1
i |p−1 − (|xk

i |+ ϵki )
p−1)−M(xk+1

i − xk
i )|

≤ (Lf −M)|xk+1
i − xk

i |+ λp(1− p)|x̂k
i |p−2||xk+1

i | − |xk
i | − ϵki |

where x̂k
i is between |xk+1

i |p−1 and (|xk
i |+ ϵki )

p−1. For sufficiently large k, |x̂k
i |p−2 > δ > 0,

N (x̄) ⊂ N (xk) and N (x̄) ⊂ N (xk+1). Therefore, for any i ∈ N (x̄),

|∇if(x
k+1) + λp|xk+1

i |p−1sign(xk+1
i ) + zk+1

i |
≤ (Lf −M)|xk+1

i − xk
i |+ λp(1− p)δp−2|xk+1

i − xk
i |+ λp(1− p)δp−2ϵki → 0

as k →∞. This completes the proof.
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5 Numerical Experiment

In this section, we design numerical experiments to demonstrate the performance of Algo-
rithm 1 for solving the (P1) with application in portfolio management, where f can include
various loss functions such as the variance of portfolio or tracking error of index tracking.
Here we use the commonly seen Markowitz mean-variance model to predict an optimal port-
folio. Specifically, we only consider the shorting-prohibited Markowitz model and assume
the optimal Lagrangian multiplier associated with the mean constraint is known as η which
can be chosen accordingly to a reasonable expected return rate.

In the experiment, we collected historical daily stock price data to obtain R and µ in
S&P 500 index from Yahoo finance, which spans from 01/01/2013 to 31/12/2013. We do
not include any company unless it is traded on the market at least 90% of the trading
days during the data period, nor do any company not listed on the market for the entire
timescale. The total list has 471 companies by 251 trading days. We recast the Markowitz
model with no-shorting constraint as a linear equality constrained optimization problem
with ℓ1/2 regularizer,

min
1

2
xTRx− ηµTx+ λ∥x∥1/21/2

s.t. eTx = 1,

x ≥ 0

(5.1)

where R ∈ Rn×n is the estimated covariance matrix of the portfolio, and ηµ is the estimated
return vector with η > 0 and µ ∈ Rn. We test over a grid of regularization parameter
values and choose the best µ and λ corresponding to a solution that performs well in both
in-sample and out-of-sample Sharpe ratios. By doing this, we choose η = 0.001 and λ = 0.01
in the model.

In Algorithm 1, we use Qk(x) = (Rxk − ηµ)Tx + β
2 ∥x − xk∥22. The parameters are

selected as α = 0.998, β = 1.1Lf , ϵ
0 = 0.001 and the initial point is x0 = 1

ne so that it is
feasible. As mentioned in the last section, AKKT conditions are satisfied at the clustering
point and the ECCP holds true by Proposition 3.4(c) since Γ here is a closed and convex set.
Therefore, from Theorem 3.3(a), the KKT condition of (5.1) is satisfied at the clustering
point generated by the algorithm.

After solving each subproblem, we obtain a primal feasible iterate xk+1 and dual iterate
νk satisfying the optimality condition for the subproblem

(Rix
k − ηµ)Txk+1 + β(xk+1

i − xk
i ) + λwk

i + νk = 0, i ∈ N (xk+1), (5.2)

where Ri is the ith row of R. For any primal-dual pair (x, ν) with x ≥ 0, we can define the
following metric to measure the optimality residual at (x, ν)

α(x, ν) :=
∑

i∈N (x)

|xTRi − ηµi + λpxp−1
i + ν|, (5.3)

where ν is the dual variable associated with the simplex constraint.
We plot the evolution of α(xk, νk) over iterations in Figure 2, which steadily decreases to

0. Figure 3 shows the number of nonzero components of the portfolio versus the regulariza-
tion parameter λ by fixing η = 0.001. We can see that larger λ can yield sparser solutions.

finance.yahoo.com
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Figure 2: The residual α(xk, νk) generated by Algorithm 1

Figure 3: Portfolio sparsity (nonzero components) for different λ
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For out-of-sample testing, we collected historical daily stock price data in S&P 500 index
from Yahoo finance, which spans from 01/01/2014 to 31/03/2014.

Figure 4 shows the Sharpe ratios of our ℓp-norm regularized portfolio. The sparse port-
folios are more implementable due to the transaction costs or physical limitations reasons.
Our results indicate that an intermediate sparsity (around 10) portfolio may have the best
Sharpe ratio in both in-sample or out-of-sample performance.

Figure 4: Portfolio Sharpe ratios for different sparsity: in-sample and out-of-sample

We also compare the performance of the proposed algorithm with different type of exist-
ing method, which is the Successive Difference of Convex Approximation Method (SDCAM)
in [14]. This method makes use of the Moreau envelope as a smoothing technique for the non-
smooth terms and the implementation details are provided in the appendix. With λ = 0.01,
Figure 5 depicts the evolution of objective values versus CPU time for both algorithms,
which implies that Algorithm 1 can converge more rapidly compared with SDCAM.
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Figure 5: Evolution of objective versus CPU time
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A Implementation Details of SDCAM

In this section, we provide the details of the implementation of SDCAM [14]. We can write
problem (5.1) as

min
x∈C

F (x) := f(x) + v(x),

where f(x) = 1
2x

TRx − ηµTx, v(x) = λ∥x∥1/21/2 and C = {x | eTx = 1, x ≥ 0}. Then this

problem can be solved by the SDCAM [14], which approximates F by its Moreau envelope
at each iteration. At the kth iterate, this method solves the following approximate problem

min
x∈C

Fλk
(x) := f(x) + eλk

v(x).

Here eλk
v(x) is the Moreau envelope of v(x) with parameter λk, which takes the form

eλk
v(x) =:= inf

x
{ 1

2λk
∥x− y∥22 + v(y)}.

The SDCAM then drives the parameter λk to 0 and solves each corresponding subproblem
Fλk

iteratively. We can reformulate Fλk
as a DC problem by taking advantage of the

equivalently formulation of eλk
v(x), i.e.,

eλk
v(x) =

1

2λ
∥x∥22 − sup

y∈dom v
{ 1
λ
xT y − 1

2λ
∥y∥22 − v(y)}︸ ︷︷ ︸

Dλ,v(x)

.
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This DC subproblem is solved by the Nonmonotone Proximal Gradient method with ma-
jorization.
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