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where Fi : IRn → IRn, is an instance of a weakV EP with fi(x, y) = 〈Fi(x), y − x〉.

It is well known that gap functions play a vital role in transforming a variational inequality
into an equivalent optimization problem and are crucial in devising error bounds. These er-
ror bounds provide effective estimates for the distance between any arbitrary point and the
solution set of a variational inequality and they are key in giving a stopping criterion for iter-
ative algorithms. There has been a ton of research effort on the gap functions for variational
inequalities, see [10, 23, 27, 6, 4, 20, 32]. Fukushima’s regularization [12] of a gap func-
tion gave a well-defined constrained optimization reformulation for a variational inequality.
Unconstrained optimization reformulations for a variational inequality was proposed in [33]
through introducing a generalized D-gap function (or the ’difference’ gap function), which
essentially is the difference of two regularized gap functions, the generalized versions of those
in [29]. Since the D-gap function provides an unconstrained reformulation, a global error
bound for a variational Inequality was constructed in [33] using the D-gap function. This
construction of the D-gap function has been generalized to a vector variational inequality in
[4].

Turning to the case of equilibrium problems, the concept of D-gap function is extended to
a scalar equilibrium problem by Zhang and Han [34]. Gap functions for vector equilibrium
problems have also gained a keen interest in the recent past. Li et al. [22] extended the
notion of gap a function to a vector equilibrium problem based on nonlinear scalarization.
Gap functions for a nonsmooth convex vector optimization problem, a special case of a
vector equilibrium problems have been investigated in [8]. Gap functions for a system of
vector equilibrium problems have been investigated in [15, 21]. Set-valued gap functions for
a vector equilibrium problem have been constructed in [24, 31] through conjugate duality
in vector optimization. Khan et al. [16] and Zhang et al. [35] have independently proposed
Fukushima’s regularization of a gap function for vector equilibrium problems and developed
error bounds. These gap functions give a constrained minimization reformulation for a vec-
tor equilibrium problem. To the best of our knowledge, the construction of D-gap function
for a vector equilibrium problem has not been attempted so far. Motivated by the above
studies, we extend the notion of D-gap function for a weakV EP and derive error bounds
in terms of the D-gap function. Our results generalize the existing theory of gap functions
and error bounds in [36, 33, 34, 4].

This paper is structured as follows. In Section 2, we propose a regularized version of the gap
function for the weakV EP based on scalarization and study some properties of the same. In
Section 3, we construct D-gap functions for a weakV EP which lead to an unconstrained op-
timization reformulation of weakV EP . Section 4 deals with the construction error bounds
for weakV EP in terms of the regularized gap function and the D-gap function. In section
5, we give some applications and numerical examples to support our results.

2 Regularized Gap Function

In this section, we propose a gap function for weakV EP based on the scalarization link
in [13]. Further, we introduce a regularized version of this gap function in the spirit of
Fukushima [12]. For any ξ ∈ IRm

+ \{0}, consider the following linear scalarization EPξ of the
weakV EP :

EPξ : Find x ∈ K such that 〈ξ, f(x, y)〉 ≥ 0, ∀y ∈ K. (2.1)
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For any ξ ∈ IRm
+ \{0}, let sol(EPξ) denote the set of solutions of EPξ. It is easy to check

that any solution x∗ of EPξ solves weakV EP . Under the assumption of convexity on each
fi(x, .) for any x ∈ K, Lemma 2.1 in [13] establishes that, for any x∗ ∈ weakV EP , there
exists a ξ∗ ∈ IRm

+ \{0} such that x∗ solves EPξ∗ . We restate the following theorem from
[13].

Theorem 2.1. For any x ∈ K, assume that fi(x, ·) is convex for each i, 1 ≤ i ≤ m. Then
the following relation holds:

sol(weakV EP ) =
⋃

ξ∈IRm
+ \{0}

sol(EPξ).

Definition 2.2. Let K ⊆ IRn. A function p : IRn −→ IR∪{∞} is said to be a gap function
for weakV EP if it satisfies the following properties:
i) p(x) ≥ 0, ∀x ∈ K;
ii) p(x∗) = 0 if and only if x∗ solves weakV EP .

In the sequel, we will always consider the following assumption, that will not be explicitly
mentioned.

Assumption A. For every x ∈ K and 1 ≤ i ≤ m, fi(x, .) is a convex function on K.

Proposition 2.3. If Assumption A holds, then the following function ϕ(x) is a gap function
for weakV EP :

ϕ(x) := min
ξ∈Sm

max
y∈K

〈ξ,−f(x, y)〉, (2.2)

where Sm denotes the unit simplex in IRm
+ , i.e., Sm := {x ∈ IRm

+ :
∑m

i=1 xi = 1}.

Proof. Proof goes along the lines of the proof of Theorem 2.2 in [4].

Remark 2.4. The gap function ϕ(x) given by (2.2) is clearly an extension of the gap function
proposed in [26] for a scalar EP . When weakV EP represents the weak Stampacchia vector
variational inequality (SV V I)w, i.e., when fi(x, y) = 〈Fi(x), y − x〉 where Fi : IRn → IRn,
we recover the following gap function θ introduced in [4] for (SV V I)w:

θ(x) := min
ξ∈Sm

max
y∈K

〈
m∑
i=1

ξiFi(x), x− y

〉
.

Note that the gap function θ is not finite valued in general, unless K is assumed to be
compact. To overcome this, a suitable regularization of θ in line with Fukushima [12] is
considered in [4]. We attempt such a regularization for the gap function ϕ in (2.2), by
adding a function that is strongly concave in y, to the term 〈ξ,−f(x, y)〉 in ϕ so that the
maximum is attained.

Consider a function H : IRn × IRn −→ IR satisfying the following conditions B1) -B5):

B1) H is continuously differentiable on IRn × IRn;

B2) H(x, y) ≥ 0 for all (x, y) ∈ IRn × IRn;

B3) H(x, y) = 0 if and only if x = y;
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B4) H(x, .) is strongly convex uniformly in x; i.e., there exists a λ > 0 such that, for
any x ∈ IRn,

H(x, y1) −H(x, y2) ≥ 〈∇yH(x, y2), y1 − y2〉 + λ‖y1 − y2‖2, ∀y1, y2 ∈ IRn;

B5) ∇yH(x, .) is uniformly Lipschitz continuous; i.e., there exists a constant L ≥ 0
such that for any x ∈ IRn

‖∇yH(x, y1) −∇yH(x, y2)‖ ≤ L‖y1 − y2‖, ∀ y1, y2 ∈ IRn .

For example, for any k > 0, the function H : IRn × IRn → IR defined below satisfies B1)
-B5):

H(x, y) = k‖x− y‖2.

Since H(x, y)|x=y = 0 and H(x, .) is strongly convex, y := x is a global minimum of the
function H(x, .) on K and hence the following holds true:

x = y ⇐⇒ ∇yH(x, y) = 0. (2.3)

Now, for any x, y ∈ IRn, using B3), B5) and (2.3)

H(x, y) = H(x, y) −H(x, x) =

∫ 1

0

〈∇yH(x, x+ t(y − x)), y − x〉dt

=

∫ 1

0

〈∇yH(x, x+ t(y − x)) −∇yH(x, x), y − x〉dt

≤
∫ 1

0

L‖y − x‖2tdt, where L is the constant in B5)

Hence, if H satisfies B1)-B5) then for any x, y ∈ IRn

H(x, y) ≤ L

2
‖y − x‖2 where L is the Lipschitz constant in B5) (2.4)

We now define a regularized version ϕα of the gap function ϕ as

ϕα(x) := min
ξ∈Sm

max
y∈K

{〈ξ,−f(x, y)〉 − αH(x, y)}, α > 0, (2.5)

where Sm denotes the unit simplex in IRm
+ . For a given x ∈ IRn and ξ ∈ IRm

+ \{0}, let us
denote

ψα(x, ξ) := max
y∈K

[〈ξ,−f(x, y)〉 − αH(x, y)]. (2.6)

Equivalently,
ψα(x, ξ) := −min

y∈K
[〈ξ, f(x, y)〉 + αH(x, y)]. (2.7)

Remark 2.5. The function ϕα generalizes the gap function for a scalar equilibrium problem
proposed in [26] and the gap function constructed in [4] for a vector variational inequality. We
observe that for any (x, ξ) ∈ IRn × IRm

+ \{0} the function γα(x,ξ)(y) := 〈ξ, f(x, y)〉 + αH(x, y)

is strongly convex on K so that the minimum in (2.7) exists and is unique.

We recall the following that will be used in the sequel.
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Definition 2.6 ([7]). The generalized directional derivative of a locally Lipschitz function
f : IRn → IR, at x in the direction d ∈ IRn is defined as

f◦(x; d) = lim
y→x,t↓0

f(y + td) − f(y)

t
. (2.8)

Definition 2.7. A function f : IRn × IRn −→ IR is said to be strongly monotone on K ⊂ IRn

with modulus µ > 0 if

f(x, y) + f(y, x) ≤ −µ‖y − x‖2, ∀x, y ∈ K.

Definition 2.8 ([7]). A locally Lipschitz function f : IRn → IR is said to be regular at
x ∈ IRn if

1. for all d ∈ IRn, the one sided directional derivative f ′(x; d) exists.

2. for all d ∈ IRn, f ′(x; d) = f◦(x; d).

Lemma 2.9. Let f : IRn × IRm → IR be continuous in (x, y) and let C be a compact set in
IRm. Then the function

g(x) = min
y∈C

f(x, y)

is a continuous function in x.

Theorem 2.10 (Sion’s minimax theorem, [17]). Let A ⊂ IRn be compact and convex and
Let B ⊂ IRm be convex. Let f : IRn × IRm → IR satisfy the following conditions:

(i) f(x, .) is upper-semicontinuous and concave on B for each x ∈ A.

(ii) f(., y) is lower-semicontinuous and convex on A for each y ∈ B.

Then
min
x∈A

sup
y∈B

f(x, y) = sup
y∈B

min
x∈A

f(x, y).

Theorem 2.11. For any α > 0 function ϕα is finite valued. If fi, i = 1, ...,m is continuous
in (x, y), then ϕα is a continuous function.

Proof. Let x∈ IRn. Since fi(x, y), i = 1, ...,m is convex in y, for a given (x, ξ)∈ IRn × IRm
+ \{0}

the function y 7→ 〈ξ, f(x, y)〉 is convex on K. Since H(x, .) is strongly convex, the function

γα(x,ξ)(y) := 〈ξ, f(x, y)〉 + αH(x, y)

is strongly convex on K. Hence ψα(x, ξ) given by (2.7) is finite valued. Let us denote the
unique minimum in (2.7) by yα(x, ξ), that is,

yα(x, ξ) := argminy∈K [〈ξ, f(x, y)〉 + αH(x, y)] (2.9)

which is the unique maximum in (2.6). Further, we note that ψα(x, ·) is lower semi contin-
uous being maximum of a family of linear functions. Therefore, using compactness of Sm

we can conclude that the function ϕα(x) = minξ∈Sm ψα(x, ξ) is finite valued.

Let us now assume that fi, i = 1, ...,m is continuous in (x, y) and let yα(x, ξ) be given by
(2.9). Applying Theorem 4.3.3 of [2], we obtain that the map yα : IRn ×Sm → K is up-
per semi continuous on IRn ×Sm according to Berge. Being single-valued, yα is continuous
on IRn ×Sm. Now, ψα(x, ξ) in (2.6) can be written as ψα(x, ξ) := 〈ξ,−f(x, yα(x, ξ))〉 −
αH(x, yα(x, ξ)). Since each fi and H are continuous on IRn ×Rn, ψα(x, ξ) is continuous on
IRn ×Sm. Since Sm is compact, continuity of ϕα follows from Lemma 2.9.
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The proof of the following theorem goes along the lines of the proof of Theorem 2.7 in [4].
We provide the proof for the sake of completeness.

Theorem 2.12. Let α > 0 and let the function H : IRn × IRn −→ IR satisfy B1)-B4). Then
ϕα(x) ≥ 0 for all x ∈ K. Further, ϕα(x̄) = 0, x̄ ∈ K if and only if x̄ solves weakV EP .

Proof. For a fixed (x, ξ) ∈ K × Sm, consider ψα(x, ξ) defined by (2.6). Since f(x, x) =
H(x, x) = 0, we have ψα(x, ξ) ≥ 0, ∀(x, ξ) ∈ K × Sm. This implies ϕα(x) ≥ 0, ∀x ∈ K.
Assume that there exists an x̄ ∈ K such that ϕα(x̄) = 0. Then there exists a ξ′ ∈ Sm such
that

0 = ψα(x̄, ξ′) = max
y∈K

[〈ξ′,−f(x̄, y)〉 − αH(x̄, y)] = −min
y∈K

γα(x̄,ξ′)(y), (2.10)

where γα(x̄,ξ′)(y) = 〈ξ′, f(x̄, y)〉+αH(x̄, y). Since γα(x̄,ξ′)(x̄) = 0, x̄ is a global minimum of the

strongly convex map y 7→ γα(x̄,ξ′)(y) over the convex set K. It is well-known [30] that this is
equivalent to

−∇yγ
α
(x̄,ξ′)(x̄) ∈ NK(x̄), (2.11)

where NK(x̄) is the normal cone to the set K at x̄. Hence we have〈
m∑
i=1

ξ′i∇yfi(x̄, x̄) + α∇yH(x̄, x̄), y − x̄

〉
≥ 0, ∀y ∈ K. (2.12)

Since (2.3) holds for H, (2.12) collapses to the following:〈
m∑
i=1

ξ′i∇yfi(x̄, x̄), y − x̄

〉
≥ 0, ∀y ∈ K.

Denoting fξ(x, y) = 〈ξ, f(x, y)〉, the above inequality means −∇yfξ′(x̄, y)|y=x̄ ∈ NK(x̄),
which is equivalent to saying that x̄ is a global minimum of the function fξ′(x̄, .) on K, i.e.,

〈ξ′, f(x̄, y)〉 ≥ 0, ∀y ∈ K.

This implies x̄ solves EPξ′ . Applying Theorem 2.1, we obtain that x̄ solves weakV EP .

Conversely, assume that x̄ is a solution to weakV EP . By Theorem 2.1, there exists a
ξ̄ ∈ IRm

+ \{0} such that
〈ξ̄, f(x̄, y〉 ≥ 0, ∀y ∈ K. (2.13)

Setting ξ′ := ξ̄/
∑m

i=1 ξ̄i, we have ξ′ ∈ Sm for which (2.13) holds. Since f(x̄, ·) is convex,
taking ∇yH(x̄, x̄) = 0 into account, it is clear that (2.13) implies (2.12) for any α > 0. Using
the equivalence of (2.12), (2.11) and (2.10), we obtain ψα(x̄, ξ′) = 0. Since ψα(x̄, ξ) ≥ 0,
∀ξ ∈ Sm, we conclude that

ϕα(x̄) = min
ξ∈Sm

ψα(x̄, ξ) = 0.

Hence the proof.

Remark 2.13. The above theorem shows that ϕα is a gap function for weakV EP and hence
weakV EP is equivalent to the constrained minimization problem minx∈K ϕα(x). Though we
do not need to use gap functions for solving weakV EP , they help in devising error bounds
for weakV EP which are crucial in measuring how close is a feasible point from the solution
set of the problem. In view of this, one would look for gap functions that are well-behaved,
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in the sense that the value of the gap function should decrease as we approach the solution
set. This is achieved if the gap function is continuous. However, we saw in Theorem 2.11
that ϕα is continuous only if each fi is continuous in (x, y). The following result states a
property of the gap function ϕα under a weakened assumption on fi, that is, when fi’s are
assumed to be upper-semi continuous in (x, y).

Theorem 2.14. Let fi(x, y) be upper semi-continuous in (x, y), for each i, 1 ≤ i ≤ m. Let
x∗ ∈ Rn and let (xn) −→ x∗. Then, there exist a sub-sequence (xnj

) of (xn) such that

lim inf
j→∞

ϕα(xnj
) ≥ ϕα(x∗).

Proof. Let us denote

gα(ξ, x, y) = −
m∑
i=1

ξifi(x, y) − αH(x, y).

Then ψα(x, ξ) in (2.6) is given by

ψα(x, ξ) = max
y∈K

gα(ξ, x, y).

Since each fi is upper semi continuous in (x, y) and H is continuous in (x, y), gα(ξ, x, y)
is lower semi continuous in (ξ, x, y). This implies that ψα(x, ξ) is lower semi continuous in
(x, y) being supremum of a family of lower semi continuous functions [using Theorem 7.1,
[30]]. We have

ϕα(x) = inf
ξ∈Sm

ψα(x, ξ).

For any fixed x, note that ψα(x, ξ) ≥ 0 for all ξ ∈ Sm and is finite valued. Hence ψα(x, ξ) is
a proper lower semi-continuous function. Since Sm is compact, for each n ∈ N, there exists
a ξn ∈ Sm such that

ϕα(xn) = ψα(xn, ξn),

and there exists a sub-sequence (ξnj ) of (ξn) such that (ξnj ) −→ ξ∗ as j −→ ∞. Hence

lim inf
j−→∞

ϕα(xnj
) = lim inf

j−→∞
ψα(xnj

, ξnj
)

Since ψα(x, ξ) is lower semi-continuous in (x, ξ),

ϕα(x∗) ≤ ψα(x∗, ξ∗) ≤ lim inf
j−→∞

ψα(xnj
, ξnj

),

which implies

ϕα(x∗) ≤ lim inf
j−→∞

ϕα(xnj ).

Proposition 2.15. The gap function ϕα can be equivalently expressed as

ϕα(x) = max
y∈K

{
min

1≤i≤m
−fi(x, y) − αH(x, y)

}
(2.14)

Further, ϕα is a lower-semicontinuous function.
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Proof. The function ϕα in (2.5) is given by

ϕα(x) = min
ξ∈Sm

max
y∈K

{〈ξ,−f(x, y)〉 − αH(x, y)}, α > 0.

Let x ∈ IRn. Note that for each i, the function −fi(x, y) is concave in y and is finite
valued. Hence −fi(x, y) is continuous in y. Since H is continuous, for any ξ ∈ Rm, the map
y 7→ −〈ξ, f(x, y)〉 − αH(x, y) is concave and continuous in y.

On the other hand, for each fixed y ∈ K, the map ξ 7→ −〈ξ, f(x, y)〉−αH(x, y) is linear and
continuous in ξ. Hence using Theorem 2.10 we conclude that

ϕα(x) = max
y∈K

min
ξ∈Sm

{〈ξ,−f(x, y)〉 − αH(x, y)} = max
y∈K

{ min
ξ∈Sm

〈ξ,−f(x, y)〉 − αH(x, y)}.

Now Sm = Co{e1, e2, .., em} where each ei is a unit vector in IRm with 1 in the i’th place.
Hence we have

min
ξ∈Sm

m∑
i=1

ξifi(x, y) = min
ξ∈{e1,e2,..,em}

m∑
i=1

ξifi(x, y) = min
1≤i≤m

fi(x, y).

Hence
ϕα(x) = max

y∈K
{ min
1≤i≤m

−fi(x, y) − αH(x, y)}

Since each y 7→ fi(x, .) is continuous, the function y 7→ min1≤i≤m −fi(x, y) is continuous.
Using continuity of H, the function

vα(x, y) =

{
min

1≤i≤m
−fi(x, y)

}
− αH(x, y)

is continuous in y. Hence ϕα(x) = maxy∈K vα(x, y) given by (2.14) is lower-semi continuous,
being maximum of a family of continuous functions.

Though we started with scalarization approach to define ϕα, in view of the construction of
the D-gap function, we observe that the alternative expression of ϕα in the Proposition 2.15
is advantageous for computation, as it doesn’t involve a scalarization parameter. In fact we
will use this form to plot the graph of ϕα for some sample problems in the later sections.
The other form of ϕα (with scalarization parameter) is useful in the study of error bounds
involving the D-gap function. We notice that both the forms of ϕα have an edge in the
study of some important properties.

2.1 A special case: the regularized gap function for VVI

In this section we consider a special case of weak(V EP ) called the weak Stampacchia vector
variational inequality (SV V I)w which consists of finding an x ∈ K such that

(〈F1(x), y − x〉, 〈F2(x), y − x〉, ..., 〈Fm(x), y − x〉) 6∈ −int IRm
+ , ∀y ∈ K,

where Fi : IRn → IRn, i = 1, ...,m. This is an instance of weakV EP with fi(x, y) =
〈Fi(x), y − x〉 for each i = 1, ...,m. We analyse some properties of regularized gap function
ϕα for this case under the necessary assumptions on the functions involved. We consider
the following assumption B6) on H:
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B6) H is locally Lipschitz in x, uniformly for y in K; that is, for each x ∈ IRn, there exists
a δx > 0 and Gx > 0 such that, H(., y) is Lipschitz on B(x, δx) with Lipschitz constant Gx,
for all y ∈ K.

The following result is a restated version of Proposition 2.3 [28] for the case of the scalar
variational inequality problem V I(Fξ,K) where ξ ∈ Sm.

Theorem 2.16. Let α > 0 and let ξ ∈ Sm. Then, ‖yα(x, ξ) − yα(x′, ξ)‖ ≤ 1
2λL‖x − x′‖ +

1
2λα‖Fξ(x) − Fξ(x′)‖ for all x, x′ ∈ IRn, where λ and L are the constants in B4) and B5)
respectively.

Theorem 2.17. Let Fi, i = 1, ...,m be continuously differentiable on IRn and let H satisfy
the assumption B6). Then ϕα is locally Lipschitz on IRn.

Proof. Let ξ ∈ Sm and x ∈ IRn be fixed. Since each Fi is continuously differentiable on
IRn, Fi locally Lipschitz on IRn(Corollary to Proposition 2.2.1 in [7]). It is easy to see that
Fξ =

∑m
i=1 ξiFi is locally Lipschitz IRn. That is, there exists a δξx > 0 such that Fξ is

Lipschitz on B(x, δξx). Let Lξ
x denote the Lipschitz constant of Fξ on B(x, δξx).

Now, for a fixed y ∈ K and x1, x2 ∈ B(x, δξx),

|〈Fξ(x1), x1 − y〉 − 〈Fξ(x2), x2 − y〉|
= |〈Fξ(x1), x1〉 + 〈Fξ(x1), x2〉 − 〈Fξ(x1), x2〉 − 〈Fξ(x2), x2〉 + 〈Fξ(x2) − Fξ(x1), y〉|
≤ ‖Fξ(x1)‖‖x1 − x2‖ + ‖Fξ(x1) − Fξ(x2)‖‖x2‖ + ‖Fξ(x2) − Fξ(x1)‖‖y‖
≤ ‖Fξ(x1)‖‖x1 − x2‖ + Lξ

x‖x1 − x2‖‖x2‖ + Lξ
x‖x1 − x2‖‖y‖

Let C be a compact set in IRn such that B(x, δξx) ⊂ C. Since Fξ is continuous, there exist
constants M > 0 and N > 0 such that ‖Fξ(x1)‖ ≤M and ‖x1‖, ‖x2‖ ≤ N . Hence

|〈Fξ(x1), x1 − y〉 − 〈Fξ(x2), x2 − y〉| ≤ (M +NLξ
x + Lξ

x‖y‖)‖x1 − x2‖ (2.15)

Hence the map x 7→ 〈Fξ(x), x− y〉 is Lipschitz on B(x, δξx).

Since H is locally Lipschitz in x, uniformly for y in K, there exists a δx > 0 such that for
all y ∈ K, H(., y) is Lipschitz on B(x, δx) (say with a Lipschitz constant Gx > 0). Setting
δ∗ξ (x) = min{δξx, δx}, we conclude from (2.15) that the function

fα,ξ(x, y) = 〈Fξ(x), x− y〉 − αH(x, y) (2.16)

is Lipschitz on B(x, δ∗ξ (x)) with Lipschitz constant M +NLξ
x + Lξ

x‖y‖ + αGx.

Now
ψα(x, ξ) = max

y∈K
〈Fξ(x), x− y〉 − αH(x, y) = max

y∈K
fα,ξ(x, y) (2.17)

Since the maximum in ψα(x, ξ) is attained at yα(x, ξ),

ψα(x, ξ) = fα,ξ(x, yα(x, ξ)) = 〈Fξ(x), x− yα(x, ξ)〉 − αH(x, yα(x, ξ))

To show that x 7→ ψα(x, ξ) is locally Lipschitz, we need to prove the following claim.
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Claim: The map x 7→ fα,ξ(x, yα(x, ξ)) is locally Lipschitz on IRn.

The above claim can be established if we prove that, for any z ∈ B(x, δ∗ξ (x)), the map
x 7→ fα,ξ(x, yα(z, ξ)) is Lipschitz on B(x, δ∗ξ (x)).

Let z ∈ B(x, δ∗ξ (x)). Clearly, yα(z, ξ) ∈ K. Since z ∈ B(x, δ∗ξ (x)), using Theorem 2.16 for the

points z, x ∈ IRn, there exists a constant Dξ
x > 0 such that ‖yα(z, ξ)‖ ≤ Dξ

x. Noting that fα,ξ
is given by (2.16), from the discussion above, the function x 7→ fα,ξ(x, yα(z, ξ)) is Lipschitz
on B(x, δ∗ξ (x)) with Lipschitz constant M + NLξ

x + Lξ
xD

ξ
x + αGx for any z ∈ B(x, δ∗ξ (x))

(refer to the Lipschitz constant M +NLξ
x +Lξ

x‖yα(z, ξ)‖+αGx below the equation (2.16)).

Since x ∈ B(x, δ∗ξ (x)), we thus conclude that the map x 7→ fα,ξ(x, yα(x, ξ)), that is, the map

x 7→ ψα(x, ξ) is Lipschitz on B(x, δ∗x(x)) with Lipschitz constant M +NLξ
x + Lξ

xD
ξ
x + αGx.

Now, the function ϕα(x) given by

ϕα(x) = min
ξ∈Sm

ψα(x, ξ)

is finite valued, it is Lipschitz on B(x, δ∗x(x)). Therefore ϕα is locally Lipschitz.

Our next step is to find an expression for the generalized sub-differential of the function ϕα.
We need the following Lemma.

Lemma 2.18. For a fixed α > 0 and ξ ∈ Rm
+ let fα,ξ(., y) be given by (2.17). If Fi

continuously differentiable for each i ∈ {1, ...,m} then fα,ξ(., y) defined by (2.16) is regular.
That is,

f◦α,ξ(x, y; .) = f ′α,ξ(x, y; .),

where f◦ is the generalized derivative given by (2.8) and f ′ is the one-sided directional
derivative, the derivatives being with respect to x.

Proof. Let d ∈ Rn. Then

f◦α,ξ(x, y; d) = lim
y′→x,t↓0

fα,ξ(y′ + td, y) − fα,ξ(y′, y)

t
(2.18)

fα,ξ(y′ + td, y) − fα,ξ(y′, y)

t

=
〈Fξ(y′ + td), y′ + td− y〉 − αH(y′ + td, y) − 〈Fξ(y′), y′ − y〉 + αH(y′, y)

t

=
〈Fξ(y′ + td) − Fξ(y′), y′ − y〉

t
+

〈Fξ(y′ + td), td〉
t

− α[H(y′ + td, y) −H(y′, y)]

t

Since limits exist for the terms in the above expression, f◦α,ξ(x, y; d) in (2.18) is given by

lim
y′→x,t↓0

〈Fξ(y′ + td) − Fξ(y′), y′ − y〉
t

+ lim
y′→x,t↓0

〈Fξ(y′ + td), td〉
t

− lim
y′→x,t↓0

α[H(y′ + td, y) −H(y′, y)]

t
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Plugging in Fξ =
∑m

i=1 ξiFi,

lim
y′→x,t↓0

〈Fξ(y′ + td) − Fξ(y′), y′ − y〉
t

= 〈
m∑
i=1

ξiF
′
i (x; d), x− y〉;

lim
y′→x,t↓0

〈Fξ(y′ + td), td〉
t

= 〈Fξ(x), d〉

and

lim
y′→x,t↓0

α[H(y′ + td, y) −H(y′, y)]

t
= H ′(x, y; d).

Hence

f◦α,ξ(x, y; d) =

〈
m∑
i=1

ξiF
′
i (x; d), x− y

〉
+ 〈Fξ(x), d〉 +H ′(x, y; d) = f ′α,ξ(x, y; d). (2.19)

Hence the proof.

Theorem 2.19. Let x ∈ Rn. Assume that each Fi be continuously differentiable on IRn. If
each Fi is regular at x ∈ IRn, then the Clarke’s sub-differential of ϕα is given by

∂◦ϕα(x) = Co{Fξ(x) + 〈∇Fξ(x), x− yα(x, ξ)〉 − α(x− yα(x, ξ)) : ξ ∈ Ω(x)},

where Ω(x) = {ξ ∈ Sm : ϕα(x) = ψα(x, ξ)}.

Proof. Since each Fi is continuously differentiable, it follows from Theorem 3.2 in [33] that
ψα(., ξ) is continuously differentiable and the gradient of ψα(., ξ) is given by

∇xψα(x, ξ) = Fξ(x) + 〈∇Fξ(x), x− yα(x, ξ)〉 − α(x− yα(x, ξ)). (2.20)

In view of Theorem 4.2 in [14], we will need the following conditions to hold for ψα:

(i) The map ξ 7→ ψα(x, ξ) is continuous.

(ii) The map (ξ, x) 7→ −∇ψα(x, ξ) is upper semi continuous at (ξ, x) for all ξ ∈ Ω(x).

(iii) The function −ψα(., ξ) is regular at x.

Since each Fi is continuous, it follows from Theorem 2.11 that the the map (x, ξ) 7→ ψα(x, ξ)
is continuous. Hence (i) holds true.

Let the sequence (ξn, xn) converge to (ξ, x). Using (2.20), for any n ∈ N

∇xψα(xn, ξn) = Fξn(xn) + 〈∇Fξn(xn), xn − yα(xn, ξn)〉 − α(xn − yα(xn, ξn)). (2.21)

From Lemma 2.4 in [4], the map (ξ, x) 7→ yα(x, ξ) is continuous. It follows from the proof
of Theorem 2.11 that the map (ξ, x) 7→ ψα(x, ξ) is continuous. Further, since each Fi is
continuous, ∇xψα(xn, ξn) converges to ∇xψα(x, ξ). Hence (ii) holds.

It remains to show that the function −ψα(x, ξ) is regular at x. From (2.17)

ψα(x, ξ) = max
y∈K

〈Fξ(x), x− y〉 − αH(x, y) = max
y∈K

fα,ξ(x, y)
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where fα,ξ(x, y) = 〈Fξ(x), x − y〉 − αH(x, y). Observe that the mapping y 7→ fα,ξ(x, y) is
continuous. Further, the map (x, y) 7→ ∇xgα,ξ(x, y) is continuous at x. Since Fi is regular,
from Lemma 2.18, the function fα,ξ(., y) is also regular. Theorem 4.1 in [14] implies that
the function ψα(., ξ) is regular at x. Hence (iii) is verified.

Therefore using Theorem 4.2 in [14],

∂ϕα(x) = Co{∇ψα(x, ξ)} : ξ ∈ Ω(x)}.

Remark 2.20. With reference to the study on the regularized gap function ϕα in [4], the
results obtained in this section deepen the analysis on properties of ϕα, such as, lower semi-
continuity, Lipschitz continuity of ϕα and an expression for the Clarke’s sub-differential of
ϕα. We further note that there have been studies on ’minimizing sequences’ and ’station-
ary sequences’ of gap functions for nonlinear complementarity problems (NCP) and scalar
variational inequalities (VI) which involve gradients of the gap functions. The Clarke’s sub-
differential of ϕα in Theorem 2.19 can be an important tool to investigate the connection
between minimizing sequences and stationary sequences of ϕα at least for the case of a vector
variational inequality involving functions that are continuously differentiable or Lipschitz.

3 D-Gap Functions

In this section, we construct D-gap functions for weakV EP along the lines of the construc-
tions in [4, 33], using the structure ψα(x, ξ) that appears in the regularized gap function
ϕα. These D-gap functions give an unconstrained minimization reformulation for weakV EP
and also provide a global error bounds for the distance between any given point and the set
sol(weakV EP ).

Let the function H : IRn × IRn −→ IR satisfy the conditions B1)-B4). We define the D-gap
function ϕαβ as

ϕαβ(x) := min
ξ∈Sm

{ψα(x, ξ) − ψβ(x, ξ)}, 0 < α < β, (3.1)

where
ψα(x, ξ) := max

y∈K
[〈ξ,−f(x, y)〉 − αH(x, y)].

We recall that for any (x, ξ) ∈ Rn×IRm
+ \{0}, the maximization problem maxy∈K [〈ξ,−f(x, y)〉−

αH(x, y)] has a unique maximizer denoted by yα(x, ξ). The following result is the analogue
of Theorem 2.11 for ϕαβ .

Theorem 3.1. The function ϕαβ is a finite valued function. If each fi is continuous in
(x, y), then ϕαβ is continuous on Rn.

Proof. For a given (x, ξ) ∈ IRn ×Sm and α > 0, we know that the function ψα(x, ξ) is finite
valued (proof of Theorem 2.11). Hence for any β > α, the difference function ψα(x, ξ) −
ψβ(x, ξ) is finite valued. Thus ϕαβ is finite valued.
The proof of continuity of ϕαβ is similar to the proof of Theorem 2.11, working with the
difference function ψα(x, ξ) − ψβ(x, ξ) instead of ψα(x, ξ).

Theorem 3.2. Let the function H : IRn × IRn −→ IR satisfy B1)-B4). For a fixed x ∈ Rn

and ξ ∈ IRm
+ \{0}, let yα(x, ξ) be the unique maximizer for the maximization problem in

(2.6). Then x = yα(x, ξ) if and only if x solves EPξ.
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Proof. Fix x ∈ Rn and ξ ∈ IRm
+ \{0} and assume that x solves EPξ. The necessary and

sufficient condition for yα(x, ξ) to solve the concave maximization problem (2.6) is〈
−

m∑
i=1

ξi∇yfi(x, yα(x, ξ)) − α∇yH(x, yα(x, ξ)), z − yα(x, ξ))

〉
≤ 0, ∀z ∈ K. (3.2)

In particular for z = x

α 〈∇yH(x, yα(x, ξ)), x− yα(x, ξ)〉 ≥ −

〈
m∑
i=1

ξi∇yfi(x, yα(x, ξ)), x− yα(x, ξ)

〉
. (3.3)

Since fi(x, .) is convex for each i,

〈∇yfi(x, yα(x, ξ)), x− yα(x, ξ)〉 ≤ fi(x, x) − fi(x, yα(x, ξ)).

This implies

−

〈
m∑
i=1

ξi∇yfi(x, yα(x, ξ)), x− yα(x, ξ)

〉
≥

m∑
i=1

ξifi(x, yα(x, ξ)) −
m∑
i=1

ξifi(x, x).

Hence from (3.3)

α 〈∇yH(x, yα(x, ξ)), x− yα(x, ξ)〉 ≥
m∑
i=1

ξifi(x, yα(x, ξ)) −
m∑
i=1

ξifi(x, x).

Since f(x, x) = 0 and x solves EPξ, we get

〈∇yH(x, yα(x, ξ)), x− yα(x, ξ)〉 ≥ 0. (3.4)

On the other hand, B1) and B4) imply

〈∇yH(x, yα(x, ξ)), x− yα(x, ξ)〉 + λ‖x− yα(x, ξ)‖2 ≤ H(x, x) −H(x, yα(x, ξ)) ≤ 0. (3.5)

From (3.4) and (3.5)
‖x− yα(x, ξ)‖2 ≤ 0.

Hence x = yα(x, ξ).

Conversely, let us assume that x = yα(x, ξ). In view of (2.3), the inequality (3.2) reduces to

−

〈
m∑
i=1

ξi∇yfi(x, x), z − x

〉
≤ 0, ∀z ∈ K.

Using the convexity of fi(x, .), the above inequality gives

m∑
i=1

ξifi(x, x) −
m∑
i=1

ξifi(x, z) ≤ 0, ∀z ∈ K.

This implies

m∑
i=1

ξifi(x, z) ≥ 0, ∀z ∈ K.

Hence the proof.
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Corollary 3.3. For a fixed x ∈ IRn and ξ ∈ IRm
+ \{0}, let yα(x, ξ) be the unique maximizer

in (2.6). Then x solves weakV EP if and only if there exists a ξ ∈ IRm
+ \{0} such that

x = yα(x, ξ).

The following proposition can be derived from Proposition 3.1 in [18].

Proposition 3.4. Let the function H : IRn × IRn −→ IR satisfy B1)-B4). For any x ∈ IRn

and ξ ∈ Sm

(β − α)H(x, yβ(x, ξ)) ≤ ψα(x, ξ) − ψβ(x, ξ) ≤ (β − α)H(x, yα(x, ξ)),

where yα(x, ξ) is given by (2.9) and 0 < α < β.

The proof of the following theorem is a direct implication of Proposition 3.4. We however
provide proof for the sake of completeness.

Theorem 3.5. Let the function H : IRn × IRn −→ IR satisfy B1)-B4). Then ϕαβ is non-
negative on IRn. Further, x∗ solves the weakV EP if and only if ϕαβ(x∗) = 0.

Proof. For a given x ∈ IRn, ξ ∈ Sm and β > α, it follows from Proposition 3.4 that

ψα(x, ξ) − ψβ(x, ξ) ≥ 0.

Since x ∈ IRn is arbitrary, we conclude that ϕαβ(x) ≥ 0 for all x ∈ IRn.

Let us assume that x∗ is a solution of weakV EP . Then by Theorem 2.1, there exists a ξ∗ in
IRm

+ \{0} and hence in Sm ( by normalizing) such that x∗ solves EPξ∗ . Hence from Theorem
3.2, x∗ = yα(x∗, ξ∗). From B3) and from Proposition 3.4

ϕαβ(x∗) ≤ (β − α)H(x∗, yα(x∗, ξ∗)) = 0.

Therefore, ϕαβ(x∗) = 0.

Conversely, assume that ϕαβ(x∗) = 0. Since Sm is compact, there exists a ξ∗ ∈ Sm such
that ψα(x∗, ξ∗) − ψβ(x∗, ξ∗) = 0. Using Proposition 3.4,

(β − α)H(x∗, yβ(x∗, ξ∗)) ≤ 0.

Since β > α, we have H(x∗, yβ(x∗, ξ∗)) = 0 which implies x∗ = yβ(x∗, ξ∗). Again, using
Theorem 2.1, x∗ solves EPξ∗ and hence solves weakV EP .

3.1 D-gap function without scalarization

In view of the other gap functions available for weakV EP which are free of scalarization, it
is interesting to ask whether one can construct the D-gap function for weakV EP without
scalarization parameter. Going along the lines of the technique in [33] for any 0 < α < β,
we define the function ζαβ(x) : IRn 7→ IR as :

ζαβ(x) = hα(x) − hβ(x) (3.6)

where hα and hβ are given by

hα(x)=max
y∈K

{(
min

1≤i≤m
−fi(x, y)

)
−αH(x, y)

}
;hβ(x)=max

y∈K

{(
min

1≤i≤m
−fi(x, y)

)
−βH(x, y)

}
(3.7)
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and H satisfies B1) -B4). The function hα can be viewed as a regularization of the scalar-
ization function considered in [25].

We further note that hα can be equivalently expressed as the regularized gap function ϕα
given by (2.5) (shown in Proposition 2.15). That is, the D-gap function ζαβ is nothing but
the difference of the two regularized gap functions ϕα and ϕβ for 0 < α < β.

From (3.6) and (3.7),

ζαβ(x) = hα(x) − hβ(x) = max
y∈K

vα(x, y) − max
y∈K

vβ(x, y)

where

vα(x, y) =

{
min

1≤i≤m
−fi(x, y)

}
− αH(x, y). (3.8)

The functions hα and hβ are not continuous in general but only lower semi-continuous. We
also note that hα and hβ are continuous only when fi’s are continuous in (x, y) (Theorem
2.11 and Proposition 2.15). Hence the continuity of ζ(x) is not guaranteed unless all fi’s
are continuous in (x, y). Since each fi(x, y) is convex in y, using the assumption of strong
convexity of the function H(x, .), the map vα(x, .) is strongly concave on the set K and
hence has a unique maximizer on K. Hence hα and hβ are finite valued which implies that
ζαβ is finite valued.

If yα(x) denotes the unique maximizer of vα(x, .) on K, ζαβ(x) is given by

ζαβ(x) = vα(x, yα(x)) − vβ(x, yβ(x))

That is

ζαβ(x) =

{
min

1≤i≤m
−fi(x, yα(x))

}
− αH(x, yα(x)) −

{
min

1≤i≤m
−fi(x, yβ(x))

}
+ βH(x, yβ(x))

(3.9)

Lemma 3.6. Let x ∈ IRn and for any α < 0, let vα(x, y) be defined by (3.8). Assume that
for each i ∈ {1, ...,m}, fi(x, .) is differentiable. If x = yα(x), then x solves the weakV EP .

Proof. From definition,

hα(x) = max
y∈K

vα(x, y) = −min
y∈K

−vα(x, y) = −min
y∈K

{ max
1≤i≤m

fi(x, y) + βH(x, y)}.

Since yα(x) maximizes vα(x, .) on K, it minimizes uα(x, .) on K where

uα(x, y) = max
1≤i≤m

fi(x, y) + αH(x, y).

Since each fi(x, .) is convex, it is equivalent to

0 ∈ ∂yuα(x, yα(x)) +NK(yα(x)) (3.10)

where NK(yα(x)) is the normal cone to the set K at yα(x). Since each fi(x, .) is differen-
tiable, we have

0 ∈ Co{∇yfi(x, yα(x)) : i ∈ I(x, y)} + α∇yH(x, yα(x)) +NK(yα(x)) (3.11)
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where I(x, y) = {i ∈ {1, ...,m} : fi(x, y) = max1≤i≤m fi(x, y)}. Therefore there exits a
z ∈ Co{∂yfi(x, yα(x)) : i ∈ I(x, y)} + α∇yH(x, yα(x)) such that for all y ∈ K

〈z, y − yα(x)〉 ≥ 0. (3.12)

This implies that there exists an r ∈ {1, ...,m} and λi ≥ 0, 1 ≤ i ≤ r,
∑r

i=1 λi = 1 such that

z =

r∑
i=1

λi∇yfi(x, yα(x)) + α∇yH(x, yα(x)).

From (3.12),〈
r∑

i=1

λi∇yfi(x, yα(x)), y − yα(x)

〉
+ 〈α∇yH(x, yα(x)), y − yα(x)〉 ≥ 0. (3.13)

Since x = yα(x), ∇yH(x, yα(x)) = 0 and hence there exists an i ∈ {1, ..., r} such that

〈∇yfi(x, yα(x)), y − yα(x)〉 ≥ 0.

Using convexity of fi(x, .) we have

fi(x, y) − fi(x, yα(x)) ≥ 〈∇yfi(x, yα(x)), y − yα(x)〉 ≥ 0.

Since x = yα(x), we have fi(x, yα(x)) = 0 and hence we conclude that there exists an
i ∈ {1, ..., r} satisfying

fi(x, y) ≥ 0, ∀y ∈ K.

Hence x solves weakV EP .

Theorem 3.7. Let the function H : IRn × IRn −→ IR satisfy B1)-B4) and let 0 < α < β.
Then ζαβ is non-negative on IRn. Further, x∗ solves the weakV EP if and only if ζαβ(x∗) =
0.

Proof. From (3.9) we have

ζαβ(x) =

{
min

1≤i≤m
−fi(x, yα(x))

}
− αH(x, yα(x)) −

{
min

1≤i≤m
−fi(x, yβ(x))

}
+ βH(x, yβ(x))

Since yα(x) maximizes vα(x, .) = {min1≤i≤m −fi(x, .)} − αH(x, .) ,

ζαβ(x) ≥
{

min
1≤i≤m

−fi(x, yβ(x))

}
− αH(x, yβ(x)) −

{
min

1≤i≤m
−fi(x, yβ(x))

}
+ βH(x, yβ(x))

≥ (β − α)H(x, yβ(x)).

Hence ζαβ(x) ≥ 0.

Similarly, we can show that ζαβ(x) ≤ (β − α)H(x, yα(x)). Hence we have the following
inequality for any x ∈ IRn:

(β − α)H(x, yβ(x) ≤ ζαβ(x) ≤ (β − α)H(x, yα(x)). (3.14)

Let x∗ solve the weakV EP . From Proposition 2.15 and Theorem 3.5 the functions hα and
hβ are also gap functions for the weakV EP . Hence, hα(x∗) = 0 = hβ(x∗) which implies
that ζαβ(x∗) = 0. Conversely, let ζαβ(x∗) = 0. From (3.14) we have (β−α)H(x∗, yβ(x∗) ≤ 0
which implies that x∗ = yβ(x∗). Using Lemma 3.6, x∗ solves weakV EP .
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4 Error Bounds

This section deals with the construction of error bounds for weakV EP in terms of the gap
functions ϕα, ϕαβ and ζαβ under some additional assumptions on the functions fi and H.
In what follows, d(x,C) denotes the distance between a point x and the set C. We need the
following additional assumptions.

C1) For each fixed y, ∇yfi(., y) is Lipschitz continuous, i.e., there exists a constant Li ≥ 0
such that

‖∇yfi(x1, y) −∇yfi(x2, y)‖ ≤ Li‖x1 − x2‖, ∀x1, x2 ∈ IRn .

C2) For each fixed y, ∇yfi(., y) is strongly monotone, i.e., there exists a constant ai ≥ 0
such that

‖∇yfi(x1, y) −∇yfi(x2, y)‖ ≥ ai‖x1 − x2‖2, ∀x1, x2 ∈ IRn .

Theorem 4.1. Let H : IRn × IRn −→ IR satisfy B1)-B5). Let each fi is strongly monotone
on K with modulus µi, i = 1, ...,m and satisfy the assumptions C1) and C2). Then, for any
x ∈ K, there exist constants µ > 0 and M > 0 such that

d(x, sol(weakV EP )) ≤ 1√
µ− αM

√
ϕα(x).

Proof. For a given x ∈ K , ϕα(x) can be written as

ϕα(x) = min
ξ∈Sm

ψα(x, ξ),

where ψα(x, ξ) is given by (2.6). Since ψα(x, .) is continuous and Sm is compact, there
exists a ξ∗ ∈ Sm such that ϕα(x) = ψα(x, ξ∗). Note that ξ∗ depends on the choice of x. Set
fξ∗(x, y) = 〈ξ∗, f(x, y)〉. Since f(x̄, x̄) = 0, any x̄ ∈ K that solves EPξ∗ is a solution to the
problem miny∈K fξ∗(x̄, y). This is equivalent to finding an x̄ ∈ K such that

〈∇yfξ∗(x̄, y)|y=x̄, y − x〉 ≥ 0 ∀y ∈ K. (4.1)

The above variational inequality (4.1) has a unique solution provided the map x 7→ ∇yfξ∗(., y)
is strongly monotone and Lipschitz, both of which are guaranteed under the assumptions
C1) and C2). Hence EPξ∗ has a unique solution which we shall denote by x∗. By Theorem
2.1, x∗ solves weakV EP .

From the definition of ψ(x, ξ∗) in (2.6), we have

ϕα(x) ≥ 〈ξ∗,−f(x, y)〉 − αH(x, y) ∀y ∈ K.

Setting y = x∗,

ϕα(x) ≥ 〈ξ∗,−f(x, x∗)〉 − αH(x, x∗). (4.2)

Since each fi is strongly monotone on K with modulus µi, we have

〈ξ∗, f(x, x∗)〉 + 〈ξ∗, f(x∗, x)〉 ≤ −
m∑
i=1

ξ∗i µi‖x− x∗‖2.
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Since x∗ solves EPξ∗ , 〈ξ∗, f(x∗, x))〉 ≥ 0 and therefore

〈ξ∗,−f(x, x∗)〉 ≥
m∑
i=1

ξ∗i µi‖x− x∗‖2. (4.3)

Using (2.4) and the inequalities (4.2) and (4.3)

ϕα(x) ≥ (µ− αL

2
)‖x− x∗‖2, where µ =

m∑
i=1

ξ∗i µi.

Therefore

d(x, sol(weakV EP )) ≤ ‖x− x∗‖ ≤ 1√
µ− αL

2

√
ϕα(x).

Hence the proof.

Remark 4.2. We note that the above result can also be derived from Proposition 4.2 in [26]
using the scalarization link in Theorem 2.1, by considering the scalar equilibrium problem
EPξ. Further, there are error bounds for weakV EP in terms of regularized gap functions
that are free of scalarization; see for example [31, 35]. We note that the assumptions used
in [31, 35] for establishing error bounds require the calculation of solution sets of all the
individual scalar equilibrium problems EP given by fi’s, where as, we do not need such an
assumption to devise an error bound using ϕα.

We now give sufficient conditions under which ϕαβ provides a global error bound for
weakV EP . The proof of the result below can alternatively be derived from Theorem 2.1
using Theorem 3.1 of [5].

Theorem 4.3. Let H : IRn × IRn −→ IR satisfy B1)-B5). Let C1) and C2) hold for the
functions fi, 1 ≤ i ≤ m. If x∗ solves EPξ for some ξ ∈ Sm, then there exists a c > 0 such
that

‖x− x∗‖ ≤ c‖yβ(x, ξ) − x‖, ∀x ∈ IRn,

where β > 0 and yβ(x, ξ) is given by (2.9).

Proof. Let x ∈ IRn and ξ ∈ Sm. Since yβ(x, ξ) is the unique solution of (2.6), the following
necessary and sufficient condition holds:〈

−
m∑
i=1

ξi∇yfi(x, yβ(x, ξ)) − β∇yH(x, yβ(x, ξ)), z − yβ(x, ξ)

〉
≤ 0, ∀z ∈ K.

In particular for z = x∗〈
−

m∑
i=1

ξi∇yfi(x, yβ(x, ξ) − β∇yH(x, yβ(x, ξ)), x∗ − yβ(x, ξ)

〉
≤ 0. (4.4)

Since x∗ solves EPξ, we have

m∑
i=1

ξifi(x
∗, yβ(x, ξ)) ≥ 0. (4.5)
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Convexity of each fi(x
∗, .) gives〈

m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), x∗ − yβ(x, ξ)

〉
≤

m∑
i=1

ξifi(x
∗, x∗) −

m∑
i=1

ξifi(x
∗, yβ(x, ξ)).

Since f(x∗, x∗) = 0, using (4.5) we get〈
m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), x∗ − yβ(x, ξ)

〉
≤ 0. (4.6)

Adding (4.4) and (4.6)〈
m∑
i=1

ξi∇yfi(x, yβ(x, ξ)) −
m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), yβ(x, ξ) − x∗

〉
≤

−β 〈∇yH(x, yβ(x, ξ), yβ(x, ξ) − x∗〉 .
Rearranging the above inequality〈

m∑
i=1

ξi∇yfi(x, yβ(x, ξ)) −
m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), x− x∗

〉
≤

−

〈
m∑
i=1

ξi∇yfi(x, yβ(x, ξ)) −
m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), yβ(x, ξ) − x

〉
−β 〈∇yH(x, yβ(x, ξ)), x− x∗〉 − β 〈∇yH(x, yβ(x, ξ)), yβ(x, ξ) − x〉 . (4.7)

From the assumption B4) on H, there exists a λ > 0 such that

〈∇yH(x, yβ(x, ξ)), x− yβ(x, ξ)〉 ≤ H(x, x) −H(x, yβ(x, ξ)) − λ‖x− yβ(x, ξ)‖2 ≤ 0. (4.8)

From C1) and C2) the following two inequalities hold:∥∥∥∥∥
〈

m∑
i=1

ξi∇yfi(x, yβ(x, ξ)) −
m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), x− x∗

〉∥∥∥∥∥ ≥ µ∗‖x− x∗‖2, (4.9)

where µ∗ =
∑m

i=1 ξiµi, µi is the modulus of strong monotonicity of ∇yfi(., yβ(x, ξ));∥∥∥∥∥
〈

m∑
i=1

ξi∇yfi(x, yβ(x, ξ)) −
m∑
i=1

ξi∇yfi(x
∗, yβ(x, ξ)), yβ(x, ξ) − x

〉∥∥∥∥∥ ≤

L∗‖x− x∗‖‖yβ(x, ξ) − x‖, (4.10)

where L∗ =
∑m

i=1 ξiLi,  Li is the Lipschitz constant for ∇yfi(., yβ(x, ξ)) on K.

Assumptions B5) and (2.3) imply that

‖〈∇yH(x, yβ(x, ξ)) −∇yH(x, x), x− x∗〉‖ ≤ L‖x− x∗‖‖yβ(x, ξ) − x‖. (4.11)

Applying Cauchy-Schwarz inequality for (4.7) and substituting (4.9), (4.10) and (4.11) in
(4.7), we get

µ∗‖x− x∗‖2 ≤ L∗‖x− x∗‖‖yβ(x, ξ) − x‖ + βL‖x− x∗‖‖yβ(x, ξ) − x‖.
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Therefore

‖x− x∗‖ ≤ L∗ + βL

µ∗ ‖yβ(x, ξ) − x‖.

Hence the proof.

Theorem 4.4. Let fi, i = 1, ...,m satisfy C1) and C2) and let H : IRn × IRn −→ IR satisfy
B1)-B5). Then there exist constants c > 0 and λ > 0 such that for any x ∈ IRn

d(x, sol(weakV EP )) ≤ c√
λ(β − α)

√
ϕαβ(x).

i.e.,
√
ϕαβ provides a global error bound for the weakV EP .

Proof. For a given x ∈ IRn and any 0 < α < β, the function gαβ(x, .) := ψα(x, .) − ψβ(x, .)
is continuous over Sm. Since Sm is compact, there exists a ξ∗ ∈ Sm such that ϕαβ(x) =
gαβ(x, ξ∗). As in the proof of Theorem 4.1, under the assumptions C1) and C2), the problem
EPξ∗ has a unique solution which we shall denote by x∗. Now using Theorem 4.3, there
exists a c > 0 such that

‖x− x∗‖ ≤ c‖yβ(x, ξ∗) − x‖. (4.12)

From B3) and B4), we have

H(x, yβ(x, ξ∗)) = H(x, yβ(x, ξ∗)) −H(x, x)

≥ 〈∇yH(x, x), yβ(x, ξ∗) − x〉 + λ‖x− yβ(x, ξ∗)‖2,

where λ is the modulus of strong convexity of H. Hence by using (2.3)

H(x, yβ(x, ξ∗)) ≥ λ‖x− yβ(x, ξ∗)‖2.

The above inequality and Proposition 3.4 give

‖yβ(x, ξ∗) − x‖ ≤

√
1

λ(β − α)
gαβ(x, ξ∗). (4.13)

Noting that ϕαβ(x) = gαβ(x, ξ∗), from (4.12) and (4.13)

d(x, sol(weakV EP )) ≤ c√
λ(β − α)

√
ϕαβ(x).

Hence the proof.

The following result gives an estimate for the the distance between any point x to the
solution set of EPξ, a linear scalarization of the weakV EP . This is useful for formulating
an error bound for the weakV EP interms of ζαβ .

Theorem 4.5. Let H : IRn × IRn −→ IR satisfy B1)-B5). Let C1) and C2) hold for the
functions fi, 1 ≤ i ≤ m. Then there exists a ξ ∈ Sm such that

d(x, sol(EPξ)) ≤ c∗‖yβ(x) − x‖, ∀x ∈ IRn,

where β > 0, c > 0 and yβ(x) is the unique maximizer of vβ(x, .) given by (3.8).
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Proof. Let x ∈ IRn and let yβ(x) is the unique maximizer of vβ(x, .) on K. From (3.13),
there exists an r ∈ {1, ...,m} and ξi ≥ 0, 1 ≤ ξi ≤ r,

∑r
i=1 ξi = 1 such that〈

r∑
i=1

ξi∇yfi(x, yβ(x)), y − yβ(x)

〉
+ 〈β∇yH(x, yβ(x)), y − yβ(x)〉 ≥ 0.

Setting ξi = 0 for r < i ≤ m, we can conclude the existence of an element ξ ∈ Sm such that〈
m∑
i=1

ξi∇yfi(x, yβ(x)), y − yβ(x)

〉
+ 〈β∇yH(x, yα(x)), y − yβ(x)〉 ≥ 0, (4.14)

for all y ∈ K.

Now, let x∗ be a solution of the problem EPξ, for this particular ξ. Proceeding exactly as
in the proof of Theorem 4.3 (from (4.4) on wards), the following hold true:

that is, there exists a c∗ > 0 satisfying

‖x− x∗‖ ≤ c∗‖yβ(x) − x‖.

Hence the proof.

Theorem 4.6. Let H satisfy B1) − B5). Let C1) and C2) hold for the functions fi,
1 ≤ i ≤ m. Then there exist constants c∗ > 0 and λ > 0 such that for any x ∈ IRn

d(x, sol(weakV EP )) ≤ c∗√
λ(β − α)

√
ζαβ(x).

where λ is the parameter in B4).

Proof. From B3) and B4)

H(x, yβ(x)) = H(x, yβ(x)) −H(x, x)

≥ 〈∇yH(x, x), yβ(x) − x〉 + λ‖x− yβ(x)‖2,

where λ is the parameter of strong convexity of H. Since ∇yH(x, x) = 0,

H(x, yβ(x)) ≥ λ‖x− yβ(x)‖2

Using (3.14) the above inequality gives

λ(β − α)‖x− yβ(x)‖2 ≤ ζαβ(x).

Hence from Theorem 4.5, there exists a ξ ∈ Sm and c∗ > 0 such that

d(x, sol(EPξ)) ≤ c∗√
λ(β − α)

√
ζαβ(x), ∀x ∈ IRn,

Now, using Theorem 2.1, since sol(EPξ) ⊆ sol(weakV EP ) for any ξ ∈ Sm, proof follows.
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5 Applications

Let us consider the vector optimization problem V OP with convex objective functions. It
is given as

min
x∈K

g(x) = (g1(x), ..., gm(x)) (5.1)

where gi : IRn −→ IR is a convex function for each i = 1, ...,m and K is a closed convex set
in IRn. We recall the notion of weak pareto minimum. A vector x∗ ∈ K is a weak pareto
minimizer of (V OP ) if

g(x) − g(x) 6∈ −int IRm
+ , ∀x ∈ K.

If x is a pareto minimizer of (V OP ) with fis are not necessarily differentiable, the following
optimality condition holds:

(g′1(x, x− x), ..., g′m(x, x− x)) 6∈ −int IRm
+ , ∀x ∈ K. (5.2)

This is a weakV EP with fi(x, y) = g′i(x̄, x− x̄).

Since gi is convex for each i, y 7→ g′i(x, y − x) is convex for each fixed x ∈ IRn. Since it is
finite valued, it is continuous y. Hence the assumptions on fi(x, y) including Assumption A
are satisfied for the case fi(x, y) = g′i(x̄, x− x̄).

For the case when each gi is continuously differentiable, x is a weak pareto minimum of
(V OP ) if and only if the following inequality holds true for x:

(〈∇g1(x̄), y − x̄〉, 〈∇g2(x̄), y − x̄〉, ..., 〈∇gm(x̄), y − x̄〉) 6∈ −int IRm
+ , ∀y ∈ K. (5.3)

The above problem is a weak Stampacchia vector variational inequality defined by (1.2).

Example 5.1. Let g1.g2 : IR → IR be defined as

g1(x) = x2 − x, g2(x) = x2 + x

and K = [−1, 1]. We consider the vector optimization problem

min
x∈K

g(x) = (g1(x), g2(x)). (5.4)

This is equivalent to solving the weakV EP with f1(x, y) = g′1(x, y − x) and f2(x, y) =
g′2(x, y − x). The regularized gap function ϕα for this case

ϕα(x) = max
y∈K

{min {−g′1(x, y − x), − g′2(x, y − x)} − αH(x, y)}.

Fugure 1 shows that graph of the regularized gap function ϕα(x) when α = 0.1 and H(x, y) =
|y − x|2. We see that ϕα(x) = 0 for all x ∈ [− 1

2 ,
1
2 ], showing that [− 1

2 ,
1
2 ] is the set of weak

Pareto solutions.

Example 5.2. Let g1.g2 : IR → IR be defined as

g1(x) = x2, g2(x) = (x− 2)2

and K = [−3, 3]. We consider the vector optimization problem

min
x∈K

g(x) = (g1(x), g2(x)). (5.5)
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Figure 1: The Graph of ϕα for Example 5.1

This is equivalent to solving the weakV EP with f1(x, y) = g′1(x, y − x) and f2(x, y) =
g′2(x, y − x). The D-gap function ζαβ for this case

ζαβ(x) = hα(x) − hα(y),

where hα and hβ are given by

hα(x) = max
y∈K

{min {−g′1(x, y − x), − g′2(x, y − x)} − αH(x, y)};

hβ(x) = max
y∈K

{min {−g′1(x, y − x), − g′2(x, y − x)} − βH(x, y)}.

Figure 2 is the graph of D-gap function ζαβ(x) for α = 0.1, β = 0.2 and H(x, y) = |y − x|2.
We see that ϕα(x) = 0 for all x ∈ [0, 2], showing that [0, 2] is the set of weak Pareto solutions.

Example 5.3. Let g1.g2 : IR2 → IR be defined as

g1(x1, x2) = |x1| + x2, g2(x) = x21 + x22

and K = [−2, 2] × [−2, 2]. Consider the following nonsmooth vector optimization problem
in two dimensions

min
x∈K

g(x) = (g1(x), g2(x)). (5.6)

The regularized gap function ϕα for this case

ϕα(x) = max
y∈K

{min {−g′1(x, y − x), − g′2(x, y − x)} − αH(x, y)}.
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Figure 2: The Graph of ζαβ for Example 5.2

Note that the function g1 is not differentiable on the line {(0, x2) ∈ IR2 : −2 ≤ x2 ≤ 2}.
We plotted ϕα(x) in three dimensions using MATLAB for the case α = 0.5 and H(x, y) =
‖y − x‖2. We see that ϕα(x) = 0 for all x ∈ {(0, x2) : −2 ≤ x2 ≤ 0}, which is the set of
weak Pareto solutions.

The following examples support the assumptions C1) and C2).

Example 5.4. Let A1 and A2 be symmetric positive definite matrices of order n× n. Let
f1 : IRn × IRn → IR and f2 : IRn × IRn → IR defined by

f1(x, y) =
1

2
〈x,A1y〉 +

1

2
‖y‖2A1

− ‖x‖2A1
and f2(x, y) =

1

2
〈x,A2y〉 +

1

2
‖y‖2A2

− ‖x‖2A2
,

where ‖.‖A denotes the norm in IRn defined by ‖x‖A = 〈x,Ax〉 1
2 . Clearly, f1 and f2 satisfy

all the basic assumptions we need. Further,

∇yf1(x, y) =
1

2
A1x+A1y and ∇yf2(x, y) =

1

2
A2x+A2y.

Then,

‖∇yf1(x1, y) −∇yf1(x2, y)‖ =

∥∥∥∥1

2
A1x1 +A1y −

1

2
A1x2 −A1y

∥∥∥∥ ≤ 1

2
‖A1‖‖x1 − x2‖ ,
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Figure 3: The Graph of ϕα for Example 5.3

where ‖A1‖ is the 2-norm(operator norm) of the matrix A1, and

〈∇yf1(x1, y) −∇yf1(x2, y), x1 − x2〉 =

〈
1

2
A1x1 +A1y −

1

2
A1x2 −A1y, x1 − x2

〉
=

〈
1

2
A1(x1 − x2), x1 − x2

〉
=

〈
1

2
x1 − x2, A1(x1 − x2)

〉
≥ λmin(A1)‖x1 − x2‖2,

where λmin(A1) is the minimum eigenvalue of A1. Hence, the map x 7→ ∇yf1(., y) (similarly,
x 7→ ∇yf2(., y)) is strongly monotone and Lipschitz continuous for each fixed y.

Example 5.5. Let M1 and M2 be symmetric n × n positive definite matrices and let
q1, q2 ∈ IRn. Let f1(x, y) = 〈M1x+ q1, y − x〉 and let f2(x, y) = 〈M2x+ q2, y − x〉. Clearly,
f1 and f2 satisfy the assumptions we need. We have

〈∇yf1(x1, y) −∇yf1(x2, y), x1 − x2〉 = 〈M1x1 + q1 −M1x2 − q1, x1 − x2〉
= 〈x1 − x2,M1(x1 − x2)〉
≥ λmin(M1)‖x1 − x2‖2,

where λmin(M1) is the minimum eigenvalue of M1, and

‖∇yf1(x1, y) −∇yf1(x2, y)‖ = ‖M1x1 + q1 −M1x2 − q1‖ ≤ ‖M1‖‖x1 − x2‖.

Hence, the map x 7→ ∇yf1(., y) (similarly, x 7→ ∇yf2(., y)) is strongly monotone and Lips-
chitz continuous for each fixed y.
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6 Conclusions

In this paper, we generalized some gap functions for the case of a weakV EP along the lines
of Fukushima’s regularization [12]. Under suitable assumptions on the functions involved,
we constructed error bounds for a weakV EP in terms of the gap functions ϕα, ϕαβ and
ζαβ . We noticed that it is hard to prove the continuity of the gap functions when one
of the functions fi, 1 ≤ i ≤ m fail to be continuous in (x, y). However, the alternative
structure of the gap function ϕα shows that it is lower semi-continuous. The D-gap function
ζαβ doesn’t contain a scalarization parameter and is computationally advantageous. In
view of this, the error bound in terms of ζαβ can be more useful. The gap functions and
the error bounds developed in this paper can be exploited to devise stopping criterion for
algorithms for solving weakV EP . In fact, if we generate approximate solutions for a convex
multi-objective optimization problem using any known methods, such as Genetic algorithms,
these gap functions can be helpful to compare solutions from any two methods and give us
a better approximation.
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