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The presence of coupled constraints makes these problems more difficult to solve, but
they arise in many fields of mathematics. Among these are economic equilibrium models
(see for instances [17, 23]), n-person games (see for instances [12, 20, 27]), the multicriteria
decision making models (see for instances [14,18]), quasi-variational inequalities (see for in-
stance [5]), two-level programming (see for instance [1]) and so on. This has attracted the
attention of specialists in researching those issues. Yet, there are few papers on approaches
for solving variational inequalities with coupled constraints. One of the most well-known
sources for a comprehensive numerical examination of variational inequality and complemen-
tarity problems is the book by Facchinei and Pang [10]. However, the variational inequality
problems with coupled constraints were not addressed in this book.

Let us recall the definition of the second-order cone as follows.
The second-order cone (SOC) in ℜn (n ≥ 1), also called the Lorentz cone or the icecream

cone, is defined as
Kn = {(x1; x̄)|x1 ∈ ℜ, x̄ ∈ ℜn−1, x1 ≥ ∥x̄∥}. (1.2)

If n = 1, Kn is the set of nonnegative reals ℜ+. Hence the problem (1.1) in Antipin [2] is a
special case of our second-order cone coupled constrained variational inequality (SOCCCVI)
problem.

Several academics have been interested in the second-order cone constrained variational
inequality in recent years, see for examples [21, 22, 28–30]. Neural network methods based
on the Karush-Kuhn-Tucker (KKT) conditions of second-order cone constrained variational
inequalities or programming issues are primarily deployed in [21, 22, 28, 29] to solve the
relevant problems. In Sun and Zhang [30], a modified Newton method with Armijo line
search is shown to achieve global convergence with a local super linear rate of convergence on
the second-order cone constrained variational inequality problem under specific assumptions.

Arrow and Solow [4] used the augmented Lagrange function for the first time in their
analysis of the differential equation method for equality constrained optimization problems.
Hestenes [13] and Powell [24] pioneered the augmented Lagrange method for equality con-
strained optimization problems, which was later extended to nonlinear programming with
equality constraints by Buys [8] and Rockafellar [26]. Bertsekas [6] provided further devel-
opment of the augmented Lagrange method for dealing nonlinear optimization issues. The
idea of the augmented Lagrange method was applied by Antipin [2] to solve variational
inequalities problems with coupled constraints.

In this paper, we use the idea of augmented Lagrange method to solve the SOCCCVI
problem (1.1) and report numerical results of the proposed method for solving three SOC-
CCVI problems with 2000 variables. Actually, the SOCCCVI problem can always be con-
sidered as a special minimization problem due to the coupled constraints, so we can convert
the SOCCCVI problem (1.1) into several different equivalent formulas by using the saddle
point inequality of the Lagrange function and the characteristics of projection operators.
To build the augmented Lagrange method and demonstrate its convergence for solving the
SOCCCVI problem, we need to use fundamental notions and characteristics of the second-
order cone Km, which can be found in Bonnans and Shapiro [7]. We apply the semi-smooth
Newton method to provide an approximate solution to the inner problem contained in the
augmented Lagrange method, making the proposed method implementable and quick.

The paper is organized as follows. In Section 2, we present some preliminaries pertaining
to the second-order cone and symmetric functions. Due to the coupled constraints, the
SOCCCVI problem can be viewed as a special minimization problem, so we convert it
into a saddle point problem and obtain the equivalent forms based on the characteristics of
projection operators in Section 3. In Section 4, we establish the augmented Lagrange method
and prove its global convergence theorem for solving the SOCCCVI problem (1.1). Finally,
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in Section 5, the numerical results are reported to confirm the efficiency and quickness of
the augmented Lagrange function method for handling several SOCCCVI problems.

2 Preliminaries

The projection operator to a convex set is quite useful in reformulating the SOCCCVI
problem (1.1) as an equation. Let C be a convex closed set, for every x ∈ ℜn, there is a
unique x̂ in C such that

∥x− x̂∥ = min{∥x− y∥ | y ∈ C}.

The point x̂ is the projection of x onto C, denoted by ΠC(x). The projection operator
ΠC : ℜn → C is well defined over ℜn and it is a nonexpensive mapping.

Lemma 2.1 ([19]). Let H be a real Hilbert space and C ⊂ H be a closed convex set. For a
given z ∈ H, u ∈ C satisfies the inequality

⟨u− z, v − u⟩ ≥ 0, ∀v ∈ C,

if and only if u−ΠC(z) = 0.

Next, we introduce the projection operator ΠKn : ℜn → Kn and Kn is the second-order
cone (SOC) defined (1.2) in ℜn.

In this paper, ∥ · ∥ is the l2 norm. For any x = (x1; x̄), y = (y1; ȳ) ∈ ℜ×ℜn−1, we define
their Jordan products

x ◦ y = (xT y; y1x̄+ x1ȳ). (2.1)

Denote x2 = x ◦ x and ∥x∥ =
√
x2, where for any y ∈ Kn,

√
y is the unique vector in Kn

such that y =
√
y ◦ √y.

It follows from [11] that each x = (x1; x̄) ∈ ℜ × ℜn−1 admits a spectral factorization,
associated with Kn, of the form

x = ρ1µ
(1) + ρ2µ

(2),

where ρ1, ρ2 and µ(1), µ(2) are the spectral values and the associated spectral vectors of x
given by

ρi = x1 + (−1)i∥x̄∥,

u(i) =

 1
2

(
1; (−1)i x̄

∥x̄∥

)
, if x̄ ̸= 0,

1
2 (1; (−1)iω), if x̄ = 0,

for i = 1, 2, with ω being any vector in ℜn−1 satisfying ∥ω∥ = 1. If x̄ ̸= 0, the factorization
is unique.

For x ∈ ℜn, its factorization is as follows

x = λ1(x)c1(x) + λ2(x)c2(x),

then the projection of x onto Kn, denoted by ΠKn , can be represented in the following.

ΠKn = [λ1(x)]+c1(x) + [λ2(x)]+c2(x),
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where [λi]+ = max{0, λi}, i = 1, 2. We can calculate it as follows.

ΠKn(x) =


1
2

(
1 + x1

∥x̄∥

)
(∥x̄∥; x̄), if |x1| < ∥x̄∥

x, if ∥x̄∥ ≤ x1

0, if ∥x̄∥ ≤ −x1

Importantly, ΠKn(·) is semi-smooth over ℜn, see for instance [9]. In the following, we denote
ΠKm(·) = ΠKm1 (·)×ΠKm2 (·)× · · · × ΠKmp (·) in solving the SOCCCVI problem (1.1).

Now we recall the results about symmetric and skew-symmetric functions from Antipin
[3].

Definition 2.2 ([3]). A function g from ℜn×ℜn into ℜm is said to be symmetric on ℜn×ℜn

if it satisfies the condition

g(x, y) = g(y, x), ∀x ∈ ℜn, ∀y ∈ ℜn. (2.2)

Properties of symmetric functions are investigated in [3], we list two of them in the
following.

Property 2.1 ([3]). The matrices of gradient-restrictions of vector symmetric function g
with respect to variable x and y onto the diagonal of the square Ω×Ω are identical. That is

∇⊤
y g(x, x) = ∇⊤

x g(x, x), ∀x ∈ Ω. (2.3)

Property 2.2 ([3]). The operator 2∇yg(x, y)|x=y is potential operator and coincides with
the gradient of the restriction of the symmetric function g to the diagonal of the square
Ω× Ω, that is,

2∇⊤
y g(x, y)|x=y = ∇⊤g(x, x), ∀x ∈ Ω, ∀y ∈ Ω. (2.4)

At the end of this section, we recall the definition of semi-smooth mappings. For a
mapping G : ℜn → ℜm, we denote by JG(x) its Fréchet-derivative at x ∈ ℜn. Let DG be
the set of Fréchet-differentiable points of G in ℜn. The Bouligand-Subdifferential of G at
x ∈ ℜn, denoted ∂BG(x), is

∂BG(x) := {H ∈ ℜm×n : H = lim
k→∞

JG(xk) |xk ∈ DG, x
k → x}.

And the Clarke’s generalized Jacobian of G at x is the convex hull of ∂BG(x), that is,
∂G(x) = conv{∂BG(x)}.

The semi-smooth property of mappings was introduced by Qi and Sun [25] to develop
nonsmooth Newton method. Moreover, Kummer [15, 16] made a great contribution to the
study of semi-smooth functions, respectively. We adopt the definition given by [10], which
is equivalent to the original definition in Qi and Sun [25].

Definition 2.3 ([10]). Let G : ℜn −→ ℜm be a locally Lipschitz continuous mapping. We
say that G is semi-smooth at a point x ∈ ℜn if

(i) G is directionally differentiable at x; and

(ii) for any ∆x ∈ ℜn and H ∈ ∂G(x+∆x) with ∆x −→ 0,

G(x+∆x)−G(x)−H(∆x) = o(∥∆x∥).
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3 Transformations of the SOCCCVI Problem

In this section, the second-order cone coupled constrained variational inequality problem
(1.1) can always be viewed as the minimization of the function f(y) = ⟨F (x∗), y − x∗⟩ on
the set C = {y ∈ Ω| − g(x∗, y) ∈ Km} and f(y) ≥ 0. Define the Lagrange function

L(x∗, y, p) = ⟨F (x∗), y − x∗⟩+ ⟨p, g(x∗, y)⟩, ∀y ∈ C, ∀p ∈ Km,

where x∗ is the solution to the SOCCCVI problem (1.1). And y, p are the primal and dual
variables. Since x∗ is the minimum of f(y) on Ω, the pair (x∗, p∗) is a saddle point of
L(x∗, y, p), i.e., according to the saddle point theorem, satisfies the system of inequalities

L(x∗, x∗, p) ≤ L(x∗, x∗, p∗) ≤ L(x∗, y, p∗), ∀y ∈ Ω, ∀p ∈ Km. (3.1)

This system can be represented in somewhat different manner as

x∗ ∈ argmin{⟨F (x∗), y − x∗⟩+ ⟨p∗, g(x∗, y)⟩| y ∈ Ω},
p∗ ∈ argmax{⟨p, g(x∗, x∗)⟩| p ∈ Km}.

(3.2)

There are other equivalent representations of system (3.2). Assuming that g(x, y) is
differentiable with respect to y for any x, we rewrite system (3.2) as

⟨ F (x∗) +∇yg(x
∗, x∗)p∗, y − x∗⟩ ≥ 0, ∀y ∈ Ω,

⟨p− p∗,−g(x∗, x∗)⟩ ≥ 0, ∀p ∈ Km.
(3.3)

By using Lemma 2.1, the above system of variational inequalities is represented in the
form of operator equations as

x∗ = ΠΩ(x
∗ − α(F (x∗) +∇yg(x

∗, x∗)p∗)),

p∗ = ΠKm(p∗ + αg(x∗, x∗)),
(3.4)

where ΠΩ(·) and ΠKm(·) are the projection operators of any vector onto the set Ω and the
second-order cone Km defined in (1.1), respectively, α > 0 is step-length parameter.

System (3.3) can be transformed as follows. The first inequality in this system can be
represented as

⟨ F (x∗), y − x∗⟩ + ⟨ p∗,∇⊤
y g(x

∗, x∗)(y − x∗)⟩ ≥ 0, ∀y ∈ Ω. (3.5)

Next, taking into account the key property (2.4) of symmetric functions and convexity
of vector-valued function g componentwise, we have following expression of the second term
in the first inequality of (3.3) as

⟨p∗,∇⊤
y g(x

∗, x∗)(y − x∗)⟩ = 1

2
⟨p∗,∇⊤g(x∗, x∗)(y − x∗)⟩ ≤ 1

2
⟨p∗, g(y, y)− g(x∗, x∗)⟩. (3.6)

Finally, we can rewrite the first inequality of (3.3) in the form

⟨ F (x∗), y − x∗⟩+ 1
2 ⟨p

∗, g(y, y)− g(x∗, x∗)⟩ ≥ 0, ∀y ∈ Ω,

⟨p− p∗,−g(x∗, x∗)⟩ ≥ 0, ∀p ∈ Km.
(3.7)

Thus, the second-order cone coupled constrained variational inequality problem (1.1)
reduces to the system of variational inequality (3.7).

Remark 3.1. When the vector-function g is symmetric and differentiable with respect to
y for any x, the transformations (3.2)-(3.4) are equivalent from each other by using the
properties of the projection operators. Moreover its restriction g(x, y)|x=y on the diagonal
of the square Ω× Ω is a convex function, (3.2)-(3.4) can be changed into (3.7).
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4 The Augmented Lagrange Method

Now we construct the augmented Lagrange method to solve the SOCCCVI problem (1.1),
it can be stated as follows.

Let x1 ∈ Ω, p1 ∈ Km be the initial estimated solution and Lagrange multiplier. Assume
that the k−th iteration approximation (xk, pk) are known, then the next approximation
(xk+1, pk+1) can be determined by

xk+1 ∈ argmin{ 1
2∥y − xk∥2 + αM(xk+1, y, pk) | y ∈ Ω},

pk+1 = ΠKm(pk + αg(xk+1, xk+1)), α > 0,
(4.1)

where

M(x, y, p) = ⟨F (x), y − x⟩+ 1

2α
∥ΠKm(p+ αg(x, y))∥2 − 1

2α
∥p∥2 (4.2)

is the augmented Lagrangian function for problem (3.1).
Note that xk+1 appears in both the left side and the right side of (4.1), thus (4.1) are

implicit equations. It is an important issue for solving such implicit equations.
From (4.1), xk+1 is the minimum point. We can calculate system (4.1) as the following

equivalent variational inequalities:

⟨xk+1 − xk + α(F (xk+1) +∇yg(u
k+1)ΠKm(pk + αg(uk+1)), y − xk+1⟩ ≥ 0, ∀y ∈ Ω, (4.3)

and
⟨pk+1 − pk − αg(uk+1), p− pk+1⟩ ≥ 0, ∀p ∈ Km, (4.4)

where uk+1 represents (xk+1, xk+1).
Next we demonstrate the convergence of the augmented Lagrange method for solving

the SOCCCVI problem (1.1).

Theorem 4.1. Let the solution set of the second-order cone coupled constrained variational
inequality problem (1.1) be nonempty, the function F be a monotone operator, the vector-
function g be symmetric and differentiable with respect to y for any x, moreover its restriction
g(x, y)|x=y on the diagonal of the square Ω × Ω be a convex function, Ω ⊆ ℜn be a convex
closed set and α > 0. Then, the sequence {xk} constructed by the augmented Lagrange
method (4.1) converges to a solution of the second-order cone coupled constrained variational
inequality problem (1.1).

Proof. Setting y = x∗ in (4.3) and taking into account the second equality of (4.1), we obtain

⟨xk+1 − xk + α(F (xk+1) +∇yg(u
k+1)pk+1), x∗ − xk+1⟩ ≥ 0.

From the above inequality, we have

⟨xk+1 − xk, x∗ − xk+1⟩+α⟨F (xk+1), x∗ − xk+1⟩+α⟨∇yg(u
k+1)pk+1, x∗ − xk+1⟩ ≥ 0. (4.5)

Using (3.6) and the convexity of g(x, x), the last term in (4.5) can be expressed as

⟨pk+1,∇⊤
y g(u

k+1)(x∗ − xk+1)⟩ =
1

2
⟨pk+1,∇⊤g(uk+1)(x∗ − xk+1)⟩

≤ 1

2
⟨pk+1, g(x∗, x∗)− g(uk+1)⟩.

(4.6)

(4.6) together with (4.5) deduce that

⟨xk+1 − xk, x∗ − xk+1⟩+ α⟨ F (xk+1), x∗ − xk+1⟩+ α

2
⟨pk+1, g(x∗, x∗)− g(uk+1)⟩ ≥ 0. (4.7)
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Setting y = xk+1 in the first inequality in (3.7) yields that

⟨F (x∗), xk+1 − x∗⟩+ 1

2
⟨p∗, g(xk+1, xk+1)− g(x∗, x∗)⟩ ≥ 0. (4.8)

Summing (4.7) and (4.8), we deduce that

⟨xk+1 − xk, x∗ − xk+1⟩+ α⟨ F (xk+1)− F (x∗), x∗ − xk+1⟩
+
α

2
⟨pk+1 − p∗, g(x∗, x∗)− g(uk+1)⟩ ≥ 0.

(4.9)
Setting p = p∗ in (4.4), in view of ⟨pk+1, g(x∗, x∗)⟩ ≤ 0 and ⟨p∗, g(x∗, x∗)⟩ = 0, we have

1

2
⟨pk+1 − pk, p∗ − pk+1⟩ − α

2
⟨g(uk+1)− g(x∗, x∗), p∗ − pk+1⟩ ≥ 0. (4.10)

Noting that F (x) is a monotone operator, we summing (4.9) and (4.10). Thus we obtain

⟨xk+1 − xk, x∗ − xk+1⟩+ 1

2
⟨pk+1 − pk, p∗ − pk+1⟩ ≥ 0.

By using the identity for arbitrary x1, x2 and x3

∥x1 − x3∥2 = ∥x1 − x2∥2 + 2⟨x1 − x2, x2 − x3⟩+ ∥x2 − x3∥2,

which implies that

⟨x1 − x2, x2 − x3⟩ =
1

2
∥x1 − x3∥2 −

1

2

[
∥x1 − x2∥2 + ∥x2 − x3∥2

]
. (4.11)

By using (4.11), we get that

∥xk+1 − xk∥2 + 1

2
∥pk+1 − pk∥2 + ∥xk+1 − x∗∥2 + 1

2
∥pk+1 − p∗∥2

≤ ∥xk − x∗∥2 + 1

2
∥pk − p∗∥2.

(4.12)
Adding the left and right sides of equation (4.12) from k = 0 to k = N yields that

N∑
k=0

∥xk+1 − xk∥2 + 1

2

N∑
k=0

∥pk+1 − pk∥2 + ∥xN+1 − x∗∥+ 1

2
∥pN+1 − p∗∥2

≤ ∥x0 − x∗∥2 + 1

2
∥p0 − p∗∥2.

(4.13)
This inequality implies the boundedness of the trajectory {(xi, pi) : i = 1, 2, . . . , },

namely

∥xN+1 − x∗∥2 + 1

2
∥pN+1 − p∗∥2 ≤ ∥x0 − x∗∥2 + 1

2
∥p0 − p∗∥2,

and also the convergence of the series

∞∑
k=0

∥xk+1 − xk∥2 < ∞,

∞∑
k=0

∥pk+1 − pk∥2 < ∞.

Therefore, ∥xk+1 − xk∥2 → 0, ∥pk+1 − pk∥2 → 0 as k → ∞. Since the sequence (xk, pk)
is bounded, there exists an element (x′, p′) such that xki → x′ and pki → p′, as i → ∞.
Moreover

∥xki+1 − xki∥2 → 0, ∥pki+1 − pki∥2 → 0.
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Considering (4.3) and (4.4) with k = ki for all i → ∞ and passing to the limit as produces

⟨F (x′) +∇yg(x
′, x′)p′, y − x′⟩ ≥ 0, p′ = ΠKm(p′ + αg(x′, x′)),

⟨−g(x′, x′), p− p′⟩ ≥ 0, ∀p ∈ Km.

Since these relations coincide with (3.3), we have x′ ∈ Ω and p′ ∈ Km satisfies

x′ ∈ argmin{⟨F (x′), y − x′⟩+ ⟨p′, g(x′, y)⟩| y ∈ Ω},
p′ ∈ argmax{⟨p, g(x′, x′)⟩| p ∈ Km}.

Therefore, the above expressions coincide with (3.2) and (3.3). It follows from Remark
3.1 that any accumulation point x′ of the sequence {xk} is a solution to the second-order
cone coupled constrained variational inequality problem (1.1). Thus the sequence {xk}
constructed by the augmented Lagrange method (4.1) converges to a solution of the second-
order cone coupled constrained variational inequality problem (1.1). This completes the
proof.

5 Numerical Experiments

In this section, we discuss the case when Ω = ℜn in the second-order cone coupled
constrained variational inequality (SOCCCVI) problem (1.1). The augmented Lagrange
method (4.1) for this case can be reduced to

Gk(xk+1) = 0,

pk+1 = ΠKm(pk + αg(uk+1)), α > 0,
(5.1)

where
Gk(x) = x− xk + αF (x) + α∇yg(x, x)ΠKm(pk + αg(x, x)).

Since the projection mapping ΠKm(·) is semi-smooth, Gk(·) is also semi-smooth. Thus
the system (5.1) is semi-smooth. Suppose that any element in ∂Gk(xk+1) is nonsingular and
xk is quite close to xk+1, then the semi-smooth Newton method can be employed to solve
the first equality in (5.1).
Newton Method ([25])

Step 1: Set ξ0 = xk and j = 0.

Step 2: If Gk(ξj) = 0, stop at xk+1 = ξj .

Step 3: Select an element Hj ∈ ∂Gk(ξj). Solve a solution dj ∈ ℜn to the equation

Gk(ξj) +Hjdj = 0.

Step 4: Set ξj+1 = ξj + dj and j = j + 1 and go to Step 2.

Remark 5.1. In practice, the stopping criterion Gk(ξj) = 0 in Step 2 is usually replaced
by ∥Gk(ξj)∥ ≤ ϵ0 for some accuracy ϵ0 > 0.

In this case, we use Newton method for finding an approximate solution to the k−th
inner problem by setting xk+1 = ξj when the following condition is satisfied

∥Gk(ξj)∥ ≤ ϵ0.
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We adopt the following condition as a stopping criterion for the augmented Lagrange
method

rk := ∥F (xk) +∇yg(x
k, xk)pk∥ ≤ ϵ1.

Our numerical experiments are carried out in Matlab R2019a running on a PC Intel
Pentium IV of 3.10 GHz CPU and with 8G RAM. Numerical results of three examples are
summarized in Table 5.1, Table 5.2 and Table 5.3, where n denotes the dimension of the test
problem, K denotes the second-order cone which is defined in (1.1), k denotes the number
of outer iterations for solving the test problem, “Time” represents the CPU-time in second
to reach the termination condition.

Example 5.2. Consider the SOCCCVI problem

⟨(N +M)x∗, y − x∗⟩ ≥ 0, ∀ y ∈ ℜn, −g(x∗, y) ∈ Kn, (5.2)

where g(x, y) = x+ y ∈ Kn ⊆ ℜn, N and M are positive semidefinite matrices.
In this example, α = 0.5 is used and at the j−th Newton iteration Hj has the form

Hj = In + α(N +M) + αBj .

In this case, we have u = p + 2αx = (u1, ū) ∈ Kn. That is, u1 ∈ ℜ1 and ū =
(u2, u3, . . . , un) ∈ ℜn−1. Then we can compute Bj in the following

Bj
11 =


α, |u1| < ∥ū∥,

2α, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The first column Bj
i1 of Bj for i = 2, 3, . . . , n is calculated by

Bj
i1 =


α ui

∥ū∥ , |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The first row Bj
1k of Bj for k = 2, 3, . . . , n is as follows

Bj
1k =


α uk

∥ū∥ , |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The diagonal elements Bj
ii of B

j for i = 2, 3, . . . , n can be computed by

Bj
ii =


α(1 + u1

∥ū∥ − u1u
2
i

∥ū∥3 ), |u1| < ∥ū∥,

2α, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.



128 B. WANG, L. WANG, J. SUN, Y. SUN AND Y. YUAN

The other elements Bj
ik of Bj for i, k = 2, 3, . . . , n and i ̸= k is calculated by

Bj
ik =


−αu1uiuk

∥ū∥3 , |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

Table 5.1 demonstrates the numerical results of the augmented Lagrange method (5.1)
for solving the SOCCCVI problem (5.2).

Table 5.1. Numerical Results of the SOCCCVI Problem (5.2)

n K k T ime rk ϵ0 ϵ1
200 K100 ×K100 19 6.421875e+00 9.864113e-03 10−6 10−2

400 K200 ×K200 20 2.955313e+01 6.802632e-03 10−6 10−2

800 K400 ×K400 20 1.489063e+02 9.987015e-03 10−6 10−2

1200 K600 ×K600 21 7.424063e+02 5.123815e-03 10−6 10−2

2000 K1000 ×K1000 21 2.009469e+03 6.645142e-03 10−6 10−2

Example 5.3. Consider the SOCCCVI problem

⟨P (P +Q)x∗, y − x∗⟩ ≥ 0, ∀ y ∈ ℜn, −g(x∗, y) ∈ Kn, (5.3)

here g(x, y) = x ◦ y, which is the Jordan product of x and y defined in (2.1). P and Q are
positive semidefinite matrices.

In the numerical implementation of this example, α = 0.5 is used and at the j−th Newton
iteration Hj has the form as follows

Hj = In + αP (P +Q) + αBj .

In this case, we have u = p + αx ◦ x=(u1, ū) ∈ Kn. That is, u1 ∈ ℜ1 and ū =
(u2, u3, . . . , un) ∈ ℜn−1. Bj can be calculated in the following

Bj
11 =



1
2 (∥ū∥+ u1) + α

n∑
i=1

ui

∥ū∥x1xi, |u1| < ∥ū∥,

1
2 (∥ū∥+ u1) + 2αx2

1, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The first column Bj
i1 of Bj for i = 2, 3, . . . , n is as follows

Bj
i1 =



1
2 (1 +

u1

∥ū∥ )ui + α ui

∥ū∥x1xi + α(1 + u1

∥ū∥ − u1u
2
i

∥ū∥3 )x
2
i − α

n∑
l=3

u1uiul

∥ū∥3 xixl, |u1| < ∥ū∥,

1
2 (1 +

u1

∥ū∥ )ui + 2αui, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.
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The first row Bj
1k of Bj for k = 2, 3, . . . , n can be evaluated by

Bj
1k =



1
2 (1 +

u1

∥ū∥ )uk + αx1xk + α uk

∥ū∥x
2
1, |u1| < ∥ū∥,

1
2 (1 +

u1

∥ū∥ )uk + 2αx1xk, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

We can calculate the diagonal elements Bj
ii of B

j for i = 2, 3, . . . , n as follows

Bj
ii =


1
2 (1 +

u1

∥ū∥ ) + α ui

∥ū∥x
2
i + α(1 + u1

∥ū∥ − u1u
2
i

∥ū∥3 )x1xi, |u1| < ∥ū∥,

1
2 (∥ū∥+ u1) + 2αx1xi, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The other elements of Bj
ik of Bj for i, k = 2, 3, . . . , n and i ̸= k can be computed by

Bj
ik =


α ui

∥ū∥xixk − αu1uiuk

∥ū∥3 x1xi, |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

Table 5.2 shows the numerical results of the augmented Lagrange method (5.1) for solving
the SOCCCVI problem (5.3).

Table 5.2. Numerical Results of the SOCCCVI Problem (5.3)

n K k T ime rk ϵ0 ϵ1
200 K100 ×K100 21 2.575625e+00 9.680187e-07 10−9 10−6

400 K200 ×K200 24 1.859375e+01 6.663238e-07 10−9 10−6

800 K400 ×K400 30 1.293750e+02 7.049868e-07 10−9 10−6

1200 K600 ×K600 36 5.042344e+02 8.376350e-07 10−9 10−6

2000 K1000 ×K1000 56 3.395703e+03 9.972165e-07 10−9 10−6

Example 5.4. Now we consider the last SOCCCVI problem

⟨x∗, y − x∗⟩ ≥ 0, ∀ y ∈ ℜn, −g(x∗, y) ∈ Kn, (5.4)

where g(x, y) is defined by the following

g(x, y) =

 y1e
x1 + x1e

y1

...
yne

xn + xne
yn

 ,

In this experiment, α = 0.5 is used and at the j−th Newton iteration Hj has the form
as follows

Hj = (1 + α)In + αBj
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In this case, we have u = (u1, ū) ∈ Kn. That is, u1 ∈ ℜ1 and ū ∈ ℜn−1. We calculate
that ui = pi + 2αxie

xi and ci = (1 + xi)e
xi for i = 1, 2, . . . , n. We get that

Bj
11 =


1
2 (∥ū∥+ u1)c1e

x1 + αc21, |u1| < ∥ū∥,

1
2 (∥ū∥+ u1)c1e

x1 + 2αc21, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

We can compute the first column Bj
i1 of Bj for i = 2, 3, . . . , n in the following

Bj
i1 =


α ui

∥ū∥cic1, |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The first row Bj
1k of Bj for k = 2, 3, . . . , n can be calculated by

Bj
1k =


α uk

∥ū∥ckc1, |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

The diagonal elements Bj
ii of B

j for i = 2, 3, . . . , n as follows

Bj
ii =



1
2 (1 +

u1

∥ū∥ )uicie
xi + α(1 + u1

∥ū∥ − u1u
2
i

∥ū∥3 )c
2
i , |u1| < ∥ū∥,

1
2 (1 +

u1

∥ū∥ )uicie
xi + 2αc2i , ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

We can compute the other elements of Bj
ik of Bj for i, k = 2, 3, . . . , n and i ̸= k in the

following

Bj
ik =


−αu1uiuk

∥ū∥3 cick, |u1| < ∥ū∥,

0, ∥ū∥ ≤ u1,

0, ∥ū∥ ≤ −u1.

Table 5.3 expresses the numerical results of the augmented Lagrange method (5.1) for
solving the SOCCCVI problem (5.4).

Table 5.3. Numerical Results of the SOCCCVI Problem (5.4)

n K k T ime rk ϵ0 ϵ1
200 K100 ×K100 23 7.328125e+00 6.701724e-04 10−6 10−3

400 K200 ×K200 24 2.343750e+01 6.677153e-04 10−6 10−3

800 K400 ×K400 25 1.191719e+02 7.934865e-04 10−6 10−3

1200 K600 ×K600 26 3.642750e+02 8.302493e-04 10−6 10−3

2000 K1000 ×K1000 28 1.715453e+03 7.134481e-04 10−6 10−3
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The above-mentioned numerical experiments demonstrate the practicality and effective-
ness of the augmented Lagrange method for solving second-order cone coupled constrained
variational inequality (SOCCCVI) problem.

6 Conclusions

In this paper, we initially propose a new class of the second-order cone coupled con-
strained variational inequality problem, which is an extension of the problem (1.1) in An-
tipin [2]. Unlike previous neural network methods for addressing the second-order cone
variational inequality, the augmented Lagrange method is constructed for the first time to
handle the SOCCCVI problem. Based on the characteristics of the coupled constraints, this
problem can be transformed into a saddle point problem. Then several equivalent transfor-
mations of the primal SOCCCVI problem can be carried out by using the properties of the
projection operators. By using the above transformation, the augmented Lagrange method
for the SOCCCVI problem is constructed. Furthermore, we obtain the global convergence
theorem for the augmented Lagrange method to solve the SOCCCVI problem. At last, we
give three numerical examples which show the effectiveness and speediness of the augmented
Lagrange method for solving SOCCCVI problems.
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