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to repeatedly solve the same problem using every parameter combination. This approach
differs from sensitivity analysis which is focused on posterior evaluation of a local region
around a particular, static solution [9, 17]. By contrast, MPP methods produce a complete
set of optimal solutions for the entire parameter space [38, 20].

MPP is used in model predictive control to construct control rules for automated systems
[37, 22, 28, 39], is introduced to multidisciplinary design optimization (MDO) [29] to offer
benefits in decomposition-based design, and is applied to solution methods for multiobjective
programming (ϵ-constraint, weighted sum) [15, 19, 35], even in the presence of uncertainty
[30, 11]. MPP is also used to solve multilevel hierarchical and decentralized problems [16, 27]
and the multiparametric linear complementarity problem [2, 1].

Exact solutions can be obtained using the Karush-Kuhn-Tucker conditions when an MPP
problem is linear or quadratic [38, 20, 2, 1]. Otherwise the solution must be approximated.
Methods for constructing such an approximate solution may be broadly categorized in three
areas: path following or homotopy methods [18, 21], space partition methods [7, 33], and
problem approximation methods [14, 26, 13]. A survey of techniques in the latter two areas
can be found in [12]. The fundamentals, recent algorithmic developments and applications
are collected in [36].

The methods for solving an MPP problem focus on the primal problem: dual problems
do not appear except in some cases to provide parametric bounds on solutions [17, 7] or in a
conjugate duality framework [10]. Duality, however, plays an important role in optimization
and exploring ways to solve the dual of an MPP problem opens up new possibilities to the
field.

The goal of this paper is to advance duality theory and methodology for multiparametric
nonlinear programs (mp-NLPs). Staying within a framework of Lagrangian duality and
making suitable assumptions, weak and strong duality theorems are proved for mp-NLPs.
The obtained results motivate the use of a subgradient algorithm, which had been designed
for optimization in a function space, to solve primal and dual multiparametric programs. The
algorithm is implemented in a multiparametric setting and its effectiveness is demonstrated
on examples.

The outline of the paper is as follows. In Section 2, a standard mp-NLP formulation
is stated and then changed to an equivalent one which serves as the primal mp-NLP. For
this equivalent formulation a dual problem is defined and a weak duality theorem proved.
Auxiliary formulations, which are used to support the eventual proof of strong duality, are
stated in Section 3 and strong duality for these formulations is shown to hold. Section
4 builds on Sections 2 and 3 to examine the relationship between the primal and dual
multiparametric programs and the auxiliary problems, leading to a strong duality theorem
for the primal mp-NLP. Since subgradient methods are often paired with dual problems, a
subgradient algorithm is identified in the literature and adapted in Section 5 for solving the
primal and dual multiparametric programs. In Section 6, the algorithm is applied to two
example problems and its performance is analyzed. The paper is concluded in Section 7.

2 Problem Formulation and Basic Concepts

This section consists of three parts. In the first one, an mp-NLP is formulated in the
standard way with vectors as optimization variables and available results on the existence
and properties of the optimal solutions are quoted. Since optimal solutions to MPP come
in the form of functions of the parameters, in the second part the standard formulation is
modified into an alternate mp-NLP with functions as optimization variables. In the third
part, a Lagrangian dual problem is formulated and weak duality is proved.
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Throughout this paper the following notation is used. Every mapping is denoted by a
single letter without an input argument, e.g., x, while the mapping with an argument, e.g.,
x(t), is used to represent the mapped image of t under x.

2.1 The standard formulation and concept of optimality

The standard formulation of mp-NLP relies on the following basic assumptions.

Assumption 2.1. (i) Let Rn and Rp be Euclidean spaces and Ω ⊂ Rp be a nonempty
and compact subspace of Rp. Ω is referred to as a parameter space.

(ii) Let X : Rp → Rn be a continuous point-to-set mapping such that for all t ∈ Ω, X (t)
is a nonempty subset of Rn.

(iii) Let f : Rn × Ω → R be an objective function that is continuous in the arguments
ψ ∈ Rn and t ∈ Ω.

The mp-NLP problem is typically formulated as:

f∗(t) = min
ψ

f(ψ; t)

s.t. ψ ∈ X (t)

t ∈ Ω

(2.1)

Definition 2.1. Let t ∈ Ω be fixed, i.e., t = t̄. A feasible vector ψ̄ ∈ X (t̄) is an optimal
solution to mp-NLP (2.1) provided f(ψ̄; t̄) ≤ f(ψ; t̄) for every ψ ∈ X (t̄).

The concept of optimality for mp-NLP (2.1) for all t ∈ Ω requires other notions. In mp-
NLP (2.1), each element of the parameter space is mapped into an optimal solution set and
an optimal objective value, and the result of this mapping is an optimal solution mapping
X ∗ and an optimal value function f∗. The following properties hold for (2.1) [8, 17].

Theorem 2.2. Let Assumption 2.1 hold and X ∗ be the optimal solution mapping for (2.1)
whose image is defined as X ∗(t) = {ψ ∈ X (t) : f(ψ; t) = f∗(t)}. Then the optimal value
function f∗ is continuous on Ω and X ∗ is an upper semicontinuous mapping of Ω into Rn.

In general, the literature on mp-NLPs follows a theoretical line of investigation [8, 17, 4]
and a methodological one that was recently summarized in [36]. In this paper these two
aspects are combined: some advances in the theory of mp-NLPs lead to an algorithm to solve
parametric dual problems. As explained in [4], to construct solution algorithms for mp-NLP
(2.1), the existence of a selection function for the optimal solution mapping is needed.

Definition 2.3. A function x : Ω → Rn is said to be a selection for X ∗ if x(t) ∈ X ∗(t) ∀t ∈
Ω.

The existence of a continuous selection function is stated in Theorem 2.4 and is ensured
under additional assumptions on the optimal solution mapping [4].

Assumption 2.2. (i) X ∗(t) is a nonempty, compact, and convex set ∀t ∈ Ω.

(ii) For every (ψ0; t0) ∈ X ∗(t0)×Ω there exists a function x : Ω → Rn that is continuous
at t0 and such that x(t) ∈ X ∗(t) ∀t ∈ Ω, and x(t0) = ψ0.

Theorem 2.4. Let C(Ω,Rn) denote the set of continuous functions x : Ω → Rn and let
Assumptions 2.1 (i) (ii) and 2.2 hold. Then there exists a function x ∈ C(Ω,Rn) that is a
selection for X ∗.
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2.2 Reformulation

Since the focus of this study is on constrained problems, a particular structure of the feasible
set in (2.1) is assumed. Let

X (t) = {ψ ∈ S : g (ψ; t) ≤ 0,h (ψ; t) = 0} for t ∈ Ω (2.2)

where S ⊂ Rn, g : Rn×Ω → Rm is the inequality constraint function, and h : Rn×Ω → Rl is
the equality constraint function. The following convexity assumptions are needed to develop
duality results and a solution algorithm.

Assumption 2.3. Let mp-NLP (2.1)-(2.2) satisfy the following assumptions.

(i) Ω is a convex subspace of Rp.

(ii) S is a nonempty, compact and convex set in Rn.

(iii) The function g is continuous and convex in ψ and t and bounded over its domain, and
the function h is affine in ψ and t.

(iv) The function f is convex in the arguments ψ ∈ Rn and t ∈ Ω, and bounded over its
domain, i.e., |f(ψ; t)| < ∞ ∀ψ ∈ Rn and t ∈ Ω.

(v) X (t) is a nonempty and compact set ∀t ∈ Ω.

By Theorem 2.4, a function in C(Ω,Rn) is an optimal solution to mp-NLP (2.1)-(2.2).
Since the standard formulation neither recognizes nor gives means to directly define or find
such a function, (2.1)-(2.2) is reformulated. In the new formulation, the feasible set is
assumed to be a set of functions that are candidates for an optimal solution. To accomplish
this reformulation and make it useful for the theory that is presented in the subsequent
sections, Assumption 2.2 (ii) is modified and extended for every (ψ0; t0) ∈ X (t0) × Ω and
the feasible functions are assumed to be piecewise continuous and bounded.

Assumption 2.4. For every (ψ0; t0) ∈ X (t0)×Ω there exist a neighborhood of t0, Nδ(t
0) ⊂

Ω, and a continuous and bounded function x : Nδ(t
0) → Rn such that x(t) ∈ X (t) ∀t ∈

Nδ(t
0) and x(t0) = ψ0.

Definition 2.5. A partition {Ωi}Ni=1 of the parameter space Ω is a collection of a finite
number of compact subsets Ωi, i = 1, . . . , N, of Ω that cover Ω and are pairwise disjoint, i.e.,
Ω =

⋃N
i=1 Ωi and int(Ωi) ∩ int(Ωj) = ∅ ∀i, j ∈ {1, . . . , N}, i ̸= j.

Using the notion of partition, piecewise continuous functions on Ω are defined. Each such
function is associated with a partition and is continuous on the subsets of this partition.
The subsets are referred to as the subsets of continuity.

Definition 2.6. A function x : Ω → Rn is said to be

1. piecewise continuous on Ω if there exists a natural number Nx and a partition {Ωx
i }

Nx
i=1

for x such that

(a) x is continuous on each subset Ωx
i , i ∈ {1, . . . , Nx},

(b) ∀ t̄ ∈ Ωx
i ∩ Ωx

j and ∀i, j ∈ {1, . . . , Nx}, i ̸= j, x(t̄) = limt∈int(Ωx
i ),t→t̄ x(t) or

x(t̄) = limt∈int(Ωx
j ),t→t̄ x(t);
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2. bounded on Ω if there exists a C > 0 such that ∥x(t)∥∞ < C for all t ∈ Ω, where
∥ · ∥∞ denotes the maximum l∞ norm in Rn.

Let C̄p(Ω,Rn) denote the set of piecewise continuous and bounded functions x : Ω → Rn.

Given Assumption 2.4, a set of admissible functions is defined as

W = {x ∈ C̄p(Ω,Rn) : x(t) ∈ S ∀t ∈ Ω} (2.3)

and a set of feasible functions is defined as

X = {x ∈ W : x(t) ∈ X (t) ∀t ∈ Ω and Assumption 2.4 holds} (2.4)

Given sets (2.3) and (2.4), mp-NLP (2.1)-(2.2) can be written as

f∗(t) = min
x

f(x(t); t)

s.t. x ∈ X = {x ∈ W : g (x(t); t) ≤ 0,h (x(t); t) = 0 ∀t ∈ Ω}
t ∈ Ω

(2.5)

Definition 2.7. Let Assumptions 2.1, 2.3, and 2.4 hold. A function x∗ ∈ X is an optimal
solution to mp-NLP (2.5) provided f(x∗(t); t) ≤ f(x(t); t) ∀t ∈ Ω ∀x ∈ X, or equivalently,
f(x∗(t); t) ≤ f(ψ; t) ∀(ψ; t) ∈ X (t)×Ω ∀t ∈ Ω. If x∗ ∈ X is an optimal solution function
then f∗(t) = f(x∗(t), t) ∀t ∈ Ω.

Problems (2.1)-(2.2) and (2.5) are equivalent in the sense that they yield the same optimal
objective value for all t ∈ Ω.

Theorem 2.8. Let ψ∗
t̄ ∈ X (t̄) be an optimal solution to mp-NLP (2.1)-(2.2) for t = t̄ ∈ Ω

and x∗ ∈ X be an optimal solution to (2.5). Then f(ψ∗
t̄ , t̄) = f(x∗(t̄), t̄) ∀t̄ ∈ Ω.

Proof. Let ψ∗
t̄ ∈ X (t) be an optimal solution to mp-NLP (2.1)-(2.2) for t = t̄ ∈ Ω. Then,

by Definition 2.1, f(ψ∗
t̄ , t̄) ≤ f(ψ, t̄) ∀ψ ∈ X (t̄). Since x∗ ∈ X, then x∗(t̄) ∈ X (t̄) and

therefore f(ψ∗
t̄ , t̄) ≤ f(x∗(t̄), t̄). Since t̄ is an arbitrary element in Ω, then

f(ψ∗
t̄ , t̄) ≤ f(x∗(t̄), t̄) ∀t̄ ∈ Ω (2.6)

On the other hand, let x∗ ∈ X be an optimal solution to (2.5). Then by Definition 2.7,

f(x∗(t); t) ≤ f(ψ; t) ∀(ψ; t) ∈ X (t)× Ω ∀t ∈ Ω (2.7)

Inequalities (2.6) and (2.7) yield the final result.

To check the conditions for the existence of an optimal solution function to mp-NLP
(2.5), the following definitions are needed.

Definition 2.9. 1. All functions x ∈ X are said to be uniformly bounded in Rn if there
exists a C > 0 such that ∥x∥∞ < C for all x ∈ X and t ∈ Ω.

2. A sequence of functions {xm} in X is said to converge to x∗ if ∥xm(t)−x∗(t)∥∞ → 0
∀t ∈ Ω when m → ∞.

Theorem 2.10. If all x ∈ X are uniformly bounded functions on Ω then an optimal solution
function x∗ ∈ X to mp-NLP (2.5) exists.
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Proof. Let {xm} be a minimizing sequence in X, i.e., assume

lim
m→∞

f (xm(t); t) = min
x∈X

f(x(t); t) ∀t ∈ Ω

Since each element xi ∈ {xm} is uniformly bounded on Ω, there exists a convergent sub-
sequence {xmk

} → x∗. The goal is to show that x∗ ∈ X. Since {xmk
} → x∗ and xi is

bounded ∀i, x∗ is also bounded. Since f (x(t); t) is bounded, f (x∗(t); t) is bounded. By
continuity g(xmk

(t); t) → g (x∗(t); t) ∀t ∈ Ω and h(xmk
(t); t) → h (x∗(t); t) ∀t ∈ Ω with

g (x∗(t); t) ≤ 0, h (x∗(t); t) = 0 since {xm} ⊂ X. Therefore x∗ ∈ X.
Since f is continuous in x, it is lower semicontinuous, and lim

nk→∞
f (xmk

(t); t) >

f (x∗(t); t) ∀t ∈ Ω. Using the fact that {xmk
} is a minimizing sequence, min

x∈X
f(x(t); t) =

lim
m→∞

f (xm(t); t) = f (x∗(t); t) ∀t ∈ Ω so that x∗ is an optimal solution.

The goal of the paper is to study (2.5) at two levels: (i) to develop its theoretical
properties within a framework of Lagrangian duality, and (ii) to propose a solution algorithm.
Based on Theorem 2.8, both will be applicable to (2.1)-(2.2). Weak duality is first examined
in the next section.

2.3 Parametric Lagrangian dual problem

In this section, mp-NLP (2.5) is treated as a Primal Problem (PP) for which a Lagrangian
Dual Problem (LDP) is stated and a weak duality result between the PP and LDP is
established. As is the case for the PP, solutions to the LDP are functions of the parameter
space. Defining an LDP therefore requires that the dual variables be defined as functions of
t, but is otherwise constructed in the usual way.

Let y = (u,v) ∈ C̄p(Ω,Rm ×Rl) be the Lagrangian dual function composed of a pair of
functions u ∈ C̄p(Ω,Rm) and v ∈ C̄p(Ω,Rl) that are associated with the functions g and h
respectively. For every x ∈ W , let (x,u,v) ∈ C̄p(Ω,Rn×Rm×Rl). Let L : Rn×Rm×Rl×Ω →
R be the Lagrangian function defined as

L(x(t),u(t),v(t); t) = f(x(t); t) + u(t)Tg (x(t); t) + v(t)Th (x(t); t) ∀t ∈ Ω (2.8)

The Relaxed Primal Problem (RPP) takes the form:

min
x

L(x(t),u(t),v(t); t)

s.t. x ∈ W

t ∈ Ω

(2.9)

Assumption 2.5. For every x ∈ W and each t0 ∈ Ω consider x(t0), the image of t0 under
x. Assume there exist a function x̃ ∈ W and a neighborhood of t0, Nδ(t

0) ⊂ Ω, such that
x̃ is continuous and bounded on Nδ(t

0) and x̃(t0) = x(t0).

Definition 2.11. A function x∗ ∈ W is an optimal solution to RPP (2.9) provided
L(x∗(t),u(t),v(t); t) ≤ L(x(t),u(t),v(t); t) ∀x ∈ W ∀t ∈ Ω. If x∗ ∈ W is an opti-
mal solution function then θ denotes the optimal value function, θ : Rm ×Rl ×Ω → R, that
is referred to as the dual function and is defined as

θ(u(t),v(t); t) = min
x

{L(x(t),u(t),v(t); t) : x ∈ W} ∀t ∈ Ω

= L(x∗(t),u(t),v(t); t) ∀t ∈ Ω
(2.10)



ON LAGRANGIAN DUALITY FOR MULTIPARAMETRIC PROGRAMS 651

A continuity assumption is needed for the optiml solution function x∗ ∈ W to (2.9).

Assumption 2.6. Let t ∈ Ω. If y = (u,v) ∈ C̄p(Ω,Rm × Rl) is continuous at t then the
associated optimal solution function x∗ ∈ W to (2.9) is also continuous at t.

An LDP to PP (2.5) is formulated as:

θ∗(t) = max
u,v

θ(u(t),v(t); t)

s.t. u(t) ≥ 0

t ∈ Ω

(2.11)

A pair of functions (u,v) ∈ C̄p(Ω,Rm × Rl) is a feasible solution to LDP (2.11) provided
u(t) ≥ 0 ∀t ∈ Ω.

Assumption 2.7. For every y = (u,v) ∈ C̄p(Ω,Rm × Rl) and for each t0 ∈ Ω consider
y(t0) = (u(t0),v(t0)), the image of t0 under y. Assume there exist a function ỹ = (ũ, ṽ) ∈
C̄p(Ω,Rm × Rl) and a neighborhood of t0, Nδ(t

0) ⊂ Ω, such that ỹ is continuous and
bounded on Nδ(t

0) and ỹ(t0) = (ũ(t0), ṽ(t0)) = (u(t0),v(t0)) = y(t0) with ũ(t) ≥ 0
∀t ∈ Nδ(t

0).

Definition 2.12. A pair of functions (u∗,v∗),u∗(t) ≥ 0 ∀t ∈ Ω, is an optimal solu-
tion to LDP (2.11) provided θ(u∗(t),v∗(t); t) ≥ θ(u(t),v(t); t) ∀u(t) ≥ 0 ∀t ∈ Ω.
If (u∗,v∗) is an optimal solution then θ∗ denotes the optimal dual value function and
θ∗(t) = θ(u∗(t),v∗(t); t) ∀t ∈ Ω.

Assume that neither the Lagrangian function L nor the dual function θ takes on the
value of −∞ or ∞ respectively during optimization. It is straightforward to prove weak
duality for PP (2.5) and LDP (2.11).

Theorem 2.13 (Weak Duality for mp-NLP). Let x̂ ∈ X and (û, v̂) be a feasible solution
to LDP (2.11). Then f (x̂(t); t) ≥ θ (û(t), v̂(t); t) ∀t ∈ Ω.

Proof. ∀t ∈ Ω we have:

θ (û(t), v̂(t); t) = min {L(x(t), û(t), v̂(t); t),x ∈ W}
= min

{
f(x(t); t) + û(t)Tg(x(t); t) + v̂(t)Th(x(t); t) : x ∈ W

}
≤ f(x̂(t); t) + û(t)Tg(x̂(t); t) + v̂(t)Th(x̂(t); t)

≤ f(x̂(t); t)

where the second inequality results from û(t) ≥ 0,g(x̂(t); t) ≤ 0, and h(x̂(t); t) = 0 ∀t ∈
Ω.

A strong duality relationship is more complicated to establish. To do so, in Section 3 an
auxiliary problem related to mp-NLP (2.5) is formulated and strong duality is shown to hold
between the auxiliary problem and its Lagrangian dual. This strong duality relationship is
then used in Section 4 to prove strong duality between mp-NLP (2.5) and its LDP (2.11).

3 Integral Counterpart to mp-NLP

To further investigate duality for mp-NLP (2.5), a closely related auxiliary optimization
problem is formulated in a function space. Weak and strong duality is established for this
auxiliary problem.
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Definition 3.1. Let

1. L2 (Ω,Rn) be the Hilbert space of square-integrable, vector-valued functions on Ω

defined as L2 (Ω,Rn) = {x : Ω → Rn such that ∥x∥22 =
∫
Ω
|x(t)|2 dt < ∞};

2. the inner product be defined ⟨x1,x2⟩ =
∫
Ω
x1(t)

Tx2(t) dt for x1,x2 ∈ L2 (Ω,Rn);

3. x1 ≤ x2 denote x1(t) ≤ x2(t) ∀t ∈ Ω for x1,x2 ∈ L2 (Ω,Rn) .

Using this function space setting, an optimization problem is formulated on the feasible
set of mp-NLP (2.5). Since the parameter space Ω is compact, C̄p(Ω,Rn) ⊆ L2 (Ω,Rn), and
therefore X ⊆ W ⊂ L2 (Ω,Rn). A functional J : L2 (Ω,Rn) → R is defined and an integral
counterpart to (2.5) is obtained:

J(x̄) = min
x

J(x) =

∫
Ω

f(x(t); t) dt

s.t. x ∈ X ⊂ L2 (Ω,Rn)

(3.1)

Problem (3.1) is referred to as the integral primal problem (IPP). A similar formulation
can be found in [24] (p. 250). Since f is continuous and convex in both arguments, J is
continuous and convex in x.

Definition 3.2. A function x̄ ∈ X is an optimal solution to IPP (3.1) provided J(x̄) ≤ J(x)
for all x ∈ X.

An optimal solution to (3.1) exists under assumptions similar to those of Theorem 2.10.
The reader is referred to [40] for weaker conditions guaranteeing well-posedness of (3.1).

Duality notions are introduced for IPP in a similar way as for PP. By definition, the
functions g,h,u,v are elements of the Hilbert space and the integral Lagrangian function
is defined IL : L2(Ω,Rn)× L2(Ω,Rm)× L2(Ω,Rl)) → R

IL(x,u,v) =

∫
Ω

[
f(x(t); t) + u(t)Tg(x(t); t) + v(t)Th(x(t); t)

]
dt (3.2)

or equivalently

IL(x,u,v) =

∫
Ω

[f(x(t); t)] dt+ ⟨u,g(x)⟩+ ⟨v,h(x)⟩ (3.3)

and the relaxed integral primal problem (RIPP) is formulated

min
x

IL(x,u,v)

s.t. x ∈ W ⊂ L2 (Ω,Rn)
(3.4)

Definition 3.3. A function x̄ ∈ W is an optimal solution to RIPP (3.4) provided IL(x̄,u,v) ≤
IL(x,u,v) ∀x ∈ W . If x̄ ∈ W is an optimal solution function then ∆ denotes the optimal
value function, ∆ : L2(Ω,Rm) × L2(Ω,Rl) → R, that is referred to as the integral dual
function and is defined as

∆(u,v) = min
x

{IL(x,u,v) : x ∈ W}

= IL(x̄,u,v)
(3.5)
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An Integral Dual Problem (IDP) to IPP assumes the form

∆̄ = max
u,v

∆(u,v)

s.t. u ≥ 0
(3.6)

A pair of functions (u,v) is a feasible solution to IDP (3.6) provided u ≥ 0.

Definition 3.4. A pair of functions (ū, v̄), ū ≥ 0, is an optimal solution to IDP (3.6) if
∆(ū, v̄) ≥ ∆(u,v) ∀u ≥ 0. If (ū, v̄) is an optimal solution then ∆̄ denotes the optimal
value of the integral dual function.

Assume that neither the integral Lagrangian function IL nor the integral dual function
∆ takes on the value of −∞ or ∞ respectively during optimization. It is straightforward to
show that weak duality holds between IPP (3.1) and IDP (3.6).

Theorem 3.5 (Weak Duality for Integral mp-NLP). Let x̂ be a feasible solution to IPP
(3.1) and (û, v̂) be a feasible solution to IDP (3.6). Then

∫
Ω
f(x̂(t); t) dt ≥ ∆(û, v̂).

Proof. Let x̂ be a feasible solution to (3.1) and (û, v̂) be a feasible solution to (3.6). Then:

∆ (û, v̂) = min
x

{IL(x, û, v̂) : x ∈ W}

= min
x

{∫
Ω

[
f(x(t); t) + û(t)Tg(x(t); t) + v̂(t)Th(x(t); t)

]
dt : x ∈ W

}
≤

∫
Ω

[
f(x̂(t); t) + û(t)Tg(x̂(t); t) + v̂(t)Th(x̂(t); t)

]
dt

≤
∫
Ω

f(x̂(t); t) dt

where the second inequality results from û(t)Tg(x̂(t); t) ≤ 0 and v̂(t)Th(x̂(t); t) = 0 ∀t ∈
Ω.

Lemma 3.6 is needed to prove strong duality for IPP (3.1) and IDP (3.6) in Theorem
3.7. Both these results extend the results for NLPs in [5] (p.266).

Lemma 3.6. Define the following two systems:

System 1: J(x) < 0, g (x(t); t) ≤ 0, h (x(t); t) = 0 ∀t ∈ Ω for some x ∈ W

System 2: u0J(x) +

∫
Ω

u(t)Tg (x(t); t) dt+

∫
Ω

v(t)Th (x(t); t) dt ≥ 0

(u0,u(t)) ≥ 0, (u0,u(t),v(t)) ̸= 0, ∀t ∈ Ω ∀x ∈ W

If System 1 has no solution x ∈ W ∀t ∈ Ω then System 2 has a solution (u0,u(t),v(t)) ∈
R× Rm × Rl ∀t ∈ Ω. The converse is true if u0 > 0.

Proof. Let System 1 have no solution. Define the set

Λ = {(p,q(t), r(t)) ∈ R× Rm × Rl : p > J(x),q(t) ≥ g (x(t); t) , r(t) = h (x(t); t) ∀t ∈ Ω

for some x ∈ W}

Since J and g are convex and h is affine, Λ is a convex set. If System 1 has no solution then
(0,0,0) /∈ Λ. By the Supporting Hyperplane Theorem [31] (Thm.2, p. 133), there exists a
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nonzero (u0,u(t),v(t)) ∈ R× Rm × Rl such that u0p+
∫
Ω
u(t)Tq(t) dt+

∫
Ω
v(t)T r(t) dt ≥

0 ∀(p,q(t), r(t)) ∈ cl(Λ) and ∀t ∈ Ω. Now fix x ∈ W. Since p and q(t) can be made
arbitrarily large, it must be that u0 ≥ 0 and u(t) ≥ 0 ∀t ∈ Ω. Furthermore, (p,q(t), r(t)) =
(J(x),g (x(t); t) ,h (x(t); t)) ∈ cl(Λ) ∀t ∈ Ω. Therefore, u0J(x) +

∫
Ω
u(t)Tg (x(t); t) dt +∫

Ω
v(t)Th (x(t); t) dt ≥ 0. Since x is arbitrary, the latter inequality holds ∀x ∈ W and

System 2 has a solution.
For the converse, ∀x ∈ W and ∀t ∈ Ω let (u0,u(t),v(t)) be a solution to System 2 with

u0 > 0. Choose x ∈ W such that g (x(t); t) ≤ 0 and h (x; t) = 0 ∀t ∈ Ω. Since u(t) ≥ 0
and g (x(t); t) ≤ 0 ∀t ∈ Ω, it must be u0J(x) ≥ 0. Since u0 > 0, J(x) ≥ 0 and System 1
does not have a solution.

Strong duality for the integral mp-NLP can now be proved.

Theorem 3.7 (Strong Duality for Integral mp-NLP). Assume the following constraint qual-
ification holds: ∃ x̂ ∈ W such that g (x̂(t); t) < 0 and h (x̂(t); t) = 0 ∀t ∈ Ω, and 0 ∈ int
h(W ), where h(W ) = {h(x(t); t) : x ∈ W, t ∈ Ω}. Let x̄ ∈ X be an optimal solution to IPP
(3.1) and (ū, v̄) with ū ≥ 0 be an optimal solution to IDP (3.6). Then

J(x̄) = min
x

{∫
Ω

f(x(t); t) dt : x ∈ X

}
= max

u,v
{∆(u,v) : u ≥ 0} = ∆(ū, v̄)

Proof. Consider the system

J(x)− J(x̄) < 0, g (x(t); t) ≤ 0, h (x(t); t) = 0, ∀t ∈ Ω for some x ∈ W

By definition of J(x̄), this system has no solution. By Lemma 3.6, there exists a nonzero
(u0,u(t),v(t))
∈ R× Rm × Rl with (u0,u(t)) ≥ 0 ∀t ∈ Ω such that

u0 [J(x)− J(x̄)] +

∫
Ω

uT (t)g (x(t); t) dt+

∫
Ω

v(t)Th (x(t); t) dt ≥ 0 ∀x ∈ W

Assume u0 = 0, then
∫
Ω
u(t)Tg (x(t); t) dt +

∫
Ω
v(t)Th (x(t); t) dt ≥ 0 ∀x ∈ W. By as-

sumption, there is an x̂ ∈ W such that g (x̂(t); t) < 0 and h (x̂(t); t) = 0 ∀t ∈ Ω, which
implies v(t)Th (x̂(t); t) = 0 ∀t ∈ Ω, and therefore

∫
Ω
uT (t)g (x̂(t); t) dt ≥ 0. Because

u(t) ≥ 0 and g (x̂(t); t) < 0 then
∫
Ω
u(t)Tg (x̂(t); t) dt ≤ 0, which forces u(t) = 0 ∀t ∈ Ω

and implies
∫
Ω
v(t)Th (x(t); t) dt ≥ 0 ∀x ∈ W . Since 0 ∈ int h(W ) there is an x̃ ∈ W

such that h (x̃(t); t) = −λv(t) ∀t ∈ Ω and λ > 0. Calculate
∫
Ω
v(t)Th (x̃(t); t) dt =

−λ
∫
Ω
∥v(t)∥2 dt ≥ 0, which implies v(t) = 0 ∀t ∈ Ω. In effect, assuming u0 = 0 makes

u(t) = 0 and v(t) = 0 ∀t ∈ Ω, a contradiction. Thus u0 > 0 and

J(x) +

∫
Ω

ū(t)Tg (x(t); t) dt+

∫
Ω

v̄(t)Th (x(t); t) dt ≥ J(x̄) ∀x ∈ W

where ū(t) = u(t)/u0 and v̄(t) = v(t)/u0. It must also be

min
x

{
J(x) +

∫
Ω

ū(t)Tg (x(t); t) dt+

∫
Ω

v̄(t)Th (x(t); t) dt, x ∈ W

}
≥ J(x̄)

or equivalently, ∆(ū, v̄) ≥ J(x̄). However, from Theorem 3.5, ∆(u,v) ≤ J(x) ∀(u,v), u ≥ 0
and ∀x ∈ X. Therefore, ∆(ū, v̄) = J(x̄) and (ū, v̄) with ū ≥ 0 is an optimal solution to
IDP (3.6).

In the next section relationships between mp-NLP (2.5) and IPP (3.1) are examined.
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4 Equivalence between mp-NLP and Integral mp-NLP

Both mp-NLP (2.5) and Integral mp-NLP (3.1) are now considered jointly, which leads to
the main result of strong duality for (2.5). These two problems have the same feasible set
with the same properties and are shown to be equivalent in the sense that they possess
the same optimal solutions. The equivalence is shown at three levels: between the primal
problems, relaxed primal problems, and dual problems. The equivalence between the primal
problems is established in Theorem 4.1.

Theorem 4.1. Consider mp-NLP (2.5) and its integral counterpart (3.1) and their respec-
tive assumptions. A function x∗ ∈ X is an optimal solution to (2.5) if and only if x∗ is an
optimal solution to (3.1).

Proof. Let x∗ ∈ X be an optimal solution to (2.5). Then x∗ is feasible to (2.5) and
f(x∗(t); t) ≤ f(x(t); t) ∀t ∈ Ω ∀x ∈ X. This implies

∫
Ω
f(x∗(t); t) dt ≤

∫
Ω
f(x(t); t) dt

∀x ∈ X, or equivalently, J(x∗) ≤ J(x) ∀x ∈ X. Thus x∗ is an optimal solution to (3.1).
Conversely, let x∗ be an optimal solution to (3.1) and assume x∗ is not an optimal

solution to (2.5). Then, by Definition 2.7, there exist a function x̄ ∈ X, x̄ ̸= x∗ and t̄ ∈ Ω
such that f(x̄(̄t); t̄) < f(x∗(̄t); t̄). Also, by Assumption 2.4, there exists a continuous and
bounded function x̃ in a neighborhood of t̄, Nδ(t̄), such that x̃(t̄) = x̄(t̄) and x̃(t) ∈ X (t)

∀t ∈ Nδ(t̄). Since x∗ ∈ C̄p(Ω,Rn) by (2.4), there exists a neighborhood of t̄, Ñδ(t̄), where
both x∗ and x̃ are continuous. Then the continuity of f in both arguments yields

f(x̃(t); t) < f(x∗(t); t) ∀t ∈ Ñδ(t̄). (4.1)

Construct a function x̂ : Ω → Rn in the following way:

x̂ (t) =

{
x̃ (t) ∀ t ∈ Ñδ(t̄)

x∗ (t) otherwise
(4.2)

Then x̂ ∈ C̄p(Ω,Rn) and therefore x̂ ∈ L2 (Ω,Rn), and also (x̂(t); t) ∈ X (t) × Ω ∀t ∈
Ω, and therefore x̂ ∈ X. Calculate J(x̂) − J(x∗) =

∫
Ω
f(x̂(t); t) dt −

∫
Ω
f(x∗(t); t) dt =∫

Ñδ(t̄)
f(x̃(t); t) dt−

∫
Ñδ(t̄)

f(x∗(t); t) dt < 0, where the inequality results from (4.1). This is

a contradiction that x∗ is optimal to (3.1). Thus x∗ is an optimal solution to (2.1).

The equivalence between RPP (2.9) and RIPP (3.4) is established in Theorem 4.2.

Theorem 4.2. Consider RPP (2.9) and RIPP (3.4) and their respective assumptions. Let
(u(t),v(t)) with u(t) ≥ 0 be fixed ∀t ∈ Ω, i.e., (u(t),v(t)) = (û(t), v̂(t)) ∀t ∈ Ω, and let
(x, û, v̂) ∈ C̄p(Ω,Rn × Rm × Rl) ∀x ∈ W . A function x∗ ∈ W is an optimal solution to
(2.9) if and only if x∗ is an optimal solution to (3.4).

Proof. Let x∗ ∈ W be an optimal solution to RPP (2.9). ∀t ∈ Ω we have:

min
x∈W

L(x(t), û(t), v̂(t); t) = L(x∗(t), û(t), v̂(t); t)

= f(x∗(t); t) + û(t)Tg (x∗(t); t) + v̂(t)Th (x∗(t); t)

≤ f(x(t); t) + û(t)Tg (x(t); t) + v̂(t)Th (x(t); t) ∀x ∈ W

Applying the integral
∫
Ω
dt to both sides of the inequality yields:

IL(x∗, û, v̂) ≤ IL(x, û, v̂) ∀x ∈ W
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and thus x∗ is an optimal solution to RIPP (3.4).
Conversely, let x∗ be an optimal solution to RIPP (3.4), and assume x∗ is not an optimal

solution to RPP (2.9). By Definition 2.11, there exist a function x̄ ∈ W, x̄ ̸= x∗, and t̄ ∈ Ω
such that L(x̄(̄t), û(̄t), v̂(̄t); t̄) < L(x∗(̄t), û(̄t), v̂(̄t); t̄). By Assumption 2.5, there exists
a function x̃ ∈ W that is continuous and bounded in a neighborhood of t̄, Nδ(t̄), such
that x̃(t̄) = x̄(t̄). Since (x∗, û, v̂) ∈ C̄p(Ω,Rn × Rm × Rl) by assumption, there exists a

neighborhood of t̄, Ñδ(t̄), where both (x∗, û, v̂) and (x̃, û, v̂) are continuous. Then the
inequality

L(x̃(t), û(t), v̂(t); t) < L(x∗(t), û(t), v̂(t); t) ∀t ∈ Ñδ(t̄) (4.3)

holds as all f , g and h are continuous in both arguments. Applying the integral
∫
Ñδ(t̄)

dt to

both sides of this inequality yields:∫
Ñδ (̃t)

L(x̃(t), û(t), v̂(t); t) dt <
∫
Ñδ(t̄)

L(x∗(t), û(t), v̂(t); t) dt (4.4)

Constructing a function x̂ : Ω → Rn as in (4.2) yields x̂ ∈ W and (x̂, û, v̂) ∈ C̄p(Ω,Rn ×
Rm × Rl). A similar calculation to that in the proof of Theorem 4.1 gives

IL(x̂, û, v̂)− IL(x∗, û, v̂) =

∫
Ñδ(t̄)

L(x̃(t), û(t), v̂(t); t) dt−
∫
Ñδ(t̄)

L(x∗(t), û(t), v̂(t); t) dt

<0

where the inequality comes from (4.4). This is a contradiction that x∗ is an optimal solution
to RIPP (3.4). Thus x∗ is an optimal solution to RPP (2.9).

Theorem 4.2 results in the following corollary.

Corollary 4.3. Under the assumptions of Theorem 4.2, the following holds:∫
Ω

min
x∈W

L(x(t), û(t), v̂(t); t) dt = min
x∈W

∫
Ω

L(x(t), û(t), v̂(t); t) dt (4.5)

Proof. Let (u(t),v(t)) = (û(t), v̂(t)) ∀t ∈ Ω and x∗ ∈ W be an optimal solution to RPP
(2.9). By definition, min

x∈W
L(x(t), û(t), v̂(t); t) = L(x∗(t), û(t), v̂(t); t) ∀t ∈ Ω. Applying

the integral
∫
Ω
dt to both sides of this equality yields∫

Ω

min
x∈W

L(x(t), û(t), v̂(t); t) dt =
∫
Ω

L(x∗(t), û(t), v̂(t); t) dt

= IL(x∗, û, v̂; t)

= min
x∈W

IL(x, û, v̂)

= min
x∈W

∫
Ω

L(x(t), û(t), v̂(t)) dt

where the third equality holds because x∗, by Theorem 4.2, is an optimal solution to RIPP
(3.4).

Under the assumptions of Theorems 3.7 and 4.2, a relationship is obtained between the
optimal value of IDP (3.6) and the value of the integral of the dual function (2.10) for
mp-NLP (2.5).
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Corollary 4.4. Let the assumptions of Theorems 3.7 and 4.2 hold and (ū, v̄) be an optimal
solution to IDP (3.6). Then ∆̄ =

∫
Ω
θ(ū(t), v̄(t), t) dt.

Proof. By definition of ∆,

∆̄ = ∆(ū, v̄) = min
x∈W

IL(x, ū, v̄)

= min
x∈W

∫
Ω

L(x(t), ū(t), v̄(t); t) dt

=

∫
Ω

min
x∈W

L(x(t), ū(t), v̄(t); t) dt

=

∫
Ω

θ(ū(t), v̄(t); t) dt

where the fourth equality follows from Corollary 4.3 and the last equality follows from
(2.10).

The equivalence between LDP and IDP can now be proved.

Theorem 4.5. Consider LDP (2.11) and IDP (3.6) and their respective assumptions. A
feasible pair of functions (u∗,v∗) is an optimal solution to (2.11) if and only if (u∗,v∗) is
an optimal solution to (3.6).

Proof. Let (u∗,v∗) be an optimal solution to LDP (2.11). By Definition 2.12,

θ(u∗(t),v∗(t); t) ≥ θ(ū(t), v̄(t); t) ∀(ū(t), v̄(t)), ū(t) ≥ 0 ∀t ∈ Ω

or equivalently

min
x∈W

L(x(t),u∗(t),v∗(t); t) ≥ min
x∈W

L(x(t), ū(t), v̄(t); t) ∀(ū(t), v̄(t)), ū(t) ≥ 0 ∀t ∈ Ω

Let x∗ ∈ W be an optimal solution to RPP with (u∗,v∗), and x̄ ∈ W be an optimal solution
to RPP with (ū, v̄). Then we obtain

L(x∗(t),u∗(t),v∗(t); t) ≥ L(x̄(t), ū(t), v̄(t); t) ∀(ū(t), v̄(t)), ū(t) ≥ 0 ∀t ∈ Ω (4.6)

Applying the integral
∫
Ω
dt to both sides of (4.6) yields

IL(x∗,u∗,v∗) ≥ IL(x̄, ū, v̄) ∀(ū, v̄), ū ≥ 0

By Theorem 4.2, x∗ ∈ W is also an optimal solution to RIPP with (u∗,v∗), and x̄ ∈ W is
also an optimal solution to RIPP with (ū, v̄), therefore

min
x∈W

IL(x,u∗,v∗) ≥ min
x∈W

IL(x, ū, v̄) ∀(ū, v̄), ū ≥ 0

or equivalently,
∆(u∗,v∗) ≥ ∆(ū, v̄) ∀(ū, v̄), ū ≥ 0

and thus (u∗,v∗) is an optimal solution to IDP (3.6).
Conversely, let (u∗,v∗) be an optimal solution to IDP (3.6) and assume that (u∗,v∗) is

not an optimal solution to LDP (2.11). By Definition 2.12, there exist a pair of functions
(ū, v̄) ∈ C̄p(Ω,Rm × Rl), ū ≥ 0, (ū, v̄) ̸= (u∗,v∗), and t̄ ∈ Ω such that θ(ū(t̄), v̄(t̄); t̄) >
θ(u∗(t̄),v∗(t̄); t̄), or equivalently,

L(x̄(̄t), ū(̄t), v̄(̄t); t̄) > L(x∗(̄t),u∗(̄t),v∗(̄t); t̄)
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where x̄ ∈ W is an optimal solution to RPP with (ū, v̄) and, as assumed above, x∗ ∈ W is
an optimal solution to RPP with (u∗,v∗). By Assumption 2.7, there exists a pair of contin-
uous and bounded functions (ũ, ṽ) in a neighborhood of t̄, Nδ(t̄), such that (ũ(t̄), ṽ(t̄)) =
(ū(t̄), v̄(t̄)) and ũ(t) ≥ 0 ∀t ∈ Nδ(t̄). Let x̃ ∈ W be an optimal solution to RPP with

(ũ, ṽ). Since (u∗,v∗) ∈ C̄p(Ω,Rm×Rl), there exists a neighborhood of t̄, Ñδ(t̄), where both
(u∗,v∗) and (ũ, ṽ) are continuous. Then, by Assumption 2.6, the functions x∗ and x̃ are

also continuous on Ñδ(t̄), and therefore

L(x̃(t), ũ(t), ṽ(t); t) > L(x∗(t),u∗(t),v∗(t); t) ∀t ∈ Ñδ(t̄)

Applying the integral
∫
Nδ(t̄)

dt to both sides of this inequality yields:∫
Ñδ(t̄)

L(x̃(t), ũ(t), ṽ(t); t) dt >
∫
Ñδ(t̄)

L(x∗(t),u∗(t),v∗(t); t) dt (4.7)

Construct a pair of functions:

(û(t), v̂(t)) =

{
(ũ(t), ṽ(t)) t ∈ Ñδ(t̄)

(u∗(t),u∗(t)) otherwise

Then û ∈ L2(Ω,Rm), û ≥ 0, and v̂ ∈ L2(Ω,Rl), and therefore (û, v̂) is feasible for IDP
(3.6). Calculate

∆(û, v̂)−∆(u∗,v∗) = min
x∈W

IL(x, û, v̂)− min
x∈W

IL(x,u∗,v∗)

= min
x∈W

∫
Ω

L(x(t), û(t), v̂(t); t) dt− min
x∈W

∫
Ω

L(x(t),u∗(t),v∗(t); t) dt

=

∫
Ω

min
x∈W

L(x(t), û(t), v̂(t); t) dt−
∫
Ω

min
x∈W

L(x(t),u∗(t),v∗(t); t) dt

=

∫
Ñδ(t̄)

L(x̃(t), ũ(t), ṽ(t); t) dt−
∫
Ñδ(t̄)

L(x∗(t),u∗(t),v∗(t); t) dt

> 0

The third equality results from Corollary 4.3 and the strict inequality is a consequence of
(4.7). This is a contradiction that (u∗,v∗) is an optimal solution to IDP (3.6). Thus (u∗,v∗)
is an optimal solution to LDP (2.11).

The main theoretical result, that extends strong duality to mp-NLPs, can now be proved.

Theorem 4.6 (Strong Duality for mp-NLP). Consider mp-NLP (2.5) and LDP (2.11) and
their respective assumptions. Let the assumptions of Theorems 3.7 and 4.2 also hold. If
x∗ ∈ X is an optimal solution to (2.5) and (u∗,v∗) ,u∗ ≥ 0 is an optimal solution to (2.11),
then

f(x∗(t), t) = min
x

{f(x(t); t) : x ∈ S,g (x(t); t) ≤ 0,h (x(t); t) = 0}

= max
u,v

{θ(u(t),v(t); t) : u(t) ≥ 0} = θ(u∗(t),v∗(t), t) ∀t ∈ Ω

Proof. Let x∗ ∈ X be an optimal solution to (2.5) and (u∗,v∗) ,u∗ ≥ 0 be an optimal
solution to (2.11). From Theorem 2.13

θ(u∗(t),v∗(t); t) ≤ f(x∗(t); t) ∀t ∈ Ω (4.8)
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By Theorems 4.1 and 4.5, x∗ is also an optimal solution to IPP (3.1) and (u∗,v∗) is also an
optimal solution to IDP (3.6), and therefore Theorem 3.7 holds yielding∫

Ω

f(x∗(t); t) dt = ∆(u∗,v∗) (4.9)

On the other hand, from Corollary 4.4,

∆(u∗,v∗) =

∫
Ω

θ(u∗(t),v∗(t); t) dt (4.10)

From (4.9) and (4.10): ∫
Ω

f(x∗(t); t) dt =

∫
Ω

θ(u∗(t),v∗(t); t) dt (4.11)

and from (4.8) and (4.11):

f(x∗(t); t) = θ(u∗(t),v∗(t); t) ∀t ∈ Ω (4.12)

as desired.

With the theoretical results established, solving the parametric primal and dual problems
is now of interest.

5 Subgradient Algorithm

The presented theoretical results open up a possibility to solve the parametric primal and
dual problems, mp-NLP (2.5) and LDP (2.11). Based on Theorems 4.1, 4.2, 4.5 in Section
4 presenting the three levels of equivalence between mp-NLP (2.5), RPP (2.9), LDP (2.11)
and their integral counterparts, IPP (3.1), RIPP (3.4), IDP (3.6), an optimal solution to
a problem in one group is also an optimal solution to the respective problem in the other
group and vice versa. Given this equivalence, solving the integral counterparts can be a way
to solve the parametric problems. More importantly, based on the strong duality result in
Theorem 4.6, solving the parametric problems could be achieved jointly in a primal-dual
algorithm. However, to benefit from these relationships, the first task is to be able to solve
IPP (3.1).

Note that IPP (3.1) belongs to the class of optimization problems to minimize a convex
functional on a Hilbert space for which solution algorithms have been developed. Since
solving primal an dual problems is of interest in this study, subgradient optimization becomes
an appropriate choice. In the literature, a subgradient algorithm to minimize a convex
functional on a Hilbert space has been designed in [3] and, if appropriately implemented,
it can immediately be applied to solving IPP (3.1). In this case, given the functional J :
L2 (Ω,Rn) → R as the objective function, the subdifferential of J at x is the set ∂J(x)
defined as

∂J(x) =
{
ξ ∈ L2 (Ω,Rn) : J(z) ≥ J(x) + ⟨ξ, z− x⟩ ∀z ∈ L2 (Ω,Rn)

}
(5.1)

where ξ is a subgradient of J at x. In the algorithm, a subgradient-based direction is used
as a direction for improving the values of J while the feasibility of each iterate is assured by
projecting the new iterate on the feasible set X. The main convergence result addresses the
case when the optimal solution set X∗ is nonempty. Then the algorithm stops at iteration K,
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i.e., xK ∈ X∗, or it generates an infinite sequence which converges weakly to some x̄ ∈ X∗.
The reader is referred to [3] for the details and a convergence analysis.

Due to the equivalence discussed above, this algorithm can be adapted to directly solving
mp-NLP (2.5). Additionally, after some modifications, it is also suitable for solving IDP
(3.6) and therefore can also be adapted for (2.11). Since a literature review indicates that
this algorithm has not been implemented while it serves the needs of this work, it has
been implemented as a multiparametric subgradient algorithm (mp-SA) in two versions:
Algorithm 1 to solve mp-NLP (2.5) and Algorithm 2 to solve LDP (2.11). Both algorithms
are presented below in the context of the parametric problems they solve.

Algorithm 1 is implemented to solve mp-NLP (2.5) and its pseudocode is given below.
Let PX denote the projection operator onto the feasible set X so that x′ = PX(x̂) is a
minimizer of min

x∈X
∥x− x̂∥2. Let ∂f(x) denote the subdifferential of the objective function in

(2.5) at x. At each iteration, in Line 1, a subgradient of the objective function is obtained
at the current solution. If the subgradient is nonzero, in Lines 5 and 6, the next solution is
computed by moving a prescribed step size λk along the direction dk opposite to that of the
normalized subgradient. This new solution in L2 (Ω,Rn) is projected onto the feasible set
X if necessary. In Line 7, the objective function is evaluated at the new solution. In Line
9, the current upper bound is updated with a smaller one if such has been found in Line 8.
The process continues a prescribed number of times or until a convergence criterion is met
(with K denoting the final iteration).

Algorithm 2 is implemented to solve LDP (2.11) and its pseudocode is also given below.
Since this is a maximization problem, Algorithm 2 solves the LDP-equivalent problem of
the form minu,v − θ(u(t),v(t); t), u(t) ≥ 0, t ∈ Ω, and provides primal and dual optimal
solutions to mp-NLP (2.5). Let P≥ denote the projection operator onto the set of non-
negative vectors in Rn, and ∂θ(u,v) denote the subdifferential of the objective function in
(2.11) at (u,v). In Line 1, given the current dual solution

(
uk,vk

)
, RPP (2.9) is solved

for a primal solution xk and a subgradient of the dual function is obtained by evaluating
ξk(t) = −

(
g
(
xk(t); t

)
,h

(
xk(t); t

))
∀t ∈ Ω. The main step proceeds in a similar way to

Algorithm 1 with the difference that −θ(u(t) is minimized with respect to
(
uk,vk

)
. As is

the case in the nonparametric setting, evaluating θ to obtain a subgradient requires solving
RPP (2.9) to obtain a primal solution used to evaluate g and h. Since RPP (2.9) is also
an mp-NLP, a suitable algorithm available in the literature is employed in Line 1. This is
discussed in more detail in Section 6.3.

6 Applications

In Sections 6.1 and 6.2 two examples are presented to demonstrate the effectiveness of the
subgradient algorithm mp-SA. Remarks on the numerical experience gained are included in
Section 6.3. To support the duality theory developed in Sections 3 and 4, Algorithm 2 is
applied to solve LDP (2.11) to each example problem. Each LDP (2.11) is created by relaxing
a nonlinear constraint into the objective. For comparison purposes, for each example, mp-
NLP (or PP) (2.5) is also solved using the multiparametric quadratic algorithm (mp-QA),
a state-of-the-art quadratic approximation algorithm for mpNLPs [26, 12, 13]. The first
example contains a single parameter and is used to provide additional insight to the steps
at each iteration of Algorithm 2. The second example is a multiparametric extension of the
Rosen-Suzuki problem [25].

All problems have been solved in Matlab on a 2.6 GHz Intel Core i7-6700HQ processor
with 32 GB of RAM. The implementation of the mp-QA follows [12, 13], where the vertex-
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based implementation from the latter reference is used, and employs the Multi-Parametric
Toolbox [23] to solve the resulting multiparametric quadratic program (mp-QP).

Input: initial primal feasible solution x0; sequence {λk}; initial upper bound UB0

(UB0 = ∞ is sufficient)
1 Step k: Given xk, obtain subgradient ξk ∈ ∂f(xk) ;

2 if ξk = 0 then
3 stop ;
4 else

5 set dk = − ξk

∥ξk∥2
and select step size λk ;

6 compute xk+1 = PX(x̂k+1) where x̂k+1 = xk + λkd
k ;

7 evaluate fk+1(t) = f(xk+1(t); t) ∀t ∈ Ω ;
8 if

∫
Ω
fk+1(t) dt < UBk then

9 update UBk+1 =
∫
Ω
fk+1(t) dt ;

10 else
11 UBk+1 = UBk ;
12 end
13 Set k = k + 1 and go to Line 1 ;

14 end

Output: primal solution xK , value function fK , and upper bound UBK on the
integral of fK

Algorithm 1: Subgradient algorithm mp-SA for mp-NLP (2.5)

Input: initial dual feasible solution
(
u0,v0

)
; sequence {λk}, initial upper bound

UB0 (UB0 = ∞ is sufficient)
1 Step k: Given

(
uk,vk

)
, obtain primal solution xk by evaluating θ

(
uk,vk; t

)
, and

obtain subgradient ξk ∈ ∂θ
(
uk,vk

)
;

2 if ξk = 0 then
3 stop ;
4 else

5 set dk = − ξk

∥ξk∥2
and select step size λk ;

6 compute uk+1 = P≥0(û
k+1) where ûk+1 = uk + λkd

k ;

7 compute vk+1 = vk + λkd
k ;

8 evaluate θk+1(t) = θ(uk+1(t),vk+1(t); t) ∀t ∈ Ω ;
9 if

∫
Ω
−θk+1(t) dt < UBk then

10 update UBk+1 =
∫
Ω
−θk+1(t) dt ;

11 else
12 UBk+1 = UBk ;
13 end
14 Set k = k + 1 and go to Line 1;

15 end

Output: dual solution
(
uK ,vK

)
, primal solution xK , value function −θK , and

upper bound UBK on the integral of −θK
Algorithm 2: Subgradient algorithm mp-SA for LDP (2.11)
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6.1 Single-parametric example

The first example has a quadratic constraint but is otherwise linear.

min
x1,x2

f(x(t); t) = −x1(t)− x2(t)

s.t. g1(x(t); t) = 2x1(t) + x2(t)− 1− 5t ≤ 0

g2(x(t); t) = x1(t)
2 + x2(t)

2 − 1− t ≤ 0

x1(t), x2(t) ≥ 0, t ∈ [0, 1]

(6.1)

The analytic optimal solution is:

x∗
1(t) =

 0.4 + 2t−
√
0.16− 0.2t− t2 0 ≤ t ≤ 0.28√

0.5(t+ 1) 0.28 < t ≤ 1

x∗
2(t) =

 0.2 + t+ 2
√
0.16− 0.2t− t2 0 ≤ t ≤ 0.28√

0.5(t+ 1) 0.28 < t ≤ 1

f∗(t) =

−.6− 3t−
√
.16− .2t− t2 0 ≤ t ≤ 0.28

−2
√
0.5(t+ 1) 0.28 < t ≤ 1

The Lagrangian dual function is created by relaxing g2 into the objective.

θ(u(t); t) = min
x1,x2

− x1(t)− x2(t) + u(t)(x1(t)
2 + x2(t)

2 − 1− t)

s.t. 2x1(t) + x2(t)− 1− 5t ≤ 0

x1(t), x2(t) ≥ 0, t ∈ [0, 1]

(6.2)

The mp-SA is applied to LDP (2.11)

max
u(t)≥0, t∈[0,1]

θ(u(t); t) = − min
u(t)≥0, t∈[0,1]

−θ(u(t); t) (6.3)

The analytic dual optimal solution is:

u∗(t) =


1

10
√
0.16−0.2t−t2

0 ≤ t ≤ 0.28

0.5
√

2
(t+1) 0.28 < t ≤ 1

Relaxing g2(x; t) into the objective allows problem (6.2) to be solved without the need to
approximate any functions in the constraint set. However, (6.2) is not an mp-QP since u(t)
is not constant in t. Thus an exact solution to (6.2) cannot be computed and will instead
be approximated using an appropriate algorithm as required in Line 1 of Algorithm 2 to
obtain a subgradient. The objective function in (6.2) is then approximated with a quadratic
function and the resulting mp-QP is solved with the mp-QA algorithm.

The initial dual solution u0 is the linear interpolation of the dual optimal solutions to
(6.1) for t = 0 and t = 1. This “warm start” is guaranteed to produce a dual feasible solution
since it is a linear interpolation of feasible points in a convex space (u ≥ 0) and is easily
generalized to higher dimensions. Since the dual variables only appear in the objective, the
relaxed primal problem is guaranteed to have a feasible solution for every t ∈ Ω.
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The subgradient step-size is λk = 1
k+35 and Algorithm 2 runs for twenty iterations. The

first iteration is described in detail to provide details on how the subgradient is obtained
and the dual solution is updated. Inputs are: an initial dual solution u0(t) = 0.25t + 0.25;

a step size sequence {λk} =
{

1
35+k

}
, and an initial upper bound UB0 = ∞

Line 1: Evaluate θ0(t) = θ
(
u0(t); t

)
to obtain an initial primal solution x0 and subgra-

dient ξ0. The evaluation of θ
(
u0(t); t

)
involves solving the following mp-NLP:

θ(u0(t); t) = min
x1,x2

− x1(t)− x2(t) + (0.25t+ 0.25)((x1(t)
2 + x2(t)

2 − 1− t)

st 2x1(t) + x2(t)− 1− 5t ≤ 0

x1(t), x2(t) ≥ 0, t ∈ [0, 1]

(6.4)

The (0.25t + 0.25)((x1(t)
2 + x2(t)

2 − 1 − t) term in (6.4) is cubic in terms of t and x so
the mp-QA algorithm is used with a tolerance of 0.1 to solve (6.4) and evaluate θ(u0(t); t).
The approximate solution to (6.4) partitions the parameter space into two critical regions:
CR1 = [0, 0.56818] and CR2 = [0.56818, 1]. The initial primal solution is:

x0
1(t) =

 2.2426t+ 0.0196 t ∈ CR1

−0.7556t+ 1.7111 t ∈ CR2

x0
2(t) =

 0.5148t+ 0.9608 t ∈ CR1

−0.8222t+ 1.7444 t ∈ CR2

and the initial dual function is:

θ0(t) =

 2.4709t2 − 3.0777t− 0.9692 t ∈ CR1

−0.7176t2 + 0.8440t− 2.1384 t ∈ CR2

A subgradient is obtained by evaluating −g2 at the primal solution: ξ0(t) = −g2(x
0(t); t).

The subgradient is approximated as a linear interpolation of the value of g2 at the vertices
of each critical region, as shown in Table 1.

Vertex t̂ g2(x
0(t); t̂)

0 -0.076398
0.56818 1.6766

1 -0.23642

Table 1: Evaluation of g2(x
0(t); t) at vertices for Example 6.1

ξ0(t) =

−3.0852t+ 0.0764 t ∈ CR1

4.4989t− 4.2625 t ∈ CR2

Line 2: Since ξ0 ̸= 0 the mp-SA proceeds to Line 5.

Line 5: The subgradient norm
∥∥ξ0∥∥

2
= 0.9372 is computed, the direction d0 = ξ0/

∥∥ξ0∥∥
2

is set, and the step size λ0 = 1/35 is chosen.
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Line 6: The next dual solution is obtained via the subgradient update:

u1(t) = P≥0

(
u0(t) + λ0d

0(t)
)

= P≥0

 0.25t+ 0.25 t ∈ CR1

0.25t+ 0.25 t ∈ CR2

+
1

32.801

−3.0852t+ 0.0764 t ∈ CR1

4.4989t− 4.2625 t ∈ CR2



=

 0.3415t+ 0.2477 t ∈ CR1

0.1167t+ 0.3763 t ∈ CR2

Lines 8 and 9: Evaluate∫
Ω

−θ1(t)dt =

∫ 0.56818

0

−
(
2.4709t2 − 3.0777t− 0.9692

)
dt

+

∫ 1

0.56818

−
(
−0.7176t2 + 0.8440t− 2.1384

)
dt = 1.7294

Since the value of the integral is an improvement on UB0, set UB1 = 1.7294.
Line 13: Set k = 1 and return to Line 1.
Algorithm 2 continues until the termination condition is met or 20 iterations are com-

pleted.

The results from solving (6.2) using the mp-SA and solving (6.1) directly using the mp-
QA are listed in Table 2. The two methods are compared using the number of critical
regions in the solution, CRs; the number of standard NLPs solved, NLPs; the number
of multiparametric quadratic approximation problems solved, mp-QPs; the total objective
function error,

∥∥f∗ − f20
∥∥
2
; the total solution function error,

∥∥x∗ − x20
∥∥
2
; and the total

computational time.

Tol = 0.1 Tol = 0.01 Tol = 0.001
mp-SA mp-QA mp-SA mp-QA mp-SA mp-QA

CRs 7 16 36 43 16 122
NLPs 571 76 1527 233 1267 726

mp-QPs 177 10 473 32 403 111∥∥f∗ − f20
∥∥
2

0.0101 .0025 0.0027 .0004 0.0007 3.6e− 5∥∥x∗ − x20
∥∥
2

0.0758 0.1817 0.0334 .0641 0.0272 0.0165

Time (sec) 48.9 5.6 164.3 14.4 104.1 41.6

Table 2: Example 6.1: comparison of results obtained with mp-SA and mp-QA

The number of NLP and mp-QP problems solved for the mp-SA is the sum over all iterations.
In each case the mp-SA achieves comparable accuracy to the mp-QA and with fewer critical
regions. The tradeoff for this advantage is the increased computational time due to the
number of additional NLP and mp-QP problems that must be solved at each iteration. As
the required accuracy increases however, the gap in the number of problems solved decreases.

The plots of the optimal value function produced be each algorithm are displayed in
Figures 1 and 2. Figure 1 shows the value function obtained using an error tolerance of 0.1.
There is a visible difference in these two graphs, with Figure 1(b) showing a discontinuity
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where none should exist, while Figure 1(a) is more accurate. Figure 2 shows the results for
a 0.001 error tolerance and there is no distinguishable difference in the graphs of the two
functions.

Figure 1: Example 6.1: optimal objective function, 0.1 tolerance

Figure 2: Example 6.1: optimal objective function, 0.001 tolerance

Figures 3 and 4 depict the graphs of the primal optimal solution functions produced
by each algorithm for error tolerance levels 0.1 and 0.001, respectively, and allow for their
comparison. The mp-QA algorithm produces a good approximation for the first critical
region [0, .28] but has a considerable trouble with the second region [0.28, 1] where the
approximations for x∗

1 and x∗
2 are not equal when they should be the same function. The

gap between the two solutions diminishes as the error tolerance becomes more stringent, but
is still present in Figure 4(a). The subgradient algorithm is much closer to the true solution
in Figure 4(b), although the solution in Figure 3(b) is noticably worse.

Figure 3: Example 6.1: optimal decision functions, 0.1 tolerance
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Figure 4: Example 6.1: optimal decision functions, 0.001 tolerance

In Figure 5, the graphs of the dual optimal solution function, u20, produced by the mp-
SA can be compared with the analytical solution, u∗, for error tolerances 0.1 and 0.001.
Figure 5(a) clearly shows that the mp-SA solution after 20 iterations is not very good. How-
ever, Figure 5(b) shows a near-match between the approximated function and the optimal
solution, with the only significant difference occuring at the end of the parameter space.

Figure 5: Example 6.1: optimal dual function and its approximation

The difference between directly solving the primal problem (6.1) by means of the mp-QA
versus solving the dual problem using a subgradient algorithm, such as the mp-SA, can be
understood by examining how the constraint g2 is handled by each method. Solving (6.1)
requires that the quadratic g2 be approximated by a set of linear inequalities. As the required
accuracy becomes stricter, more inequalities must be used to satisfactorily approximate the
feasible region. Many of these linear inequalities are nearly equivalent to each other, leading
to problems related to linear dependence of the constraints. By contrast, solving the dual
problem using a subgradient algorithm allows g2 to be relaxed into the objective and the
relaxed primal problem (6.2) to be solved instead. Using the mp-QA to solve (6.2) replaces
the cubic function u2g2 with a single quadratic approximation. A new approximation of the
objective function is made at each iteration of the mp-SA and hence the difference between
the two methods can be summarized as a tradeoff between a set of linear approximations or
a sequence of quadratic approximations to deal with the problematic constraint.

These results serve to illustrate the benefit that subgradient methods can bring to MPP.
Combining them with other strategies, in this case mp-QA, can produce better results than
the mp-QA can achieve by itself.
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6.2 Multiparametric example

The next example is a parametric adaptation of the Rosen-Suzuki problem, a common test
problem for subgradient algorithms [25]. A parameter t1 is placed in the objective function
and a second parameter t2 is placed in the second constraint. The first parameter influences
the value of x1 which is present in all three constraints as both a quadratic and linear term.
The second constraint is inactive at the optimal solution of the Rosen-Suzuki problem, so
parameter t2 is included to reduce the value of the righthand side, effectively tightening the
constraint until it becomes active.

min
x

f(x(t); t) =

(
x1(t)−

5

2
+ t1

)2

+ x2(t)
2+ 2x3(t)

2+ x4(t)
2− 5x2(t)− 21x3(t)+ 7x4(t)

s.t. g1(x(t); t) = x1(t)
2 + x2(t)

2 + x3(t)
2 + x4(t)

2 + x1(t)− x2(t) + x3(t)− x4(t) ≤ 8

g2(x(t); t) = x1(t)
2 + 2x2(t)

2 + x3(t)
2 + 2x4(t)

2 − x1(t)− x4(t) ≤ 10− t2

g3(x(t); t) = 2x1(t)
2 + x2(t)

2 + x3(t)
2 + 2x1(t)− x2(t)− x4(t) ≤ 5

t ∈ [−1, 1]× [0, 3]
(6.5)

The dual function is created by relaxing all three nonlinear constraints into the objective,
resulting in an unconstrained minimization problem.

θ(u(t); t) = min
x1,x2

(
x1(t)−

5

2
+ t1

)2

+ x2(t)
2 + 2x3(t)

2 + x4(t)
2 − 5x2(t)− 21x3(t) + 7x4(t)

+ u1(t)g1(x(t); t) + u2(t)g2(x(t); t) + u3(t)g3(x(t); t)

t ∈ [−1, 1]× [0, 3]

The primal and dual solutions to problem (6.6) are again approximated with piecewise affine
functions of t, using the mp-QA algorithm to evaluate θ(u(t); t) in Line 1 of Algorithm

2. The subgradient step-size sequence is
{

2
k+1

}
and Algorithm 2 is halted after twenty

iterations. The initial dual solution u0 is the linear interpolation of the dual optimal solutions
to problem (6.5) at the vertices of [−1, 1]× [0, 3].

The optimal solution to (6.5) obtained using Algorithm 2 is compared to the solution
obtained using the mp-QA. Since an exact, analytic optimal solution is not available as it
was for Example 6.1, the accuracy of each optimal solution is approximated by evaluating∥∥f∗ − f20

∥∥
2
and

∥∥x∗ − x20
∥∥
2
using discretization with the Trapezoidal Rule and a 21 × 21

grid partition of Ω.
Three error tolerance levels are used and the results are reported in Table 3. The mp-QA

failed when used with the strictest tolerance 0.001 due to partitioning Ω into critical regions
with areas on the order of 10−8. The algorithm creates these regions to maintain feasibility
of the approximated solution, but when they become too small it leads to numerical failure.
Algorithm 2 does not encounter this issue since all the nonlinear constraints are relaxed into
the objective.

At each tolerance level the mp-SA requires fewer critical regions to approximate the
solution than does the mp-QA. The tradeoff however is a substantial increase in the total
number of NLPs and mp-QPs that must be solved by the mp-SA. The accuracy of the mp-
QA approximation of f∗ improves as the tolerance decreases while the mp-SA accuracy is
unchanged. The mp-SA is capable of obtaining a solution at the 0.001 tolerance level while
the mp-QA fails.
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Tol = 0.1 Tol = 0.01 Tol = 0.001
mp-SA mp-QA mp-SA mp-QA mp-SA mp-QA

CRs 148 268 373 2257 804 -
NLPs 6890 1440 20898 11791 50998 -

mp-QPs 1378 47 4018 358 10195 -∥∥f∗ − f20
∥∥
2

0.0236 0.0631 0.0238 0.0067 0.0239 -∥∥x∗ − x20
∥∥
2

0.0645 0.1934 0.0647 0.0535 0.0646 -

Time (sec) 646.8 46.8 2479.2 284.3 7115.1 -

Table 3: Example 6.2: comparison of results obtained with mp-SA and mp-QA

The plots of f∗ for each algorithm are shown in Figure 6 along with the plot of the
optimal value function found through discretization. The optimal value function for (6.5)
is close to planar and there is little to visually distinguish the solutions from each other.
Both algorithms can achieve accurate solutions for this problem even for relatively large
tolerances.

Figure 6: Example 6.2: optimal objective value function

Figures 7 – 9 show the plots of the optimal x1 and x2 solution functions obtained by
discretization as well as the functions returned by the two algorithms. These plots serve to
illustrate - even more than the error calculations do in Table 3 - how much better the solution
functions returned by the mp-SA are than those returned by the mp-QA. The constraint
approximations used by the mp-QA produce discontinuous decision functions whereas the
mp-SA maintains the continuity of the optimal solutions visible in Figure 7 thanks to the
ability to relax the nonlinear constraints into the objective. This is a similar behavior to
what is observed in the solution functions in Figures 3 and 4 for Example 6.1.

Examples 6.1 and 6.2 demonstrate that the mp-SA in conjunction with the dual problem
produces solutions competitive with what a state-of-the-art mp-NLP algorithm can achieve
solving the primal problem. Both algorithms yield accurate value functions, but the mp-SA
distinguishes itself by producing solution functions that are more accurate and have fewer
discontinuities than those yielded by the mp-QA. This is due to the ability to relax nonlinear
constraints into the objective, bypassing the need to construct linear approximations for
them when solving the relaxed primal problem at a given dual solution. In contrast, the
mp-QA must approximate these constraints to maintain feasibility, resulting in partitioning
the parameter space into ever smaller critical regions. As demonstrated in this example, if
the error tolerance is too small it can lead to numerical problems that prevent the algorithm
from returning a solution.

The downside to the mp-SA is the large number of total NLPs and mp-QPs it must solve
over all its iterations. At smaller tolerances the difference in the number of problems solved
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by each method can shrink, as it does in Example 6.1, but this is not guaranteed to occur
as Example 6.2 illustrates. If the value function is the only item of interest, the mp-QA is
likely to be the more efficient solution method. If the solution functions are needed or if a
strict tolerance is required, the mp-SA is the better choice.

6.3 Implementation considerations

Several issues arise from implementing the mp-SA that do not exist or are more complicated
to deal with than in the nonparametric setting. They involve representation of functions,
obtaining a subgradient from the relaxed primal problem, and partitioning of the parameter
space Ω into critical regions.

Figure 7: Example 6.2: optimal solution functions x1, x2

Figure 8: Example 6.2: optimal solution functions x1, x2 computed with mp-QA

Figure 9: Example 6.2: optimal solution functions x1, x2 computed with mp-SA
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Every iteration of the mp-SA produces functions of the parameter that need to be repre-
sented in a tractable way. The solution functions and subgradient can be approximated with
piecewise linear functions. Evaluating linear constraints at a solution is then straightforward
while nonlinear constraints can be approximated by a linear interpolation of the constraint
function at the vertices of each critical region. Keeping the approximations linear simplifies
the process of obtaining the subgradient and making the update for the next iteration.

As mentioned earlier in Section 6.1, in Algorithm 2 obtaining a subgradient requires
solving the relaxed primal problem to obtain the primal solution xk associated with the
dual solution

(
uk,vk

)
. Since the relaxed primal problem is itself an mp-NLP, a suitable

solution method can be used to execute Line 1 in the algorithm. In Sections 6.1 and 6.2 the
mp-QA [12, 13] is selected for this step.

Solving an mp-NLP results in partitioning Ω into critical regions for which mappings
t → x∗ are valid. The mp-SA generates many such mappings during its execution and
it is likely that the intermediate solutions generate critical regions that differ from those
of the optimal solution, particularly for Algorithm 2 which involves solving the relaxed
primal problem for nonoptimal dual feasible solutions (u,v). Since the mp-SA iterates
through several such solutions, it is possible that many such “extra” partitions could be
introduced over the course of the algorithm. Because each iteration builds on the prior one,
the “extra” partitions will remain in the solution unless they are explicitly addressed. The
solution to Example 6.1 illustrates this outcome. During an early iteration in the execution
of Algorithm 2, the primal solution associated with a nonoptimal dual solution generates
critical regions [0.2841, 0.2847] and [0.2847, 0.2858]. The components of xk (t) differ between
these two regions at that time, however at termination those same components converge to
a common function as shown in Table 4.

CRA = [0.2841, 0.2847] CRB = [0.2847, 0.2858]
x1 0.3120t+ 0.7127 0.3118t+ 0.7127
x2 0.3120t+ 0.7126 0.3119t+ 0.7127
u −0.2429t+ 0.6930 −0.2426t+ 0.6929

Table 4: Example 6.1: Critical regions A and B at termination

This outcome – a partition of Ω that is not required by the optimal solution – increases the
amount of work performed by the algorithm since it must update the solution associated
with every critical region in the partition of Ω. If some of the critical regions have the
same solution, time can be saved by first consolidating them into a single region and then
performing the update. The consolidation can be performed by periodically checking if two
adjacent critical regions have identical mappings of t → x∗ and t → (u∗,v∗). One method
to perform this check is to evaluate the normed difference of x (or u and v) over the union
of adjacent regions and consolidate them if the difference is within some tolerance ϵ:

∥xCR1
− xCR2

∥2
2
<

∫
CR1 ∪ CR2

(xCR1
− xCR2

)
T
(xCR1

− xCR2
) < ϵ

where xCRj
is the part of the piecewise function x associated with critical region CRj .

The benefits of this step are demonstrated in Table 5 where the mp-SA results given
earlier in Table 2 are compared with the results obtained with mp-SA*, a version of mp-SA
that is run for 20 iterations without the critical region unification step. In mp-SA, regions are
checked for unification at every iteration and combined if

∥∥uCRj
− uCRk

∥∥
2
≤ 0.001. These
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results indicate that performing the unification step can dramatically reduce the number of
problems that must be solved without a corresponding loss in accuracy. The unification step
reduces on average the number of critical regions by 48%, the number of NLPs that must
be solved by 25%, and the number of mp-QPs that must be solved by 26%. Reducing the
number of problems solved helps reduce the total time, though it is unclear why this does
not happen for the 0.01 tolerance case. It is likely that the unification step does not need
to be performed at every iteration and that performance gains can be made running it e.g.,
every five iterations. More research is needed however to determine desirable guidelines for
applying this step.

Tol = 0.1 Tol = 0.01 Tol = 0.001
mp-SA mp-SA* mp-SA mp-SA* mp-SA mp-SA*

CRs 7 20 36 57 16 36
NLPs 571 830 1527 1932 1267 1712

mp-QPs 177 264 473 608 403 552∥∥f∗ − f20
∥∥
2

0.0101 0.0101 0.0027 0.0027 0.0007 0.0009∥∥x∗ − x20
∥∥
2

0.0758 0.0758 0.0334 0.0334 0.0272 0.0273

Time (sec) 48.9 62.1 164.3 139.9 104.1 123.3

Table 5: Example 6.1: comparison of results obtained with mp-SA (cf. Table 2) and mp-SA*
(i.e., mp-SA without critical region unification)

7 Conclusion

Results on Lagrangian duality for convex mp-NLPs are presented. The extension of theory
has been possible due to redefining the feasible set of vectors in the standard mp-NLP
formulation into a feasible set of functions and relating the resulting problem to its integral
counterpart in a function space. Under suitable assumptions, weak and strong duality
relationships are derived for the counterpart and an equivalence between the counterpart
and the mp-NLP in the context of their primal and dual problems is proved. These results
lead to proving strong duality for the mp-NLP.

Working in a function space allows to employ a subgradient algorithm available in the
literature and designed to optimize a convex functional. The algorithm is recast to work
for multiparametric optimization and is presented in two variants, primal and dual. Two
examples illustrate how this algorithm, implemented with a simple choice of step size, can
obtain primal and dual optimal solutions to mp-NLPs that are competitive to those of an
existing method providing a primal optimal solution. In one instance, the algorithm obtains
a solution at a tolerance level for which that other method fails. The obtained numerical
experience is presented and the issues that affect the algorithm’s performance are identified.

While a common step size condition is used in this implementation, other convergence
results are available for subgradient algorithms in a Hilbert space which depend upon how the
step size is chosen and the next iterate computed [3, 6]. This opens up possibilities for more
numerical studies on the effectiveness of subgradient optimization for MPP. Additionally,
the dual optimal solution may become useful in applications of parametric optimization
analogously to the nonparametric counterpart.
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[16] N. Fáısca, P. Saraiva, B. Rustem and E.N. Pistikopoulos, A multi-parametric pro-
gramming approach for multilevel hierarchical and decentralised optimisation problems,
Comput. Manage. Sci. 6 (2009) 377–397.

[17] A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Program-
ming, Mathematics in Science and Engineering, Academic Press, volume 165, 1983.



ON LAGRANGIAN DUALITY FOR MULTIPARAMETRIC PROGRAMS 673

[18] C.B. Garcia and W.I. Zangwill, Pathways to Solutions, Fixed Points, and Equilibria,
Series in Computational Mathematics, Prentice Hall, 1981.

[19] A. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal.
Appl. 22 (1968) 618–630.

[20] A. Grancharova and T.A. Johansen, Explicit Nonlinear Model Predictive Control: The-
ory and Applications, Springer, Berlin Heidelberg, 2012.

[21] J. Guddat, F.G. Vasquez and H.T. Jongen, Parametric Optimization: Singularities,
Pathfollowing, and Jumps, John Wiley & Sons, 1990.

[22] Ø. Hegranæs, J. Gravdahl and P. Tøndel, Spacecraft altitude control using explicit
model predictive control, Automatica 41 (2005) 2107–2114.

[23] M. Herceg, M. Kvasnica, C.N. Jones and M. Morari, Multi-Parametric Toolbox 3.0, in:
Proc. of the European Control Conference, Zürich, Switzerland, 2013, pp. 502–510.
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