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Abstract: In this paper, we reviln this paper, we establish tight Pareto H-eigenvalue inclusion intervals
for the tensor eigenvalue complementarity problems based on partitioning the tensor index set. To reduce
computations, we propose new S-type Pareto H-eigenvalue inclusion intervals, and verify the efficiency of the
obtained results by running examples. As applications, we propose some sufficient conditions for checking
the strict copositivity and the strict semi-positivity of tensors.
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Introduction

Let A = (ai,i,..i,,) € RI™™ be an m-th order n dimensional real tensor and 2 be a real

n-vector and N = {1,2,--- ;n}. Az™~! is a vector in R™ with its ith component as
(.Al‘m_l)i = Z Qjgoeeiy Lig ++ + Ly
(i2,...,im)€N

Consider the following tensor eigenvalue complementarity problems: to find (A, z) € R x
7 \{0} such that

0<zl(A\Zz™ ' — Az™ 1) >0,

where aLb means that the two vectors a,b are perpendicular to each other, and Z € R[™"
is a unit tensor whose entries are

. 1 i =iy = =,
ft2etm T () otherwise.

(A, z) € R x R?\{0} is called a Pareto H-eigenpair. Further, if z + A\Zz™" ' — Az™~! > 0,
then (A, z) is called a strict Pareto H-eigenpair.
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ZR2019PA016) and the National Natural Science Foundation of China (12071250, 11901343)
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The concept of Pareto H-eigenpair of the tensor eigenvalue complementarity problems
was introduced by Ling et al. [9] and Song et al. [17], which is a natural generalization of
the matrix eigenvalue complementarity problem [1, 5, 14]. It is worth noting that Pareto H-
eigenvalues are closely related to H-eigenvalues of A introduced by Lim [8] and Qi [11, 12],
respectively.

Definition 1.1. Let A = (a;,i,..;,,) € RI™™ and A € C,z € C*\{0}. Then (), z) is called
an eigenpair of tensor A if
Azt = Aglm1,
m—1 m—1

where x™~1 = (2771 ... [2m=1)T. (), 2) is called an H-eigenpair if they are both real.
Further, H-eigenvalue X of A is said to be HT-eigenvalue, if its eigenvector z € R’ \{0}.

Obviously, HT-eigenvalues of A is its Pareto H-eigenvalues. However, Song et al. [17]
pointed out that the converse results cannot hold. In order to clarify the difference between
H-eigenvalues and Pareto H-eigenvalues, we give the following example.

Example 1.2. Let A € R%2 with a1112 = a1222 = 2, as111 = ag122 = —2, and other entries
be all zero.

Let (A, 2 = (z1,72) ") be a Pareto eigenpair of (A,Z). Consequently,

221 (2329 + 23) = Nt
229 (—x3 — 2123) = Ars;
1 > 0,290 >0, )\x‘% — infmg — 2:5‘3 >0, )\xg + 2:0‘% + 21’11% > 0.

Thus, (M\,z) = (0,(a,0)") and (A\,z) = (0,(0,a)”) are Pareto eigenpairs of (A,Z) with
a > 0. However, (A\,z) = (0,(a,0)7) and (\,z) = (0,(0,a) ") cannot satisfy the following
equations:
{ 223wy + 203 = \a$;
—22% — 2x123 = 7.

As a result, Pareto H-eigenvalues of tensor eigenvalue complementarity problems make
some practical problems provide more natural and exact mathematical representations for
specific real difficulties. Many studies have recently been conducted on this topic [2, 3, 9,
10, 16, 24]. Ling et al. [9] investigated important properties of the Pareto H-eigenvalue,
including the bound for the number of Pareto H-eigenvalues. Song et al. [15, 16] provided
a large number of structured tensors to ensure the existence of solutions to tensor comple-
mentarity problems. However, finding the largest Pareto H-eigenvalue is NP-hard [9], and
verifying structured tensors, such as strictly copositive tensors, is challenging [15, 16]. Thus,
some researchers turned to investigating inclusion intervals to characterize the distribution
of Pareto H-eigenvalues. Xu et al. [22] constructed S-inclusion intervals to locate Pareto
H-eigenvalues, and proposed sufficient conditions to guarantee the strict copositivity of a
tensor. However, choosing an inappropriate S may cause the above inclusion intervals to
be inaccurate. Inspired by the articles [6, 7, 9, 10, 16, 18, 19, 20, 21], we develop inclusion
intervals that do not require selecting S to locate Pareto H-eigenvalues based on dividing
the tensor index set. Further, we propose some sufficient conditions to identify the strict
copositivity and the strict semi-positivity by Pareto H-eigenvalue inclusion intervals under
mild conditions. These constitutes the main motivation of the paper.

The remainder of this paper is organized as follows. In Section 2, important properties of
the tensor eigenvalue complementarity problems are recalled. In Section 3, we propose sharp
Pareto H-eigenvalue inclusion intervals for tensor the eigenvalue complementarity problems.
In Section 4, we provide some sufficient conditions to check the strict copositivity and the
strict semi-positivity of tensors. The given numerical experiments show their validity.
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Preliminary

In this section, we shall begin with some definitions and important properties of Pareto
H-eigenvalue [11, 15, 22].
For a tensor A = (a4,4,...1,,) € RI™" we denote

[Al+ = ([@iiy...in]+) € R AL = ((a4,4,...0,,]-) € R,

where [ai,i,. i, |+ = max{0, @i i, i, }5 [y, iy, ]~ = max{0, —a;,i,. i, }-
Define
rilA) = > i) ri(A = D (@i
Oiig - vigy =0 Giig- iy =0
(A = > tiigein A= D (i)
Siig.wim = Siig.eim =0,

— —0

digim = dig:eim

In order to investigate the existence of solutions for the tensor eigenvalue complementar-

ity problems, Qi [13] and Song et al. [15] introduced (strictly) semi-positive and (strictly)
copositive tensors as follows.
Definition 2.1 (Definition 2.3 of [15]). Let A = (a4,4,...4,,) € RI™". A is said to be

m

(i) semi-positive if for each x > 0 and x # 0, there exists k € N such that

x> 0 and (Ammfl)k > 0;

(ii) strictly semi-positive if for each x > 0 and x # 0, there exists k € N such that

r > 0 and (Az™ 1) > 0.

Definition 2.2. Let A € R[™". A is said to be
(i) copositive if Az™ > 0 for any = € R;
(ii) strictly copositive if Az™ > 0 for any z € R’} \{0};
(iii) symmetric if
iy iy, = Qi (ryein(my Ve,
where I'), is the permutation group of m indices.

When A is symmetric, Song et al. [15] proposed the equivalent relation between (strictly)
semi-positivity and (strictly) copositivity.

Lemma 2.3 (Theorems 3.3-3.4 of [15]). Let A = (ai,4,...5, ) € RI™™ be symmetric. Then
A is (strictly) semi-positive if and only if it is (strictly) copositive.

Lemma 2.4 (Proposition 2.1 of [15]). Let A = (a;,i,.
tive, then a;...;, >0, Vi € N.

) € RI™™ If A is strictly coposi-

tm

In the following, we propose the relation between Pareto H-eigenvalues and (strictly)
copositivity.

Lemma 2.5 (Corollary 3.5 of [17]). Let A = (aii,...i,,) € RI™™ be symmetric. Then A is
(strictly) copositive if and only if all Pareto H-eigenvalues of A are non-negative (positive).
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Lemma 2.6. Let A = (a;,i,..5,) € R™™ and [A]_ € R™" be symmetric. If B =
(biyig-in,) = diag(aiy..1,022...2,*+ ,Apn..n) — [A]— is strictly copositive, then A is strictly
copositive.

P?"OOf. Since A = [A]+ - [A], and B = (bilig---im) = diag(au...l,agg.“g, s ,ann...n) — [A],,
we define

A* = [A]Jr - diag(all...l, a9g...2," ,am...n)

with 4 = A* + B. Consequently, A* is a nonnegative tensor. Taking into account that [A]_
is symmetric, we obtain B is symmetric. Since B is strictly copositive, we deduce

min Az™ = min (A*+B)z™ > min Bz™ > 0.
x >0 x >0 x>0
Tz =1 Zaz™ =1 Zae™ =1
Thus, A is strictly copositive. O

We end this section with the Pareto H-eigenvalue inclusion set of [22].

Lemma 2.7 (Theorem 4.5 of [22]). Let A = (ai,i,...5, ) € RI™" and S € N be a nonempty
proper set. Then, we have o(A) C ®°(A) N ¥(A), where

w5 = ( u w4 ) U U Bis(4).

i
J

where

Cbi’j(/l) = {)\ eR: (|/\ — a”1| — T{(A)Jr)p\ — a]‘j“.j| < [aij...j]Jr max{m(AM,m(A)}}

)

U {A ER: (1A — asivca] — 1 (A))A — ajjug| < [a17.-5)— max{r;(A) 75 (A) )

m72H

W(A) = {AeR:—n Al < A<n”22||[A1+||F}.

Pareto H-Eigenvalues Inclusion Intervals

As we know, choosing inappropriate an index set S might cause the above inclusion set
being inaccurate in some cases. First, we propose a nonparametric Pareto H- eigenvalue
inclusion interval.

Theorem 3.1. Let A = (a;,4,..5,) € RI™™ and o(A) denote the set of all Pareto H-
eigenvalues with o(A) # (. Then,

A= N @A) =T UVisa),
i€EN Jilj

where

Ui7j(A) = {Z eR Z| (Z — all)(z — aj...j) = Qjj.jAjieg |

<15 = gy [ (A, (A Ly [ (A, )1

)

Vii(A) = {z eER:|z—a;.;|< max[ag(A)+,5g(A)_]},
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5 (A)y = D [iigein) e 0] (A) - = Y (i)

Siig.im = 0 Siigerim = 05
i, dm £ i, dm £
Proof. Let (A, x) be a Pareto H-eigenpair. Then,
)\ZE;TL = Z Qijogeeniy, Liliy ** l‘im,Vi € N. (31)

(i27i3:"' 77;'m)EN

Define z, = max z; > 0. For any ¢q # p, recalling the p-th and ¢-th equations of (3.1), we
1€

deduce
m — . . . DR . m m_l
Az = g Apig-ipg TpTLiy =+ * Tipy + Apepy’ + ApgegTply s
Opig i = 0
6(1,32.,.7;7” 0
mo_ . . R m m—1
Axgt = g Aqin iy TqTiy *** Tipy + AgegTy’ + QgppTqly
Opig-eim = O
Sqigim =0
We now break up the argument into two cases.
Case I: x4 > 0, for any ¢ # p. Then,
A—ap.,)z" ' —a x" = Cpig-viy, Tig ** * T (3.2)
p---p)Lp pq---qLq = DLl Lo Tm ) .
Spig:rim =
m—1 m—1 __ . . . .
(A= ag.q)zg"™ " — agp.pr,) = E Ogigeeipy Tig = * " Lipy - (3.3)
61”52“‘7;7% 0,
s 0

Solving (3.2) and (3.3) for x4, we obtain

(A= ap..p)(A = ag...q) — apq~-qaqp~-~p)mz%1

= (A —ag.q) E Apiy- i Tiy " * Ty T Apge-q E Qgiy-ip Tiy """ Tiyy

Spig-cipg = 0 Opig i = 0
Sqig-im =0 qigim = 0
=N=agq) D (apisin]t = [apisin] )iy -2,
Spig--ipg = 0
Oqig-rim =0
tapgg Y, ([Ggiin)t = [@ginin] )Tiy - @i, (3.4)
66P'i2'“’i7n
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Taking modulus in the above equation (3.4) and using the triangle inequality yield

| (A= ap...p) (A = ag..q) = Apg..qlgp-—p | x;n_l
<[ A= ag.q |l Z [@piein )+ Tiy -+ Ty, — Z [@pis-im ]~ Ty~ Ty |
61”"2"‘“71 =0, 6Pi2"'im =0,
qigim =0 qig-im T
+ | apgq |l S [giein 4 Tiy i = > [Agigeiy Ty - T,
Spig-im = 0, Spig-im =0
qigrim T Oqin:im =0
SIA—agg lmax{ D" (apipein 4 Ti iy D [pigeiy )Ty e T }
OSpig--im =05 Opigim =
qig - im =0 Sqin-im =0
Hlapgg | max{ > agiyin )i @iy iy D Ggisein ] Tiy @i, )
Opig - rim = 0 Opig- i = 0
qig-im =0 qu2"'i7n, =0
S‘ A— Qq--q | max{ Z [a’piz“'im]Jra Z [G’Piz"'im]*}xzﬁbil
Opig-im ::% Opig-im =

qig-im qig-im

+ | apg...q | max{ Z [agiz--im ]+ Z [aqiz--~im]f}x;n_l7

Spig.-im = 0 Spig.-im = 0>

qig-im aig:im

where the second inequality holds from |a — b] < max{a,b}, a and b are two nonnegative
real numbers. That is,

| (A= ap.p) (A = ag...q) = Apg...qgp-—p |
<[ A —ag..q | max{ri(A)4, rj(A)-}+ | apg...q | max{ry(A)4+,rg(A)-}.
Case 1I: z, = 0, for any ¢ # p, one has

A = ap..p)ry~t = S (apinindt = pisin] )iy - T (3.5)
5P’i2“‘im =0,
i,y im F#q

Taking modulus in the above equation (3.5) and using the triangle inequality give

A= ap.p |2p 7" < S (apigein)e = [Gpigin )T, 24, |
Spig-igm = 0
12, s im F g
<max{ D> [Gpiyin iy Ty, D tpirin) iy @i, )
Spigerim =0 Spig-rim =0
R G2, L, im F G
<max{ Y (it D, lapmei-Yop Tt
Spig.-im =0 Opig--rim = O
ig, L, im #aq in, L, im # 4
Further,

| A= ap..p | < max{ Z [@pigrim ]+ Z [@pis-ein] -}

.6’”2"'”?"0 =0, §p,32.,.inl =0,
ig, s im F q ig, s im # q

= max{d}(A)+, 01 (A)_}.
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Summarizing Cases I and II, we have A € Q) 4(A). From the arbitrariness of ¢, we deduce
Ae N @pj(A). Consequently, \e U [ Qi (A). O

JEN,j#p 1EN jEN,j#i

We obtain inclusion interval Q(A) by computing n(n — 1) intervals Q; j(A) by Theorem
3.1. By S-partitioning index set of A, we propose improved S-inclusion interval M<(A) by
computing 2|S|(n — |S|) intervals M;;(A) and reduce the calculation cost.

Given a nonempty proper set S C N, we define

AN = {(ig, iz, - ,im) : each i € N for j=2,--- ,m},

AS = {(7;2,2'37“- 7Zm) : each ij es fOTj:27"' 7m}u
and then
AS = AN\AS,

For a tensor A = (a4,4,...i,,) € RI"™™ and i € S, we have

rilA) s = 27 (A)y + 12T (A) (A = 27 (A 427 (A)

where

) T Y R FUU S ) M S () I

(i, ,im) € &S, (ig, - ,im) € &S
s =

i rim

NS AS

ri (A)y = > (@i i)+, (A)= = > (@i ] -
(ig, + im) € &S (ig,-+ vim) € &S

Theorem 3.2. Let A= (a;,iy-i,,) € R and S € N a nonempty proper set. Then,

oA M) = (J MU U M),

oI

i€
je
where

M? . (A) = {z eR:|z—a;.i|(J]z —aj. | — max{TJ-Ais(A)%rins(A)f})

J

< max{ri (A i(A) et ()2 (A0}

M5 (A) = {z ER: |2 — ajil(|z — ajog| — max{re” (A)4, 787 (A)-})
< max{ri (A) 4, 7:(A)Fmax{r® (A) 4,12 (4) ) }

Proof. Let (A, x) be a Pareto H-eigenpair. Setting z, = max z; and x4 = maxx;, one has
LS i€S
max{z,,z,} > 0. We now break up the argument into three cases.
Case I: zpxq > 0 and x, > x4. That is, x, = Max ;. Recalling the p-th equation of (3.1),
1€
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we have

by

(i21"'7im

(A~ app )t

+

(ig, -~
Spig

>

(i21“' 7im)eA§

G. WANG, C. WANG AND Q. HOU

Apig- iy LpLiy ** * Tf

YEAS

by

©aim) € AF,
=0

i

+

m

(ig, s
Spig--im

>

([apis-ip ]+ = [Qpin-in |- )TpTiy

([apin-ip )+ = [Apig-ripg ]~ )TpTiy

Apig-- iy LpLiy = * * Ty,
im) € AS,
=0

..xim

e

Taking modulus in the above equation and using the triangle inequality, one has

A — apglal < |

>

([apin-ip ]+ = [Apig-ring ] = )TpTiy =~ T, |

(iZf" 7im)€AS
+ | > ([apiz-rim]+ = [Qpisein] = )TpTis +* Ti |
(g, im) € A5,
Opig-im = 0
<max{ Y (i 1Ty i Y i @, )
(i, yim)EAS (i2, yim)ELS
+ max{ > [@pis-ipy |+ TpTig -+ Tiyy s > [Apiyemiy, |- TpTiy -+ T4, }
(g, »im) € A5, (g, »im) € A5,
Opig:--im = O pig--im =0
<max{ Y [ppeinlts Y, [@piei, ] Yot
(iz, yim)EAS (iz, yim)EAS
—|—max{ Z [api2"'im]+7 Z [apw im]—}xzq
(ig, - - im,)ef, (ig, . ,im)ET
pig-im = 0 pig--im = 0
5 5 = =
= {2 (A) 1,27 ()Y 4 macrd T (A) r2 (A)Ja
where the second inequality holds from |a — b] < max{a,b}. Hence,
T 5 _ s s _
(A= ap...p| — max{rpAS (A) 5 (A)-Dar ! <max{ry (A)4,r5 (A)_}tz =t (3.6)
Meanwhile, it follows from the g-th equation of (3.1) that
(A= ag...q)rg" = > Aqig-wvim TqTis *** Tipy,
(ig, +,im) € N,
5qi2»-*im =0
= > [Qgiz i) +TqTiy Ty — > [agis- i) -TqTis @iy,
(i, im) €N, (i, im) €N,
Sqig-im =0 Sqig-im =0
and
(3.7)

A — aq~~q|332"_1 < max{rq(A)4,rq(A) -}z -
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Multiplying (3.6) with (3.7) gives

IA = g (A = | — max{rs” (A) 1, 75" (A)_})
5
< max{ry (A) . g (A)—} max{r” (A) s, 127 (A)_},
which means that \ € MEP(A) C M5(A).
Case II: z,z4 > 0 and x4 > z,. That is, 2, = max ;. Referring to the ¢g-th equation of (3.1),
we get

m _ . . . ... - . . . DY .
(A —aq..q)zy" = E Agis-eim Tqlin *** iy, + E , Qqiz-vimTqliy * " Tip,

(G2, yim)EAS (ig,++ ,im) € &S,
=0

= Y (gt = [agis i) )Tqwiy -+ @i,
(i2, ,im )EAS

+ ) ([agis-rip )+ = [gis-ripg ] =) TqTiy =+~ Ti, -
(ig, - ,im) € F
5qi2---im =0

Taking modulus in the equation above and using the triangle inequality, we deduce

N=agqled <| > (agisin]t — [0gini, ] )Tgmiy - i, |
(2, yim )EAS
+| > ([agis-i |+ — [agiz-in] =) TqTis - - - i, |
(ig, -+ ,im) € &S,
6‘17;2"‘75m =0
<max{ D [GgmeintTeTn T D [Ggisein] Tt T, )
(i27“'7im)EAS (i2,~~,im)€AS
+ max{ Z [aqi2~"im]+qui2 SRR A Z [aqi2"'im,]_qui2 e xzm}
(ig, -+ im) € &S, (ig, im) € &S,
Sqig - im =0 Sqig i =0
<max{ Y [agneints Y g Yegry !
(i27"'77:7n)6AS (i2;"' ;im)eAS
+ max{ > [agisip]+ > agiy-..i,, ]~ }og"
(ig, -+ yim) € &5, (i, ,im) € AS.
Sqin - vigm =0 qig--im =0

Hence,

(1A = ageq = max{r2 (A) 4,127 (A)_}a ! < max{rd” (A),r2 (A)_}ai~
Following the similar arguments to the proof of (3.7), we obtain
A — ap-“p‘xgl_l < max{ry(A)+, rp(.A)_}x;n_l. (3.9)
Multiplying (3.8) with (3.9) gives

A= g (I = g — maxc{r (A) 787 (A)-})

< max{ry(A) ¢, 7 (A) -} max{rs” (A) e

q
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which shows that A € MJ (A) C M5 (A).
Case III: z,z, = 0. Without loss of generality, let z,, > 0 and z;, = 0. Then by (3.6),
A= ap..p| = maX{TpAS(A)+> pAs( )-} <0.
For any ¢q € S, it holds that
A= gl (A = oyl — max{rE™ (A) 1,127 (4)_})
S S
< maX{Tq(A)+? Tq (‘A)*} Ina‘x{rpA (A)+7 rpA ("4)*}7

which implies that A € M7, (A) € M5 (A).
Combining Cases I, II and III, we conclude the desired results. O

Next, we introduce Example 4.3 of [22] to show that the results in Theorem 3.1 and
Theorem 3.2 are sharper than that in Theorem 4.5 of [22] under certain cases.

Example 3.3. Let A € R[S’g] with a9233 — 17CL322 = 7]., a9231 — 757CL312 = 6, asgl — 76, and
other entries be all zero.

Recalling Theorem 3.1 and Theorem 3.2, we obtain
ri(A)y = 0,71 (A) - = 0,7 (A)1 = 0,77 (A)- = 0,77(A)4 = 0,77(A)- =0,
ra(A)y = 1,ra(A) = =5,73(A)1 = 1,73(A) - =5,73(A)4 = 0,73(A)- =5,
ra(A)s = 6,75(A) = 7,7 (A)} = 6,ri(A)_ = 7,r2(A); = 6,r3(A)_ = 6.
Recalling that S = {1,3},S = {2} in [22], we compute ®(A) as follows:
P9(A) = [-3 — V14,3 + V14] ~ [-6.7417,6.7417).
Following the classification of S = {1,3}, S = {2} of [22], we have

r7 (A = 0,87 () = 0,087 (A)y = 0,087 (A) =0,
P2 (A = 1,08 (A = 5,727 (A)y = 0,127 (A)_ =0,
PN =02 () = 1, (A), = 6,057 (4) =6,

and

According to Theorem 3.2, we obtain
M3 (A) = M5 (A) [ M3 (A) [ M3 (A) [ MiT5(A
= [—V/35,V/35] ~ [~5.9161,5.9161] C [-3 — V14,3 + v14] = ®3(A),
where M, (A) = {0}, M§,(A) = [~v/35, V3], M5, (A) = {0}, MF,(A) = [~v/IT, T,

Referring to Theorem 3.1, one has

Q(A) = [Q1.2(A) [ Qua(A)] J1Q2.1(A) [ Qs (A Q3.1 (A) [ @s.2(A)

=[- 5+2\ﬁ75+2\ﬁ] [—5.7016,5.7016] C [-3 — V14,3 + V14] = ®5(A),

where Q12(A)NQ13(A4) = {0},Q2:1(A)NQ23(A) = [-5,5,Q31(A)NQ32(A) =
[_5+%/H)5+§/ﬁ].
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Checking the Strict Copositivity of Tensors

In this section, we establish sharp sufficient conditions to verify the strict copositivity of
real tensors based on Theorems 3.1-3.2. We begin this section with a sufficient condition for
judging strict copositivity of [22].

Lemma 4.1 (Theorem 4.9 of [22]). Let A = (ai,i,..i,,) € RI™™ and [A]_ € RI™n pe
symmetric, and a;;...; > r;(A)— for eachi € [n]. If a;j...; <0 for eachi € [n] and j € [n]\{i},
and there exists k € [n] such that agg...,, > ri(A)_, then A is strictly copositive.

Theorem 4.2. Let A = (a4,4y...4,,) € RI™ and [A]_ € RI™" be symmetric. Let B =
(biyin-i,,) = diag(ai1..1,022...2, *+ yAnnomy) — [A]=. If bj...; > 0, for eachi,j € N,j # i such
that

bjoej(bivi = 71 (B) =) >| bijjbjirci | + | bjis | 75(B) - (4.1)
and
bi.i > 07 (B)_, (4.2)
then A is strictly copositive and strictly semi-positive.

Proof. Let A € Q(B) be a Pareto H-eigenvalue. By the definition of B, we obtain b;...; = a;...;
for all ¢ € N. Suppose on the contrary that A < 0. Now, we apply Theorem 3.1 to tensor B
and break up the argument into two cases.

Case I. There exists p € N such that A € U, ,(B) for all ¢ € N, ¢ # p. That is,

[(A = bp-p) (A = bg..q) = bpg--gbgp--p |
<[ A = bg.g | max{ri(B)+, 7} (B)-} + [bpq...q| max{rf(B),,r§(B)-}
| A= g | PAB)— -+ [y 2(B) .
Further,
|()‘ - bpmp)()‘ - bq~~-q) ‘ - | bpg---qbap--p |§| ()‘ - bpwp)()‘ - bq~~q) = bpg--qbap--p |
<A = by | TE(B)— + by 2(B)
equivalently,
[ A =bgq [ (| A= bpp | =13(B)=) <| bpg...gbgp---p | +|bpg...qlT5 (B) - (4.3)
It follows from (4.1), (4.3), b;...; > 0 and A < 0 that
0 <[ bpg--qbap---p | +[bpg--q|r§(B)— < bg...q(bp.... — r3(B)-)
§| A =bg.q ‘ (l A=bp.p | —TZ(B)—) §| bpg--qbap--p | +|bpq~~-q|rg(8)*v

which the contradiction arises. Thus, A > 0.
Case II. There exists p € N such that A € V,, ,(B) for all ¢ € N, ¢ # p. That is

| X byoy | < max{83(B) .. 63(5)-} = 33(5)—.
Taking into account b;...; > 0 and A < 0, one has
bp..p < 5;(8),

which contradicts (4.2). Thus, A > 0.
Combining Cases I and II, we obtain A and B are strictly copositive by Lemmas 2.5 and
2.6. O
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Theorem 4.3. Let A = (ai,i,..0,) € RI™™ [A]_ € R™" be symmetric, and S € N
a nonempty proper set. Let B = (b@m.im) = diag(a11...1,099..2," ** , Qpp..n) — [A]=. If
b;...; >0, for each i € S and each j € S such that

bivi(bjees — 127 (B)-) > ri(B) 12" (B) (4.4)

and

by (i — 12 (B)2) > 15(B)—r” (B), (4.5)

=

then A is strictly copositive and strictly semi-positive.

Proof. Let A\ € M*°(B) be a Pareto H-eigenvalue. Suppose on the contrary that A < 0.
Now, we apply Theorem 3.2 to tensor B and break up the argument into two cases.
Case I. There exists p € S and ¢ € S with A € M:Q(B), that is,

A =bpop | [ A=bpg | =27 (B))
= A= by | (| A= by | —max{r2" (B)4,r8" (B)-})
< max{ry(B) 4,7, (B) -} max{r2" (B)y, 12" (B)_} = rp(B) 12" (B)-.  (4.6)

q

Further, It follows from (4.4), (4.6), b;...;, > 0 and A < 0 that

0 < 1p(B)_r2 (B)— < bpop(byeg — 2" (B)-)

g
S
A= by | [ A=bgg | =157 (B)-) < rp(B) -1y (B)-,
which the contradiction arises. Thus, A > 0. B
Case II. There exists p € S and ¢ € S with \ € ng (B), equivalently,
[ A =bpp | (| A= bgq | _TqA (B)-)

=[A=bpp | (| A—bgq | fmax{rqA (B)+,rqA (B)-})

< max{ry, (B) 1, rp(B)_} max{r” (B) 1, r2" (B} = r,(B)_r2 (B, (47)

Using (4.5), (4.7), b;...; > 0 and A <0, we deduce

0 < rp(B)—r2" (B)= < byoplbyeg — 727 (B)-)

A = by | ([ A= bgoog | =727 (B)-) < 1p(B) 12" (B),

which the contradiction arises. Thus, A > 0.
Summing up Cases I and II, we obtain A and B are strictly copositive by Lemmas 2.5
and 2.6. 0

Remark 4.4. By Lemma 2.3, we obtain that the strict copositivity is equivalent to the strict
semi-positivity of a tensor under the condition that it is symmetric. Thus, Theorems 4.2 and
4.3 provide sharp conditions to verify the strict semi-positivity of A when [A]_ is symmetric.
Meanwhile, Xu et al. [23] introduced generalized row strictly diagonally dominant tensors
if and only if A = (a;,4,...1,,) € RI™" satisfies

Aj...; > Ti(A)_,Vi € N.



PARETO H-EIGENVALUE INCLUSION INTERVALS 501

In analogy to the generalized row strictly diagonally dominant condition, Theorems 4.2 and
4.3 can guarantee the strict semi-positivity under weak conditions. Therefore, Theorems 4.2
and 4.3 can be regarded as a generalization of the conclusion of article [23].

Remark 4.5. To identify the strict copositivity, we require [A]_ is symmetric in Theorems
4.2-4.3. For general tensors, symmetry is a relatively strict condition. Importantly, Az™
can be strictly copositive even if [A]_ is not symmetric. To tackle this problem, we may
symmetrize the tensors A = (a;,4,...4,,) € RI™™ as follows:

G = { Qiyig i if i1 =40 ="+ =1,
1182 tm 1 S ig
ST Digeiy €T, Qivin-in, Otherwise,

where A = (@i iy, ) € RI™M is the symmetrization tensor under permutation group I',,.

“tm

Remark 4.6. Strict semi-positivity of tensors is important to guarantee the existence of
solutions for tensor eigenvalue complementarity problems. However, identifying the strict
semi-positivity is not easy [16]. Based on Theorems 4.2 and 4.3, we can quickly check
whether A is strictly semi-positive when [A]_ is symmetric or symmetrization tensor [A]_
is symmetric.

The following example shows that the results given in Theorem 4.2 and 4.3 can verify the
strict copositivity of tensors more accurate than that of Theorem 4.9 of [22] under certain
cases.

Example 4.7. Let A € R[>? with
ainn = 3,a112 = —l,a191 = —1,a122 = 1,
ag22 = 1,a212 = 0,a221 = 0,a211 = —1.
It is easy to see that [A]_ is symmetric with
a111=3>2=7r1(A)_ a0 =1>1=ry(A)_.

However, aj20 = 1 > 0. Therefore, we cannot judge whether A is strictly copositive by
Theorem 4.9 of [22].
According to Theorem 4.2, we have

bi11 = 3,b112 = —1,b121 = —1,b222 = 1,b211 = —1,

ri(B)- = 2,15(B)- = 0,6;(B)- = 0,6,(B)- =0,
and
5222(5111 - T%(B)—) =1 >\ b122b211 | + | ba11 | T%(B)— =0,
b1 =3 > 61(B)_ =0,
bi11(bass — 73(B)=) = 3 >| bar1brga | + | bizo | ri(B)- =0,
booy = 1> 63(B)_ = 0.

The conditions of Theorem 4.2 are satisfied, which show that B is strictly copositive. Further,
A is strictly copositive and strictly semi-positive by Lemmas 2.3 and 2.6.
By Theorem 4.3, set S = {1} and S = {2}, we have

P25 B)_ = 0,2 (B)_ = 2,r2°(B)_ = 1,125 (B)_ =0,
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and = s
bi11(bage —ry (B)-) =3 >m(B)_ry (B)- =2,

baoa(b111 — TlAg(B)_) =1> TQ(B)_TlAS (B)_ =0,

which means that B is strictly copositive. Further, A is strictly copositive and strictly
semi-positive by Lemmas 2.3 and 2.6. Indeed, we can verify

Bmg = 31“% — 31‘%1‘2 + xg’ = (l‘l — x2)2(21‘1 + 332) + .13:13 > O,VJ? S Ra_\{O},

which shows that A and B are strictly copositive and strictly semi-positive.
When [A]_ is asymmetric, we still verify the strict copositivity of .4 by Theorems 4.2-4.3.

Example 4.8. Let A € R32 with
ai11 = 3,a112 = —2,a121 = —1,a122 =1,
a222 = 1,a212 = 0,a221 = 0,a211 = 0.

Since [a112]- = 2,[a121]- = 1 and [a211]- = 0, we know that [A]_ is asymmetric.
Therefore, we cannot directly use Theorems 4.2-4.3 to judge whether A is strictly copositive.

Symmetrizing [A]_, we obtain [A]_ with
ay1 = 0,a112 = —1,a101 = —1,a122 = 0,

az22 = 0,a212 = 0,a221 = 0,a211 = —1.

It is easy to see that [/T], is symmetric and B = B of Example 4.1. Thus, A and B are
strictly copositive by Theorems 4.2-4.3. Indeed, one has

Az? = 323 — 3aias + 2123 + 25 = (21 — 22)% (221 + 22) + 25 + 2123 > 0,V2 € R1\{0},

which implies that A is strictly copositive and strictly semi-positive.
In the following, selecting appropriate S may affect the judgment of strict copositivity
of tensors.

Example 4.9. Let A € RB3! with

a1 = 9,a112 = —1,a121 = —1,a113 = —2,a131 = —2,a1220 = —1,a133 = 1,
az22 = 12,a212 = —1,a221 = —1,a223 = —2,a232 = —2,a211 = —1,a233 = —1,
az33 = 5,a313 = 1,a331 = 1,a323 = —1,a332 = —1,a311 = —2,a322 = -2,

and other entries be all zero.
By computing, we can verify that [A]_ is symmetric and
a111=9>7= 7’1(./4),,0,222 =12>8= 7”2(./4)7,0,333 =5<6= 7”3(./4)7,
which implies that Theorem 4.9 of [22] is not suitable to judge whether A is strictly copos-
itive.
Recalling Theorem 4.2, we obtain

bi11 = 9,b112 = —1,b121 = —1,,b113 = —2,b131 = —2,b120 = —1,
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baze = 12,b212 = —1,b221 = —1,ba23 = —2,ba3z = —2,b211 = —1,ba33 = —1,
bszs = 5,b323 = —1,b330 = —1,b311 = —2,b300 = -2,
ri(B)- =6,77(B)- = 7,r3(B)- = T,r3(B)- = 7,73(B)— = 4,75(B)- = 4,
57 (B)- =4,07(B)- = 3,6,(B)- = 5,85(B) = 3,0;(B)- =4,65(B)- =2,
and
baoa (b111 — 15 (B)_) = 36 >| biaobory | + | bor1 | r3(B)— =8,
bin =9 > 07 (B)_ =4,
bszs(bi11 — 71 (B)—) =10 >| bizsbs11 | + | bsu1 | r3(B)— =38,
bii =9>6(B)_ =3,
bi11(baoz — r5(B)_) = 45 >| bayibioa | + | biaz | 1 (B)- =T,
baoy = 12> 65(B) - = 5,
bsss(bazz — r3(B)-) = 25 >| bagsbsza | + | baza | 75(B)— = 10,
booy = 12 > §5(B)_ = 3,
bi11(bsss — r5(B)—) = 9 >| bs1biss | + | biss | r{(B)- =0,
bazz = 5> 63(B)_ =4,
booo(b3zs — 73(B)_) = 12 >| bgaoboss | 4 | bass | 75(B)_ =9,
bazz =5 > 03(B)_ = 2.

All conditions of Theorem 4.2 are satisfied. Hence, B is strictly copositive and strictly semi-
positive. Further, A is strictly copositive and strictly semi-positive by Lemmas 2.3 and 2.6.
According to Theorem 4.3, we compute

S

6,75 (B)_ = 4,75 (B)_ = 2.

7“1(8), = 7, 7“2(8), = 8,7"3(8),
Setting S = {1,3} and S = {2}, we obtain

NS N AT .
baoa(bsss — gy (B)-) =12 <ry(B)_r5 (B)- = 16.

Thus, we cannot verify that B is strictly copositive.
Using Theorem 3.2 of [17], we compute Pareto H-eigenvector x = (0.6401,0.5891,0.8109) "
with the minimum Pareto H-eigenvalue A\, as follows

min B3 = Apin = 1.2453 > 0,

which implies that B is strictly copositive and strictly semi-positive. Further, A is strictly
copositive and strictly semi-positive.

Conclusion

In this paper, we established tight Pareto H-eigenvalue inclusion intervals based on parti-
tioning index set of the tensors. Meanwhile, checkable sufficient conditions were proposed
to verify the strict copositivity, as well as the strict semi-positivity of real tensors. Further
studies can be considered to develop some algorithms by Pareto H-eigenvalue inclusion in-
tervals for tensor eigenvalue complementarity problems, as done in [4] for solving the matrix
eigenvalue complementarity problems.
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