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connectedness of the sets of Henig efficient solutions, globally efficient solutions, superef-
ficient solutions and cone-Benson efficient solutions, and the connectedness of the weakly
efficient solution set for monotone VEPs with a specific form. By virtue of the linear scalar-
ization method, Gong and Yao [13] first investigated the connectedness of the efficient so-
lution set for VEPs with monotone bifunctions in real locally convex Hausdorff topological
vector spaces. Han and Huang [15] established the connectedness of the sets of globally ef-
ficient solutions, Henig efficient solutions, weakly efficient solutions, superefficient solutions
and efficient solutions for the generalized vector equilibrium problem (for short, GVEP)
with the help of the linear scalarization method. In [16], by virtue of the linear scalarization
method, Han and Huang obtained the connectedness of the sets of weakly efficient solutions
and efficient solutions and the path connectedness of the weakly efficient solution set for
generalized vector quasi-equilibrium problems. By virtue of the linear scalarization method,
Cui and Li [4] obtained the path connectedness of the efficient solution set for generalized
vector quasi-equilibrium problems.

By using the nonlinear scalarization method, Xu and Zhang [23] investigated the con-
nectedness and path connectedness of the set of efficient solutions for the VEP with the
help of the oriented distance function with respect to natural partial ordering. Peng et
al. [20] studied the connectedness and path connectedness of solution sets for weak gen-
eralized symmetric Ky Fan inequality problems with respect to addition-invariant set by
nonlinear scalarization technique. Recently, Shao et al. [21] investigated the connectedness
and path connectedness of the efficient solution set for the VEP via free-disposal sets with
the help of the nonlinear scalarization method.

We observe that the nonlinear scalarization functions used in the previous research,
are mainly the Gerstewitz function and the oriented distance function. In [23] and [21],
the authors tried to separate the convex cone (or the free-disposal set) with the origin
removed and a nonconvex set by nonlinear scalarization functions related to the Gerstewitz
function and the oriented distance function. However, some limitations on the objective
mapping must be added to build the union relation, as we can see in Theorem 3.3 in [23]
and Theorem 5.3 in [21]. To avoid these additional conditions, we apply a different nonlinear
scalarization function, which is introduced by using the elements of the augmented dual cone
(see [17]). By virtue of the functions from this class, any closed cone with a certain separation
property can be separated. Moreover, as the nonlinear scalarization function in our paper
is actually sublinear, we can apply the idea of approximation to characterize the efficient
solution set and the Henig efficient solution set for (GVEP). Hence, we establish the union
relation and the (path) connectedness results for the efficient solution set and the Henig
efficient solution set under some mild conditions, which improve the corresponding results
in [4, 10,12,15,21,23].

The paper is organized as follows. In Section 2, we recall some main notions and defi-
nitions. In Section 3, we give the union relation between the sets of efficient solutions and
Henig efficient solutions for the GVEP and the solution sets of a series of nonlinear scalar
problems with the help of a different nonlinear scalarization function. In Section 4, the
connectedness and path connectedness of the sets of efficient solutions and Henig efficient
solutions for the GVEP are obtained. In Section 5, we give some conclusions of this paper.

2 Preliminaries

We will recall some notations and definitions, which will be used through all the paper. Let
X and Z be two real normed vector spaces, where Z is finite dimensional. The closed unit
balls in X and Z are denoted by BX and BZ , respectively. The open unit ball and the unit
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sphere in Z are denoted by Bo
Z and UZ , respectively. Let C ⊆ Z be a closed, convex and

pointed cone with nonempty interior. Let R+ = {x ∈ R : x ≥ 0}. Let Z∗ be the topological
dual space of Z and C∗ be the topological dual cone of C, defined by

C∗ = {f ∈ Z∗ : f(c) ≥ 0, ∀c ∈ C}.

Denote the quasi-interior of C∗ by C#, i.e.

C# = {f ∈ Z∗ : f(c) > 0, ∀c ∈ C\{0}}.
The closure, the interior and the boundary of a set M ⊆ Z are denoted by clM , intM and
bdM , respectively. The intersection of all convex subsets of X that contain M is called
the convex hull of M , denoted by conv(M). The cone generated by a set D is denoted by
cone(D):

cone(D) = {λd : λ ≥ 0 and d ∈ D}.
A nonempty convex subset B of the convex cone C is called a base of C, if C = cone(B) and
0 /∈ cl(B). It is easy to see that C# ̸= ∅ if and only if C has a base. Let CU = C∩UZ = {z ∈
C : ∥z∥ = 1} denote the norm-base of the cone C. Obviously, we have that C = cone(CU ).
Let z = (z1, z2, . . . , zn) ∈ Rn. ∥z∥1 =

∑n
i=1 |zi|, ∥z∥2 = (z21 + · · · + z2n)

1/2, and ∥z∥∞ =
max{|z1|, . . . , |zn|} denote the l1, l2 and l∞ norms of the vector z, respectively.
If C has a base B, we can associate C with another closed convex cone Cε(B), defined
by Cε(B) = cone(B + εBZ), where 0 < ε < δ := inf{∥b∥ : b ∈ B}. Clearly, we have
C\{0} ⊆ intCε(B).
Let A be a nonempty subset of X and F : X ×X → 2Z be a set-valued mapping. In this
paper, we consider the following generalized vector equilibrium problem consisting of finding
x0 ∈ A such that

(GV EP ) F (x0, y) ∩ (−Ω) = ∅, ∀y ∈ A, (2.1)

where Ω ∪ {0} is a convex cone in Z.
Let W (A,F ) denote the set of all weakly efficient solutions of (GVEP), i.e.

W (A,F ) = {x ∈ A : F (x, y) ∩ (−intC) = ∅, ∀y ∈ A}

and E(A,F ) denote the set of all efficient solutions of (GVEP), i.e.

E(A,F ) = {x ∈ A : F (x, y) ∩ (−C\{0}) = ∅, ∀y ∈ A}.

Suppose that C has a base B. A vector x ∈ A is called a Henig efficient solution of (GVEP)
if, for some 0 < ε < δ := inf{∥b∥ : b ∈ B},

F (x, y) ∩ −intCε(B) = ∅, ∀y ∈ A.

Denote by H(A,F ) the set of all Henig efficient solutions of (GVEP).

Definition 2.1 ([2]). A set-valued mapping G : X ⇒ Z is said to be

(i) upper semicontinuous (u.s.c.) at u0 ∈ X if, for any neighborhood V of G(u0), there
exists a neighborhood U(u0) of u0 such that

G(u) ⊆ V, ∀u ∈ U(u0).

(ii) lower semicontinuous (l.s.c.) at u0 ∈ X if, for any x ∈ G(u0) and any neighborhood
V of x, there exists a neighborhood U(u0) of u0 such that

G(u) ∩ V ̸= ∅, ∀u ∈ U(u0).
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We say that G is u.s.c. (resp. l.s.c.) on X if it is u.s.c. (resp. l.s.c.) at each point u ∈ X,
respectively. G is said to be continuous on X if it is both u.s.c. and l.s.c. on X.

Lemma 2.2 ([2]). A set-valued mapping Φ : X ⇒ Z is l.s.c. at u0 ∈ X if and only if for
any sequence {un} ⊆ X with un → u0 and for any x0 ∈ Φ(u0), there exists xn ∈ Φ(un)
(n = 1, 2, . . . ) such that xn → x0.

Definition 2.3 ([17]). Let C be a convex cone in a normed space Z, and let g :M ⊆ Z → R
be a given function on M .
(a) The function g is called C-monotone on M iff, for each y1, y2 ∈M , one has

y1 − y2 ∈ C ⇒ g(y1) ≥ g(y2).

(b) The function g is called strongly C-monotone on M iff, for each y1, y2 ∈M , one has

y1 − y2 ∈ C\{0} ⇒ g(y1) > g(y2).

(c) The function g is called strictly C-monotone on M iff, for each y1, y2 ∈M , one has

y1 − y2 ∈ intC ⇒ g(y1) > g(y2).

Definition 2.4. LetD be a nonempty convex subset ofX. A set-valued mapping Φ : D ⇒ Z
is said to be

(i) [14] C-convex if, for any x1, x2 ∈ D and for any t ∈ [0, 1], one has

tΦ(x1) + (1− t)Φ(x2) ⊆ Φ(tx1 + (1− t)x2) + C.

(ii) [6] properly quasi C-convex if, for any x1, x2 ∈ D and for any t ∈ [0, 1], one has

either Φ(x1) ⊆ Φ(tx1 + (1− t)x2) + C or

Φ(x2) ⊆ Φ(tx1 + (1− t)x2) + C.

(iii) strongly proper quasi C-convex if for any x1, x2 ∈ D, and for any t ∈]0, 1[, one has

either Φ(x1) ⊆ Φ(tx1 + (1− t)x2) + C\{0} or

Φ(x2) ⊆ Φ(tx1 + (1− t)x2) + C\{0}.

(iv) [16] naturally quasi C-convex if, for any x1, x2 ∈ D, and for any t ∈ [0, 1], there exists
λ ∈ [0, 1] such that

λΦ(x1) + (1− λ)Φ(x2) ⊆ Φ(tx1 + (1− t)x2) + C.

Remark 2.5. Definition 2.4 (iii) is a generalization of the concept of strongly proper quasi
C-convexity in [23].

Definition 2.6 ([8]). Let A be a nonempty subset of a linear space X. A set-valued mapping
T : A ⇒ X is said to be a KKM mapping iff, for any finite subset {y1, . . . , ym} of A, we
have

conv(y1, . . . , ym) ⊆
m⋃
i=1

T (yi).
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Definition 2.7 ([24]). A topological space Y is said to be connected iff there do not exist
nonempty open subsets Vi ⊂ Y, i = 1, 2, such that V1 ∩ V2 = ∅ and V1 ∪ V2 = Y . Y is said
to be path-connected (or arcwise connected) iff ∀x, y ∈ Y there exists a continuous mapping
γ : [0, 1] → Y , such that γ(0) = x, γ(1) = y.

Lemma 2.8 (see Theorem 3.1 in [22]). Let Z be a normed vector space. Assume that A
is a nonempty and connected subset of a normed vector space X and F : A ⇒ Z is an
upper semicontinuous set-valued mapping with nonempty connected values. Then F (A) is
connected.

Lemma 2.9 (see Theorem 5.2 in [9]). Let A be a paracompact Hausdorff path-connected
space and Z be a Banach space. Assume that

(i) F : A⇒ Z is a lower semicontinuous set-valued mapping;

(ii) for each x ∈ A, F (x) is nonempty, closed and convex.

Then, F (A) is a path-connected set.

Lemma 2.10 (Fan-KKM Theorem in [5]). Let A be a nonempty subset of a Hausdorff
topological vector space X and T : A ⇒ X is a KKM mapping with closed values. If there
exists y0 ∈ A such that T (y0) is compact, then

⋂
y∈A T (y) ̸= ∅.

3 Scalarization for (GVEP)

To build the scalarization of H(A,F ) and E(A,F ) for (GVEP), we first present some useful
results which are introduced in [17].

Definition 3.1 ([17]). Let

Ca∗ = {(z∗, α) ∈ C# × R+ : z∗(z)− α ∥z∥ ⩾ 0 for all z ∈ C},

Cao = {(z∗, α) ∈ C# × R+ : z∗(z)− α ∥z∥ > 0 for all z ∈ intC},
Ca# = {(z∗, α) ∈ C# × R+ : z∗(z)− α ∥z∥ > 0 for all z ∈ C\{0}},

where the ordering cone C is assumed to have a nonempty interior in the definition of Cao.

These three cones can be regarded as augmented dual cones of C. The relationship
between the three kinds of augmented dual cones Ca∗, Cao and Ca# is straightforward from
the definitions:

Ca# ⊂ Cao ⊂ Ca∗.

Lemma 3.2 ([17]). Let (Z, ∥·∥) be a real normed space partially ordered by a pointed closed
convex cone C. Let z∗ ∈ Z∗\{0} and α ∈ R+, and let a function g(z∗,α) : Z → R be defined
as

g(z∗,α)(z) = z∗(z) + α ∥z∥ . (3.1)

Then, the function g(z∗,α) is C-monotone, strictly C-monotone (if intC ̸= ∅), and strongly

C-monotone on Z if and only if (z∗, α) ∈ Ca∗, (z∗, α) ∈ Cao, (z∗, α) ∈ Ca#, respectively.

Definition 3.3 ( [17]). Let C and K be closed cones of a normed space (Z, ∥·∥) with norm-

base CU and KU , respectively. Let K
∂
U = KU ∩bd(K), and let C̃ and K̃∂ be the closures of

the sets conv(CU ) and conv(K∂
U ∪ {0Z}), respectively. The cones C and K are said to have

the separation property with respect to the norm ∥·∥ if

C̃ ∩ K̃∂ = ∅. (3.2)
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In order to obtain the connectedness and the path connectedness of E(A,F ) andH(A,F ),
we need to establish the relation between E(A,F ) (or H(A,F )) and the union of solution
sets for a series of nonlinear scalar problems. We define the following set-valued mapping
G(z∗, α) : Ca# ⇒ X as

G(z∗, α) = {x̄ ∈ A : z∗(z) + α ∥z∥ ≥ 0, ∀z ∈ F (x̄, y), ∀y ∈ A}. (3.3)

In the following, we need to assume that G(z∗, α) is nonempty for any (z∗, α) ∈ Ca#.
Actually, we can prove that G(z∗, α) ̸= ∅ under some suitable conditions.

Theorem 3.4. Assume that

(i) for each x ∈ A, F (x, x) ⊆ C;

(ii) A is a compact and convex set;

(iii) for each y ∈ A, F (·, y) is l.s.c. on A;

(iv) for each x ∈ A, F (x, ·) is naturally quasi C-convex on A.

Then, for each (z∗, α) ∈ Ca#, G(z∗, α) is nonempty.

Proof. For each (z∗, α) ∈ Ca#, define

ψ(y) = {x ∈ A : z∗(z) + α ∥z∥ ≥ 0, ∀z ∈ F (x, y)}, y ∈ A. (3.4)

For each z ∈ F (y, y) ⊆ C and (z∗, α) ∈ Ca#, we have z∗(z) + α ∥z∥ ≥ 0. Hence y ∈ ψ(y)
and it is nonempty for each y ∈ A.
We claim that ψ(y) is closed. Let {xk} ⊆ ψ(y) be any sequence with xk → x̄. For each
y ∈ A, since F (·, y) is l.s.c. on A, it follows that for any z̄ ∈ F (x̄, y), there exist a sequence
{zk} ⊆ Z and k0 > 0 such that

zk ∈ F (xk, y)(k ≥ k0), zk → z̄.

Since xk ∈ ψ(y) and zk → z̄, we have that

z∗(z̄) + α ∥z̄∥ ≥ 0, ∀z̄ ∈ F (x̄, y).

Hence, x̄ ∈ ψ(y), ψ(y) is closed.
Since A is compact, we have that ψ(y) is compact.
Next, we claim that ψ : A ⇒ A is a KKM mapping. Suppose that ψ is not a KKM
mapping on the contrary, then there exist a finite subset {y1, . . . , ym} ⊆ A and y0 ∈
conv({y1, . . . , ym}), such that

y0 /∈ ψ(yi), ∀i = 1, 2, . . . ,m.

Then we have that for any i ∈ {1, 2, . . . ,m}, there exists z̃i ∈ F (y0, yi) such that

z∗(z̃i) + α ∥z̃i∥ < 0. (3.5)

Since y0 ∈ conv({y1, . . . , ym}), there exist λi ≥ 0(i = 1, 2, . . . ,m) with
∑m

i=1 λi = 1, such
that y0 =

∑m
i=1 λiyi. Owing to the naturally quasi C-convexity of F (y0, ·), there exist

ti ≥ 0 (i = 1, 2, ·,m) with
∑m

i=1 ti = 1, such that

m∑
i=1

tiF (y0, yi) ⊆ F (y0,

m∑
i=1

λiyi) + C = F (y0, y0) + C. (3.6)
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By the C-monotonity of g(z∗,α), we have that for any zi ∈ F (y0, yi), there exists z0 ∈
F (y0, y0), such that

z∗(

m∑
i=1

tizi) + α

∥∥∥∥∥
m∑
i=1

tizi

∥∥∥∥∥ ≥ z∗(z0) + α ∥z0∥ ≥ 0.

Let zi = z̃i. With the help of (3.5), there exists z̃0 ∈ F (y0, y0) such that

z∗(z̃0) + α ∥z̃0∥ ≤ z∗(

m∑
i=1

tiz̃i) + α

∥∥∥∥∥
m∑
i=1

tiz̃i

∥∥∥∥∥ < 0. (3.7)

This is a contradiction to y0 ∈ ψ(y0). Therefore, ψ is a KKM mapping. By virtue of
Lemma 2.10, we have that G(z∗, α) =

⋂
y∈A ψ(y) ̸= ∅ for each (z∗, α) ∈ Ca#.

Remark 3.5. The Fan-KKM theorem is applied to show that the solution set G(z∗, α) is
nonempty, for each (z∗, α) ∈ Ca#. Compared with Theorem 4.1 of [21] and Theorem 3.2
of [23], the continuity (or C-continuity) of F (·, ·) is weakened to the lower-semicontinuity
of F (·, y), and the properly quasi C-convexity of F (x, ·) is weakened to the naturally quasi
C-convexity of F (x, ·).
We note that the inequality (3.7) holds as g(z∗,α) is sublinear, which is different from the
nonlinear scalarization functions in [23] and [21]. Because of this, the assumption of the
properly quasi C-convexity can be weakened to the naturally quasi C-convexity in Theorem
3.4.

Theorem 3.6. Let (Z, ∥·∥) be a reflexive Banach space partially ordered by a closed convex
pointed cone C. Suppose that C has a bounded base B. Let A be a nonempty subset of X.
Assume that C and Cε(B) satisfy the separation property for all ε ∈ (0, 1). If F (x,A) =⋃

y∈A F (x, y) is compact for each x ∈ A, then we have

E(A,F ) =
⋃

(z∗,α)∈Ca#

G(z∗, α).

Proof. For any x ∈
⋃

(z∗,α)∈Ca# G(z∗, α), there exists (z∗0 , α0) ∈ Ca# such that x ∈ G(z∗0 , α0).
Hence,

z∗0(z) + α0 ∥z∥ ≥ 0, ∀z ∈ F (x, y), ∀y ∈ A. (3.8)

Suppose that x /∈ E(A,F ), then there exists y0 ∈ A, such that

F (x, y0) ∩ (−C\{0}) ̸= ∅.

By the definition of Ca#, there exists z0 ∈ F (x, y0) such that z∗0(z0) + α0 ∥z0∥ < 0, which
contradicts (3.8). Thus, we get that x ∈ E(A,F ).
Next, we show that

E(A,F ) ⊆
⋃

(z∗,α)∈Ca#

G(z∗, α).

Let x ∈ E(A,F ). We have

F (x, y) ∩ (−C\{0}) = ∅, ∀y ∈ A.

Let T = cone(F (x,A)). Then T is a closed cone and

T ∩ (−C\{0}) = ∅.
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Consider the norm-bases of T , −C and −Cε(B), denoted by TU , −CU and −Cε
U , respectively.

Since Z is finite dimensional, it follows that TU , −CU and −Cε
U are compact. As TU ∩

(−CU ) = ∅, there exists γ > 0 such that d(−CU , TU ) = γ > 0, where d(−CU , TU ) =
inf{∥z1 − z2∥ : z1 ∈ −CU , z2 ∈ TU}.
Since B is bounded, there exists a real number m0 such that

0 < m0 = inf{∥z∥ : z ∈ B}.

Let ε̃ =
m0γ

4 + γ
. (If

m0γ

4 + γ
≥ 1, we can choose ε̃ =

m0γ

k(4 + γ)
, where k is large enough and

k > 1.)

We claim that d(z̃,−CU ) ≤
γ

2
, for any z̃ ∈ −(C ε̃

U\CU ).

For any z̃ ∈ −(C ε̃
U\CU ) and z ∈ −CU , we have

z̃ = −λ̃(b̃+ ε̃bz), z = −λb,

where λ̃ > 0, λ > 0, b̃ ∈ B, b ∈ B, bz ∈ BZ\{0}.
Consider the case that b = b̃, we can get

d(z̃,−CU ) ≤
∥∥∥−λ̃(b̃+ ε̃bz) + λb̃

∥∥∥ ≤ λ̃ε̃+
∣∣∣λ− λ̃

∣∣∣ ∥∥∥b̃∥∥∥ . (3.9)

As ∥z̃∥ = ∥z∥ = 1, we have λ̃ =
1∥∥∥b̃+ ε̃bz

∥∥∥ and λ =
1∥∥∥b̃∥∥∥ . Then, we can get

∣∣∣λ− λ̃
∣∣∣ =

∣∣∣∥∥∥b̃+ ε̃bz

∥∥∥−
∥∥∥b̃∥∥∥∣∣∣∥∥∥b̃∥∥∥ ∥∥∥b̃+ ε̃bz

∥∥∥ ≤ ε̃∥∥∥b̃∥∥∥ ∥∥∥b̃+ ε̃bz

∥∥∥ . (3.10)

By (3.9) and (3.10), we have

d(z̃,−CU ) ≤ ε̃

λ̃+
1∥∥∥b̃+ ε̃bz

∥∥∥
 =

2ε̃∥∥∥b̃+ ε̃bz

∥∥∥ . (3.11)

Since
∥∥∥b̃+ ε̃bz

∥∥∥ ≥ m0 − ε̃ > 0, it follows that

2ε̃∥∥∥b̃+ ε̃bz

∥∥∥ ≤ 2ε̃

m0 − ε̃
≤ γ

2
. (3.12)

From (3.11) and (3.12), we have d(z̃,−CU ) ≤
γ

2
.

For any z̃ ∈ −(C ε̃
U\CU ) and t ∈ TU , we have

∥z̃ − t∥ ≥ (∥z0 − t∥ − ∥z̃ − z0∥) ≥
γ

2
> 0,

where z0 ∈ −CU satisfies that ∥z̃ − z0∥ = d(z̃,−CU ).

Thus, we can deduce that for any z̃ ∈ −(C ε̃
U\CU ), d(z̃, TU ) ≥

γ

2
> 0 and

−C\{0} ⊆ (−Cε̃(B))\{0} ⊆ Z\T.
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Since C and Cε(B) satisfy the separation property for all ε ∈ (0, 1), by virtue of Theorem
4.4 in [17], it follows that there exists (z∗0 , α0) ∈ Ca# such that

−C\{0} ⊆ {z ∈ Z : z∗0(z) + α0 ∥z∥ < 0} ⊆ (−Cε̃(B))\{0} ⊆ Z\T. (3.13)

From (3.13), we have that there exsits (z∗0 , α0) ∈ Ca# such that

z∗0(t) + α0 ∥t∥ ≥ 0, ∀t ∈ T.

Therefore, x ∈
⋃

(z∗,α)∈Ca# G(z∗, α).

Example 3.7. Let C = {(z1, z2) : z1 ≤ z2 ≤ 2z1, z1 ≥ 0}. It is easy to show that C
and Cε(B) satisfy the separation property with respect to the norms ∥·∥2 and ∥·∥∞. See
Example 4.9 in [17].
Let C = Rn

+. Then, C and Cε(B) satisfy the separation property with respect to ∥·∥1 for
every 0 < ε < 1. See Theorem 5.9 in [17].

Proposition 3.8. Suppose that C is a closed convex pointed cone with a bounded base
B. Then, for each (z∗, α) ∈ Ca#, there exists 0 < ε < δ := inf{∥b∥ : b ∈ B} such that
−intCε(B) ⊆ {z|g(z∗,α)(z) < 0}.

Proof. (i) For each (z∗, α) ∈ Ca#, we can easily get that −C\{0} ⊆ {z|g(z∗,α)(z) < 0}.
(ii) By the definitions of Ca# and g(z∗,α), we have that there exist M > 0 and γ < 0 such
that

0 < M = max{g(z∗,α)(−bz) : bz ∈ BZ},

0 > γ = max{g(z∗,α)(−b) : b ∈ B}.

Let ε =
−γ
nM

, for a certain n large enough (to ensure ε < δ). For z ∈ −(intCε(B)\C), there
exist λ > 0, b ∈ B and 0 ̸= bz ∈ BZ such that

z = λ(−b− εbz).

Since
g(z∗,α)(z) ≤ λg(z∗,α)(−b) + λεg(z∗,α)(−bz) < λ(γ + εM) < 0,

it follows that g(z∗,α)(z) < 0 and thus proves the proposition.

Theorem 3.9. Let (Z, ∥·∥) be a reflexive Banach space partially ordered by a closed convex
pointed cone C. Suppose that C has a bounded base B. Let A be a nonempty subset of X.
Assume that C and Cε(B) satisfy the separation property for all ε ∈ (0, 1). Then,

H(A,F ) =
⋃

(z∗,α)∈Ca#

G(z∗, α).

Proof. Let x ∈ H(A,F ). Then there exists 0 < ε̄ < δ := inf{∥b∥ : b ∈ B} such that

F (x, y) ∩ −intCε̄(B) = ∅, for all y ∈ A.

With the help of Theorem 4.4 in [17], since C and Cε(B) satisfy the separation property for
all ε ∈ (0, 1), it follows that for each ε ∈ (0, 1), there exists (z∗0 , α0) ∈ Ca# such that

−C\{0} ⊆ {z ∈ Z : z∗0(z) + α0 ∥z∥ < 0} ⊆ −Cε(B).
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Let ε̃ > 0 be small enough such that Cε̃(B) ⊆ intCε̄(B). Then,

−C\{0} ⊆ {z ∈ Z : z∗0(z) + α0 ∥z∥ < 0} ⊆ −Cε̃(B) ⊆ −intCε̄(B).

So, there exists (z∗0 , α0) ∈ Ca# such that z∗0(z) + α0 ∥z∥ ≥ 0, ∀z ∈ F (x, y), ∀y ∈ A.
Hence, we obtain that H(A,F ) ⊆

⋃
(z∗,α)∈Ca# G(z∗, α).

Next, we show that

H(A,F ) ⊇
⋃

(z∗,α)∈Ca#

G(z∗, α).

Let us suppose, on the contrary, that there exists (z̃∗, α̃) ∈ Ca# such that x ∈ G(z̃∗, α̃) and
x /∈ H(A,F ). Then for any 0 < ε < δ := inf{∥b∥ : b ∈ B}, there exist y ∈ A and z ∈ F (x, y)
such that z ∈ −intCε(B). By Proposition 3.8, for (z̃∗, α̃) ∈ Ca#, there exists 0 < ε̃ < δ such
that

−intCε̃(B) ⊆ {z|z̃∗(z) + α̃ ∥z∥ < 0}.

Let ε = ε̃. Then there exists z̃ ∈ −intCε̃(B) ∩ F (x,A) such that

z̃∗(z̃) + α̃ ∥z̃∥ < 0.

This is a contradiction to x ∈
⋃

(z∗,α)∈Ca# G(z∗, α). So, H(A,F ) ⊇
⋃

(z∗,α)∈Ca# G(z∗, α).

Remark 3.10. The proof method of Theorem 3.6 and Theorem 3.9 is different from that
in the previous literature, which is mainly reflected in the following aspects.

(i) We apply the idea of approximation to characterize the efficient solution set and the
Henig efficient solution set for (GVEP). By virtue of the concept of the norm-base of the
cone, we show that there exists ε̃ ∈ (0, 1) such that −C\{0} ⊆ (−Cε̃(B))\{0} ⊆ Z\T ,
when T ∩ (−C\{0}) = ∅, in Theorem 3.6. That is to say, we can find −Cε̃(B) which is
close enough to −C. The approximation theorem in [17] shows that every cone −C,
which satisfies the separation property with −Cε̃(B), can be approximated arbitrarily
closely by the sublevel set of the strongly monotonically increasing sublinear function
g(z∗,α), where (z∗, α) ∈ Ca#. Then we can obtain the relation −C\{0} ⊆ {z ∈ Z :
z∗0(z) + α0 ∥z∥ < 0} ⊆ (−Cε̃(B))\{0} ⊆ Z\T , which helps us to characterize the
efficient solution set for (GVEP).
In the proof of Theorem 3.9, we also apply the idea of approximation. Different from
the proof of Theorem 3.6, we obtain that every sublevel set of g(z∗,α) contains the set
−intCε̃(B) for some 0 < ϵ < δ := inf{∥b∥ : b ∈ B} with the help of the sublinear
property of g(z∗,α).

(ii) The scalarization function g(z∗,α) in this paper is different from the two mainly used
nonlinear scalarization functions, Gerstewitz function and oriented distance function.
Actually, g(z∗,α) is a sublinear monotonically increasing function defined by using the
elements of the augmented dual cone. With the help of the sublinear property of
g(z∗,α), we can not only establish the union relation of the efficient solution set for
(GVEP), but also get rid of some restrictive assumptions caused by the commonly
used nonlinear scalarization functions.

Remark 3.11. Although the scalarization results for E(A,F ) and H(A,F ) seem the same,
the conditions for E(A,F ) are stronger. It is necessary for F (x,A) to be compact in Theorem
3.6, but not in Theorem 3.9.
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4 Connectedness

In this section, we will establish the connectedness and the path connectedness of E(A,F )
and H(A,F ). We first give some useful lemmas.

Lemma 4.1. Let A be a compact set in X. Assume that F (·, y) is l.s.c. for each y ∈ A.
Then, G(·, ·) is u.s.c. on Ca#.

Proof. Suppose G(·, ·) is not u.s.c. at (z∗0 , α0) ∈ Ca#. Then there exist an open neighbor-
hood W of G(z∗0 , α0) and a sequence (z∗n, αn) converging to (z∗0 , α0) (z∗n → z∗0 by weak*
topology), such that G(z∗n, αn) ⊈ W, ∀n ∈ N . Therefore, there exists xn ∈ G(z∗n, αn) such
that

xn /∈W, ∀n ∈ N. (4.1)

As the set A is compact, we can suppose that there exists x0 ∈ A such that xn → x0,
without loss of generality. Since xn ∈ G(z∗n, αn), we have

z∗n(zn) + αn ∥zn∥ ≥ 0, ∀zn ∈ F (xn, y), ∀y ∈ A.

For every y ∈ A, F (·, y) is l.s.c. at x0. So, for every y ∈ A, for any sequence {xn} ⊆ X with
xn → x0, and for any z0 ∈ F (x0, y), there exist k0 > 0 and z̃n ∈ F (xn, y) (n > k0) such that
z̃n → z0. Then, z

∗
n(z̃n) + αn ∥z̃n∥ ≥ 0. As z̃n → z0 and (z∗n, αn) → (z∗0 , α0), we have

z∗0(z0) + α0 ∥z0∥ ≥ 0, ∀z0 ∈ F (x0, y), ∀y ∈ A.

Hence, x0 ∈ G(z∗0 , α0) ⊆ W . This is a contradiction to (4.1). Thus, G(·, ·) is u.s.c. on
Ca#.

Lemma 4.2. Assume that for each y ∈ A, F (·, y) is properly quasi C-concave on A. Then,
G(z∗, α) is convex for each (z∗, α) ∈ Ca#.

Proof. Let x1, x2 ∈ G(z∗, α). Then

z∗(zi) + α ∥zi∥ ≥ 0, ∀zi ∈ F (xi, y), ∀y ∈ A, i = 1, 2.

Since F (·, y) is properly quasi C-concave on A, it follows that for any λ ∈ (0, 1), we have

eitherF (λx1 + (1− λ)x2, y) ⊆ F (x1, y) + C,

or F (λx1 + (1− λ)x2, y) ⊆ F (x2, y) + C.

By the C-monotonicity of g(z∗,α) for each (z∗, α) ∈ Ca#, we have for any z ∈ F (λx1 + (1−
λ)x2, y) and for any y ∈ A,

z∗(z) + α ∥z∥ ≥ z∗(z1) + α ∥z1∥ ,

or z∗(z) + α ∥z∥ ≥ z∗(z2) + α ∥z2∥ .

Then,
z∗(z) + α ∥z∥ ≥ 0, ∀z ∈ F (λx1 + (1− λ)x2, y), ∀y ∈ A.

So λx1 + (1− λ)x2 ∈ G(z∗, α) and G(z∗, α) is convex for each (z∗, α) ∈ Ca#.

Lemma 4.3. Let A be a compact and convex set. Suppose that,

(i) for each y ∈ A, F (·, y) is strongly proper quasi C-concave on A;
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(ii) for each x ∈ A, F (x,A) is compact;

(iii) for each y ∈ A, F (·, y) is l.s.c. on A.

Then, G(·, ·) is l.s.c. on Ca#.

Proof. Suppose that there exists (z∗0 , α0) ∈ Ca# such that G(·, ·) is not l.s.c. at (z∗0 , α0).
Then there exist x0 ∈ G(z∗0 , α0), a neighborhood W0 of 0 and a sequence {(z∗n, αn)} with
(z∗n, αn) → (z∗0 , α0) ({z∗n} converging to z∗0 with weak* topology), such that

(x0 +W0) ∩G(z∗n, αn) = ∅, ∀n ∈ N. (4.2)

Consider the following two cases.
Case 1 G(z∗0 , α0) is a singleton.
Let xn ∈ G(z∗n, αn). As A is a compact set, with loss of generality, we can suppose that xn →
x̄. We can obtain x̄ ∈ G(z∗0 , α0), which is similar to the proof in Lemma 4.1. Since G(z∗0 , α0)
is a singleton, we have x̄ = x0 and xn → x0. We can imply that xn ∈ (x0 +W0)∩G(z∗n, αn)
with n large enough. This is a contradiction to (4.2).
Case 2 G(z∗0 , α0) is not a singleton.
Then there exists x′ ∈ G(z∗0 , α0) such that x′ ̸= x0 and

z∗0(z
′) + α0 ∥z′∥ ≥ 0, ∀z′ ∈ F (x′, y), ∀y ∈ A, (4.3)

z∗0(z0) + α0 ∥z0∥ ≥ 0, ∀z0 ∈ F (x0, y), ∀y ∈ A. (4.4)

For any λ ∈ (0, 1), as F (·, y) is strongly proper quasi C-concave on A, we have

either F (λx′ + (1− λ)x0, y) ⊆ F (x′, y) + C\{0},

or F (λx′ + (1− λ)x0, y) ⊆ F (x0, y) + C\{0}.

Then, for any λ ∈ (0, 1), we have

z∗0(zλ) + α0 ∥zλ∥ > 0, ∀zλ ∈ F (λx′ + (1− λ)x0, y), ∀y ∈ A. (4.5)

By virtue of (4.2), there exists λ0 ∈ (0, 1) such that x(λ0) = λ0x
′ + (1 − λ0)x0 ∈ x0 +W0

and x(λ0) /∈ G(z∗n, αn), ∀n ∈ N . Then, there exist yn ∈ A and zn ∈ F (x(λ0), yn) such that

z∗n(zn) + αn ∥zn∥ < 0, ∀n ∈ N. (4.6)

As F (x,A) is compact for each x ∈ A and zn ∈ F (x(λ0), yn) ⊆ F (x(λ0), A) for any n ∈ N , we
can assume that there exists z0 ∈ F (x(λ0), A) such that zn → z0. From (z∗n, αn) → (z∗0 , α0)
and zn → z0, we can deduce that

z∗0(z0) + α0 ∥z0∥ ≤ 0.

It is a contradiction to (4.5). Therefore, G(·, ·) is l.s.c. on Ca#.

Lemma 4.4. Let A be a compact set. Assume that F (·, y) is l.s.c. for each y ∈ A. Then,
G(z∗, α) is closed for each (z∗, α) ∈ Ca#.

Proof. Let {xn} ⊆ G(z∗, α) with xn → x0. Since {xn} ⊆ G(z∗, α), we have that

z∗(zn) + α ∥zn∥ ≥ 0, ∀zn ∈ F (xn, y), ∀y ∈ A. (4.7)
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Since A is compact, we can assume x0 ∈ A, without loss of generality. As F (·, y) is l.s.c.,
for any y ∈ A and for any z0 ∈ F (x0, y), we can obtain that there exists {zn} ⊆ Z with
zn → z0 and zn ∈ F (xn, y) for n ∈ N large enough. Together with (4.7), we can get

z∗(z0) + α ∥z0∥ ≥ 0, ∀z0 ∈ F (x0, y), ∀y ∈ A.

Therefore, x0 ∈ G(z∗, α).

Next, we give the connectedness and the path connectedness of E(A,F ) and H(A,F )
for (GVEP).

Theorem 4.5. Let C be a closed, pointed and convex cone of a reflexive Banach space
(Z, ∥·∥). Suppose that C has a bounded base B. Let A be a compact and convex set. Suppose
that C and Cε(B) satisfy the separation property for all ε ∈ (0, 1). Assume that

(i) for each x ∈ A, F (x, x) ⊆ C;

(ii) for each x ∈ A, F (x,A) is compact;

(iii) for each x ∈ A, F (x, ·) is naturally quasi C-convex on A, and for each y ∈ A, F (·, y)
is properly quasi C-concave on A;

(iv) for each y ∈ A, F (·, y) is l.s.c. on A.

Then, E(A,F ) is a connected set.

Proof. From Theorem 3.4 and Lemma 4.2, we have that G(z∗, α) is nonempty and connected
for each (z∗, α) ∈ Ca#. By virtue of Lemma 4.1, we obtain that G(·, ·) is u.s.c. on Ca#. It
can be deduced from Theorem 3.6 that

E(A,F ) =
⋃

(z∗,α)∈Ca#

G(z∗, α).

Hence, by means of Lemma 2.9, we get that E(A,F ) is a connected set.

Theorem 4.6. Let C be a closed, pointed and convex cone of a reflexive Banach space
(Z, ∥·∥). Suppose that C has a bounded base B. Let A be a compact and convex set. Suppose
that C and Cε(B) satisfy the separation property for all ε ∈ (0, 1). Assume that

(i) for each x ∈ A, F (x, x) ⊆ C;

(ii) for each x ∈ A, F (x,A) is compact;

(iii) for each x ∈ A, F (x, ·) is naturally quasi C-convex on A, and for each y ∈ A, F (·, y)
is strongly proper quasi C-concave on A;

(iv) for each y ∈ A, F (·, y) is l.s.c. on A.

Then, E(A,F ) is a path-connected set.

Proof. Since Ca# is a metric space with the distance defined by

d((z∗1 , α1), (z
∗
2 , α2)) = ∥z∗1 − z∗2∥+ |α1 − α2|,

it follows that Z∗ ×R+ is a paracompact Hausdorff space. It is clearly that Ca# is convex.
Hence, we obtain that Ca# is path-connected.
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By virtue of Theorem 3.4, Lemma 4.2 and Lemma 4.4, we have that G(z∗, α) is nonempty,
closed and convex for each (z∗, α) ∈ Ca#. With the help of Lemma 4.3, we have that G(·, ·)
is l.s.c. on Ca#. From Theorem 3.6, we can obtain that

E(A,F ) =
⋃

(z∗,α)∈Ca#

G(z∗, α).

Hence, E(A,F ) is a path-connected set.

Now, we give the following example to illustrate Theorem 4.5 and 4.6.

Example 4.7. Let Z = R2 and A = [−1, 1]. Let C = R2
+ and F (x, y) = (f1(x)+f2(y))E1+

E2, x, y ∈ A, where E1 = [−1, 0], E2 = [1, 2] and

f1(x) =

{
1, x ̸= 0,
0, x = 0.

f2(y) =

{
0, y ̸= 0,
1, y = 0.

It is easy to check that F (x, x) ⊆ C for each x ∈ A. For each x ∈ A and each y ∈ A,
F (x, y) is compact. For each x ∈ A, F (x,A) is closed. The closed cones C and Cε satisfy
the separation property for all ε ∈ (0, 1). Through a simple calculation, we can get that
F (x, ·) is naturally quasi C-convex on A for each x ∈ A. And F (·, y) is strongly proper quasi
C-concave and l.s.c. on A for each y ∈ A. Hence, the conditions (i)-(iv) of Theorem 4.6
are satisfied. By virtue of Theorem 4.6, E(A,F ) is a path-connected set. Actually, we can
compute that E(A,F ) = {0}, which is obviously a path-connected set.

Remark 4.8. Theorem 4.5 and 4.6 improve the results in [23], [21], [15] and [4] in the
following aspects.

(i) Compared with Theorem 4.1 and 4.2 in [23], Theorem 5.4 and 5.5 in [21] and Corollary
3.1 in [4], the continuity of F (·, ·) (or the C-continuity of F (·, ·)) is weakened to the
lower semicontinuity of F (·, y) in Theorem 4.5 and 4.6 in this paper. The continuity
(or semicontinuity) of F (x, ·) is not necessary.

(ii) The properly quasi C-convexity of F (x, ·) in [23] and [21] is weakened to naturally
quasi C-convexity. The condition that F (x, ·) is C-convexlike in [4] is removed.

(iii) The condition (v) of Theorem 4.1 and 4.2 in [23] and the condition (vi) of Theorem
5.4 and 5.5 in [21] are removed in our paper. For the set F (x,A), we only need that
it is a compact for each x ∈ A, without other additional conditions in [23] and [21].

(iv) Compared with Theorem 4.2 in [15], the assumption that there exists v0 ∈ −intC such
that S(v0) ̸= ∅ is removed. We think that the assumption in [15] excludes the case
that F (x, x) = 0, which means it can not be applied to vector optimization problems.
In addition, the method used in [15] is only applicable to the derivation of the results
of connectedness, not to the results of the path connectedness.

Next, we give the following examples to show that our results hold when the results
in [15], [23], [21] and [4] are not applicable.
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Example 4.9. Let X = R, Z = R2, C = R2
+ and A = [0, 2]. Define F (x, y) =

(f1(x, y), f2(x, y)), x, y ∈ A, where

f1(x, y) =

{
−x2 + y2, y ≥ 1,
−x2 + (y − 1)2 + 2, y < 1,

and f2(x, y) =

{
sinx− siny, y < 1,
sinx− sin1, y ≥ 1.

(i) It is easy to check that F (x, y) ∈ C for each x ∈ A. For each x ∈ A, F (x,A) is
compact. We can easily check that F (x, ·) is naturally quasi C-convex on A for each
x ∈ A and F (·, y) is strongly proper quasi C-concave on A for each y ∈ A. We can
also get that F (·, y) is continuous on A for each y ∈ A. Hence, all the conditions of
Theorem 4.6 hold. Through a direct calculation, we obtain that E(A,F ) = A = [0, 2].
Hence, E(A,K) is a path-connected set and Theorem 4.6 is valid.

(ii) As f1(x, ·) is neither continuous nor C-continuous on A, Theorem 5.5 in [21], Theorem
4.2 in [23] and Corollary 3.1 in [4] do not hold.

(iii) We can calculate that F (x, x) /∈ intC for each x ∈ A. The condition (i) of Theorem
4.2 in [15] does not hold. Hence, Theorem 4.2 in [15] is not applicable.

Example 4.10. Let X = R2, Z = R2, C = R2
+ and A = [−1, 1]× [−1, 1]. Define F (x, y) =

(f1(x, y), f2(x, y)), x, y ∈ A, x = (x1, x2), y = (y1, y2) where

f1(x, y) = −y1 + x1, f2(x, y) = y22 − x22 +
1

4
.

(i) For each x ∈ A, we have F (x, x) = (0,
1

4
) ∈ C\intC. Then, the condition (i) of

Theorem 4.6 holds and the condition (i) of Theorem 4.2 in [15] does not hold.

(ii) As F (·, y) is continuous on A and A is compact, we have that F (x,A) is compact for
each x ∈ A. It is easily to check that the conditions (iii) and (iv) are satisfied. Then,
all conditions of Theorem 4.6 hold. By a direct computation, we obtain E(A,F ) =

{x ∈ A|x1 ∈ [−1, 1], x2 ∈ (−1

2
,
1

2
)}

⋃
{(1, 1

2
)}, which is a path-connected set.

(iii) Let x0 = (0,
1

2
). We can calculate that −F (x0, A) = [−1, 1] × [−1, 0]. It not hard to

check that the condition (v) of Theorem 4.2 in [23] and the condition (vi) of Theorem
5.5 in [21] do not hold.

Theorem 4.11. Let C be a closed, pointed and convex cone of a reflexive Banach space
(Z, ∥·∥). Suppose that C has a bounded base B. Suppose that C and Cε(B) satisfy the
separation property for all ε ∈ (0, 1). Let A be a compact and convex set. Assume that

(i) for each x ∈ A, F (x, x) ⊆ C;

(ii) for each x ∈ A, F (x, ·) is naturally quasi C-convex on A, and for each y ∈ A, F (·, y)
is properly quasi C-concave on A;

(iii) for each y ∈ A, F (·, y) is l.s.c. on A.

Then, H(A,F ) is a connected set.

Theorem 4.12. Let C be a closed, pointed and convex cone of a reflexive Banach space
(Z, ∥·∥). Suppose that C has a bounded base B. Suppose that C and Cε(B) satisfy the
separation property for all ε ∈ (0, 1). Let A be a compact and convex set. Assume that
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(i) for each x ∈ A, F (x, x) ⊆ C;

(ii) for each x ∈ A, F (x,A) is compact;

(iii) for each x ∈ A, F (x, ·) is naturally quasi C-convex on A, and for each y ∈ A, F (·, y)
is strongly proper quasi C-concave on A;

(iv) for each y ∈ A, F (·, y) is l.s.c. on A.

Then, H(A,F ) is a path-connected set.

The proofs of Theorem 4.11 and 4.12 are similar to the proofs of Theorem 4.5 and 4.6.

Remark 4.13. Theorem 4.11 and 4.12 improve the results in [10], [12] and [15] in the
following aspects.

(i) Compared with Theorem 4.1 in [15], the assumption S(0) ̸= ∅ is removed, which means
that we do not need the assumption that there exists x0 ∈ A such that F (x0,K) ⊆ C.
And the C-concavity of F (·, y) is weakened to the properly quasi C-concavity. In
addition, as we mentioned in Remark 4.8, the method in [15] is only suitable for the
discussion of the connectedness, not for the path connectedness.

(ii) Compared with Theorem 4.2 in [12] and Theorem 4.2 in [10], the (weakly) C-lower
semicontinuity of F (x, ·) is removed, and the C-convexity of F (x, ·) is weakened to
naturally quasi C-convexity. Theorem 4.2 in [12] and Theorem 4.2 in [10] are only
applicable to the monotone VEP with a specific form, where F (x, y) = ψ(y)+φ(x, y)−
ψ(x) in [12]. In Theorems 4.11 and 4.12, the assumptions of monotonicity is removed.
And Theorems 4.11 and 4.12 can be applied to a more general case of F (x, y).

Finally, we give an application of the main results to vector optimization problems.
Let f : X → Z and A ⊆ X. Consider the following vector optimization problem (for short,
VOP):

Min f(x) s.t. x ∈ A.

Let E(A, f) denote the efficient solution set of (VOP), i.e.,

E(A, f) = {x ∈ A : f(y)− f(x) /∈ −Rn
+\{0}, ∀y ∈ A}.

Then, we have the following result.

Corollary 4.14. Assume that

(i) A is a nonempty, compact and convex set;

(ii) f is continuous on A;

(iii) f is strongly proper quasi C-convex on A.

Then, E(A, f) is connected and path-connected.

5 Conclusions

In this paper, we considered (GVEP) in the reflexive Banach space (Z, ∥·∥). By virtue of
a special class of strongly monotone sublinear functions, we constructed the union relation
between the sets of efficient solutions and Henig efficient solutions and the solution sets of
a series of nonlinear scalar problems. We have obtained some results on the connectedness
and path connectedness of the sets of efficient solutions and Henig efficient solutions for
(GVEP) under some mild conditions.
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