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1.1 Notation

Given n ∈ N, let N := {1, . . . , n}. For I, J ⊆ N let I△J := (I ∪J)\(I ∩J) be the symmetric
difference of I and J . For x ∈ {±1}n let x⃗ ∈ R2n denote the augmented vector with
components x⃗I :=

∏
i∈I xi for I ⊆ N .

By convention, when I is the empty set, x⃗∅ := 1. Also note that for I, J ⊆ N , the
product x⃗I x⃗J is given by x⃗I x⃗J = x⃗I△J .

The space of real symmetric k × k matrices is denoted by Sk and the cone of real
symmetric positive semidefinite k × k matrices is denoted by Sk

+. The trace inner product
of X,Y ∈ Sk inducing the Frobenius norm ∥ . ∥F is denoted by ⟨X,Y ⟩. The all-one-vector
is denoted by e, its dimension being evident from the context. The max-cut-polytope is
denoted by MC := conv({xxT | x ∈ {±1}n}), see e.g. [3, 4, 13].

2 The Max-Cut-Polytope

Being able to minimize a linear function over the max-cut-polytope,

min ⟨X,Q⟩ where X ∈ MC

(for a given matrix Q ∈ Sn) is equivalent to being able to solve the max-cut-problem, see, for
example [3]. This is a difficult NP-complete problem. However, the semidefinite approxima-
tion or “spectrahedron” SH := {X ∈ Sn

+ | Diag(X) = e} is an “easily computable” (see e.g.
[13]) outer approximation of MC with an excellent (see e.g. [4]) approximation guarantee
that is in a certain sense best possible (see e.g. [6]).
For illustration the case n = 3 is considered: The vector x = (1, 1,−1)T , for example, defines
the vertex  1

1
−1

 (1, 1,−1) =

 1 1 −1
1 1 −1
−1 −1 1

 ,

of MC. As x and −x generate the same vertex, the set MC has 4 vertices for n = 3 and
matrices X in MC only have three degrees of freedom namely the lower diagonal part (by
symmetry, and since the diagonal is fixed to all one). The free entries of all matrices in
MC form a 3-dimensional simplex with the vertices (1, 1, 1)T , (1,−1,−1)T , (−1, 1,−1)T ,
(−1,−1, 1)T . The arithmetic mean of the last three vertices leads to the matrix X(2) below.
The set SH contains MC, and edges and vertices of MC also lie at the boundary of SH, but
the surface of SH bulges out over the 2-dimensional faces of MC, and the worst approxima-
tion of MC by SH is attained at

X(1) :=

 1 − 1
2 − 1

2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

 ∈ SH with X(2) :=

 1 − 1
3 − 1

3

− 1
3 1 − 1

3

− 1
3 − 1

3 1


being the nearest matrix in MC. To improve the approximation quality, rather than consid-
ering the semidefinite approximation SH to the convex hull of all “±1”-matrices xxT , one
can form the augmented “±1”-vector

x⃗ := (x⃗∅, x⃗{1}, x⃗{2}, x⃗{3}, x⃗{1,2}, x⃗{1,3}, x⃗{2,3}, x⃗{1,2,3})
T ∈ R8

where x⃗∅ = 1 and x⃗{1,2} for example stands for x1 · x2. Then consider a semidefinite

approximation to the convex hull of all “±1”-matrices X̆ = x⃗x⃗T ∈ S8
+ with entries X̆I,J =
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x⃗I · x⃗J = x⃗I△J for I, J ⊂ {1, 2, 3}. Here, the symmetric differences represent equations such
as

x⃗{1,2} · x⃗{1,3} = x1x2 · x1x3 = x2x3 = x⃗{2,3} = x⃗{1,2}△{1,3}

using x2
1 = 1 for the equation in the middle. Considering all equations of this form leads to

the matrix X̆ = x⃗x⃗T being given by

X̆ =



1 x⃗{1} x⃗{2} x⃗{3} x⃗{1,2} x⃗{1,3} x⃗{2,3} x⃗{1,2,3}

x⃗{1} 1 x⃗{1,2} x⃗{1,3} x⃗{2} x⃗{3} x⃗{1,2,3} x⃗{2,3}

x⃗{2} x⃗{1,2} 1 x⃗{2,3} x⃗{1} x⃗{1,2,3} x⃗{3} x⃗{1,3}

x⃗{3} x⃗{1,3} x⃗{2,3} 1 x⃗{1,2,3} x⃗{1} x⃗{2} x⃗{1,2}

x⃗{1,2} x⃗{2} x⃗{1} x⃗{1,2,3} 1 x⃗{2,3} x⃗{1,3} x⃗{3}

x⃗{1,3} x⃗{3} x⃗{1,2,3} x⃗{1} x⃗{2,3} 1 x⃗{1,2} x⃗{2}

x⃗{2,3} x⃗{1,2,3} x⃗{3} x⃗{2} x⃗{1,3} x⃗{1,2} 1 x⃗{1}

x⃗{1,2,3} x⃗{2,3} x⃗{1,3} x⃗{1,2} x⃗{3} x⃗{2} x⃗{1} 1


.

The 3× 3-submatrix of X̆ in the upper left box (rows and columns starting with x⃗{1}, x⃗{2},

x⃗{3}) is contained in SH, and if this submatrix is set to the matrix X(1) from above and
the remaining variables are set to α = x⃗{1}, β = x⃗{2}, γ = x⃗{3}, and δ = x⃗{1,2,3}, then one
obtains

X̆(1) :=



1 α β γ − 1
2 − 1

2 − 1
2 δ

α 1 − 1
2 − 1

2 β γ δ − 1
2

β − 1
2 1 − 1

2 α δ γ − 1
2

γ − 1
2 − 1

2 1 δ α β − 1
2

− 1
2 β α δ 1 − 1

2 − 1
2 γ

− 1
2 γ δ α − 1

2 1 − 1
2 β

− 1
2 δ γ β − 1

2 − 1
2 1 α

δ − 1
2 − 1

2 − 1
2 γ β α 1


.

The argument to show that X̆(1) cannot be positive semidefinite is a bit technical: By
considering symmetric permutations of rows and columns one can assume without loss of
generality that α = β = γ if the leading 4 × 4 principal submatrix of X̆(1) is to be positive
semidefinite. And by taking the Schur complement with respect to the (1, 1)-element it
follows that α = β = γ = 0. By interchanging the rows and columns starting with γ and δ,
the same argument leads to δ = 0. But for α = β = γ = δ = 0 the overall matrix X̆(1) has
an eigenvalue − 1

2 with eigenvector e.

A more careful analysis shows that the numbers “− 1
2” in X̆(1) would need to be replaced

by “− 1
3” (corresponding to the matrix X(2) ∈ MC above) in order to allow for a positive

semidefinite completion. Semidefiniteness of X̆ seems to imply that the 3 × 3-submatrix of
X̆ in the upper left box is indeed contained in MC (and by convexity actually coincides with
MC). Instead of showing this in detail, a generalization of this result will be discussed in
the next subsection with a new and simple general proof.
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2.1 A High-Dimensional Simplex

Consider the convex hull of all x⃗x⃗T where x⃗ is an augmented {±1}-vector, i.e. consider the
polytope

S := conv( { x⃗x⃗T | x ∈ {±1}n } ) ⊂ S2n .

Proposition 2.1. For x, y ∈ {±1}n with x ̸= y it always follows x⃗T y⃗ = 0 and ∥x⃗− y⃗∥2 =
2(n+1)/2. And for the associated vertices x⃗x⃗T and y⃗y⃗ T of S it follows that ⟨x⃗x⃗T , y⃗y⃗ T ⟩ = 0
and ∥x⃗x⃗T − y⃗y⃗ T ∥F = 2(2n+1)/2.

Proof. Consider the case that y differs from x exactly in the components 1, . . . , k, i.e. x1y1 =
. . . = xkyk = −1. As is well known and easy to verify the number of subsets of {1, . . . , k}
with an even number of elements is 2k−1 and the number of subsets of {1, . . . , k} with an odd
number of elements also is 2k−1. If an even number of elements from {1, . . . , k} is contained
in I ⊆ N , then x⃗I = y⃗I , else x⃗I = −y⃗I . Similarly when some subset {i1, . . . , ik} of N is
considered in place of {1, . . . , k}. Hence exactly half the entries of x⃗ and y⃗ differ, so that
x⃗T y⃗ = 0 and also ⟨x⃗x⃗T , y⃗y⃗ T ⟩ = trace(x⃗x⃗T y⃗y⃗ T ) = 0. This implies ∥x⃗− y⃗∥22 = ∥x⃗∥22+∥y⃗∥22 =
2 · 2n = 2n+1 and likewise ∥x⃗x⃗T − y⃗y⃗ T ∥2F = 22n+1.

Remark 2.2. There are 2n subsets I ⊆ N , and in the following, rows and columns of
X ∈ S2n will be indexed by such subsets I. Let

A := {X ∈ S2n | X∅,∅ = 1, XI,J = XK,L for any I, J,K,L ⊆ N with I△J = K△L}.
(2.1)

As in the 3-dimensional example of MC above, the linear equations in (2.1) relating XI,J

and XK,L represent simple equalities that are satisfied for all vertices of S such as

x⃗{i,j}x⃗{i,k} = x⃗{j}x⃗{k} = x⃗∅x⃗{j,k}.

As each vertex of S satisfies the linear equations in (2.1) this implies that S ⊂ A. Since
X∅,∅ = 1, it follows in particular that XI,I = 1 for all I ⊆ N so that there are only 2n − 1
“free” matrix entries XI,J of X in A depending on I△J ̸= ∅. Thus, the dimension of A is
2n − 1.

Remark 2.3. Within A the set S is a regular simplex with 2n vertices. It is well known
and easy to see that S is centered about the identity matrix I ∈ S2n . In particular, S is
full-dimensional within A. As shown in Proposition 2.1 the vertices are perpendicular to
each other which seems to contradict the fact that the vertices of a full-dimensional regular
simplex centered about the origin of some Euclidean space share an angle of more than 90
degrees to each other. However, A is embedded in a higher-dimensional space and does not
contain the origin; instead all vertices x⃗x⃗T of S are centered about the identity matrix in A
reducing the pairwise angle to 90 degrees.

The first central observation used in this note is:

The projection of S onto the rows and columns associated with x⃗{1}, . . . , x⃗{n} is the
max-cut-polytope MC = conv({xxT | x ∈ {±1}n}) in Sn.

Indeed for n = 1 the two subsets of N are ∅ and N . ✓
Now let n̂ := n− 1 ≥ 1 and N̂ := {1, . . . , n̂}. The subsets of N are given by I and I ∪ {n} where I ⊆ N̂ .

By induction hypothesis, 2n̂−1 of the sets I and also 2n̂−1 of the sets I ∪ {n} have even cardinality. Thus,
the claim follows from 2n̂−1 + 2n̂−1 = 2n−1. ✓

Each vertex X ∈ S has an all-one-diagonal, and so does the average of all vertices. The off-diagonal
elements of X are given by XI,K =

∏
i∈I△K xi so that among all x ∈ {±1}n, half of the entries XI,K are

1, and the average is zero.
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The max-cut-polytope has 2n−1 vertices as x and z := −x generate the same vertex, i.e.
xxT = zzT , but x⃗ and z⃗ do not, i.e. x⃗x⃗T ̸= z⃗z⃗ T .

The second central observation used in this note (with a new short proof below) is that
the semidefinite relaxation S̃ of S coincides with the n-th lifting for the max-cut-polytope
and also coincides with S. This observation implies the known fact (established for example
in [8, 12]) that the semidefinite liftings of sufficiently high order do represent the exact
convex hull, and thus also the max-cut-polytope. The n-th lifting in [8, 12] can also be seen
as a high dimensional linear extension of MC as introduced in Theorem 3 of [15]; the above
representation of S via its 2n facets is a very simple form of such linear extension.

2.2 Semidefinite Representation of the Simplex

Note that S ⊆ S̃, where the semidefinite relaxation S̃ is given by

S̃ := S2n

+ ∩ A. (2.2)

with A defined in (2.1). The set S̃ is essentially the same as the n-th lifting for the max-
cut-polytope defined in [1]. Same as S, also S̃ is contained in the (2n−1)-dimensional affine
space A. In fact, as shown next, both sets coincide.

Lemma 2.4. The sets S and S̃ coincide.

Proof. Both, S and S̃ are full-dimensional, bounded, closed, convex subsets of the (2n−1)
dimensional affine subspace A of (2.1) containing the identity matrix I in S2n in their relative
interior.

Next, it is shown that all relative boundary points X ∈ ∂S are also at the relative
boundary of S̃,

∂S ⊂ ∂S̃,

i.e. that all relative boundary points X ∈ ∂S have rank at most 2n − 1.
Indeed, let X be a boundary point of the simplex S. Then, X is a convex combination of
vertices of S with the exception of at least one vertex y⃗y⃗ T of S. Let x⃗x⃗T be some vertex
different form y⃗y⃗ T . By Proposition 2.1,

22n+1 = ∥x⃗x⃗T − y⃗y⃗ T ∥2F = ∥x⃗x⃗T ∥2F + ∥y⃗y⃗ T ∥2F − 2(x⃗T y⃗)2 = 22n+1 − 2(x⃗T y⃗)2

so that (x⃗T y⃗)2 = y⃗ T (x⃗x⃗T )y⃗ = 0. As this is true for all other vertices x⃗x⃗T it follows that
y⃗ TXy⃗ = 0, i.e. X has rank at most 2n − 1.
Now, let I ̸= X ∈ S be given. Since S is bounded the line starting at I and passing through
X will cross the relative boundary of S at some point X̄ ∈ ∂S ⊂ ∂S̃. Since S̃ is closed it
follows X̄ ∈ S̃ and by convexity also X ∈ S̃. This shows S ⊂ S̃.
Conversely, let X̃ ∈ S̃ be given. If X̃ ̸∈ S the line segment from I to X̃ intersects the
boundary of S at some point X̂ ∈ ∂S ⊂ ∂S̃. But X̂ being in the open segment between I
in the relative interior of S̃ and X̃ ∈ S̃ cannot be at the boundary of S̃. This contradiction
shows that also S̃ ⊂ S.

Remark 2.5. Some definitions of higher order liftings contain redundancies such as identical
rows and columns. The set S̃ is the n-th lifting after eliminating identical rows and columns.
For 1 ≤ k < n, liftings of order k can be defined in a similar way by considering augmented
vectors x⃗ with components x⃗I where I ⊆ N has cardinality at most k. The corresponding
semidefinite approximation of the max-cut-polytope is defined in an analogous way as the
projection of the semidefinite relaxation for x⃗x⃗T onto rows and columns associated with
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x⃗{1}, . . . , x⃗{n}. The previous lemma implies for any subset M ⊂ N of cardinality at most k
that the restriction of the k-th lifting to the matrix with entries XI,J for I, J ⊆ M is exact,
indicating that the accuracy of the lifting is improving when increasing k.

This concludes the main part of this note.

3 Reduced Representations

Following an observation in [10], in this section the size of the representation is reduced by
eliminating half of the subsets of x⃗. A reduced representation of the max-cut-polytope is
obtained, for example, when considering vectors x⃗ o ∈ {±1}2n−1

with components x⃗ o
I :=∏

i∈I xi where x ∈ {±1}n is as before and I ⊆ N has odd cardinality only. For sets I, J ⊆ N
with odd cardinality it follows that

|I△J | = |I|+ |J | − 2|I ∩ J |

is even so that the rank-1-matrix Y := x⃗ ox⃗ oT ∈ S2n−1

only has entries YI,J = x⃗I△J with sub-

sets I△J of even cardinality |I△J |. For a matrix Y ∈ S2n−1

+ with rows and columns indexed
by odd-cardinality subsets linear equality constraints as in (2.2) also define a semidefinite
relaxation S̃1 of the max-cut-polytope.

Similarly, one can define a reduced representation by considering only even-cardinality
subsets I (including the empty set) for the definition of a second vector x⃗ e with entries
x⃗ e
I :=

∏
i∈I xi. The resulting matrix Z := x⃗ ex⃗ eT has entries ZI,J = x⃗I△J with subsets

I△J that are also of even cardinality |I△J |. Let the associated semidefinite relaxation be
denoted by S̃2. It turns out that the above liftings of order k = n are also exact:

To see this, let S1 := conv( { x⃗ ox⃗ oT | x ∈ {±1}n } ) and S2 := conv( { x⃗ ex⃗ eT | x ∈
{±1}n } ) where x⃗ o and x⃗ e are defined as above.

Lemma 3.1. The set S1 coincides with its semidefinite relaxation S̃1, and S2 coincides with
its semidefinite relaxation S̃2.

Proof. Let x ∈ {±1}n and x⃗ o with components x⃗ o
J :=

∏
j∈J xj for odd-cardinality J be

given. Likewise let y ∈ {±1}n and y⃗ o be given and assume that x and y differ in the
components 1 ≤ k ≤ n− 1. (Since x⃗ ox⃗ oT only has entries with even-cardinality indices, the
case k = n generates the same matrix x⃗ ox⃗ oT = y⃗ oy⃗ oT .) As in the proof of Proposition 2.1,
if an even number of elements from {1, . . . , k} is contained in I ⊆ N , then x⃗ o

I = y⃗ o
I , else

x⃗ o
I = −y⃗ o

I , and thus, again as in the proof of Proposition 2.1,

∥x⃗ o − y⃗ o∥2 = ∥x⃗ o + y⃗ o∥2 = 2
√
2n−2 = 2n/2.

Since x⃗ o and x⃗ e are based on a disjoint union of all indices I ⊆ N it follows from the above
and from Proposition 2.1 that also ∥x⃗ e− y⃗ e∥2 = 2n/2 for different x⃗ e, y⃗ e ∈ {±1}2n−1

. Thus,
in both cases Proposition 2.1 is valid just with a different constant distance. Since there are
only 2n−1 vertices in S1 or S2, an argument as for the proof of Lemma 2.4 is applicable as
well: A boundary point of S1 is an affine combination of all vertices except one, i.e. it is
an affine combination of 2n−1 − 1 vertices, each of which has rank one, so that a boundary
point of S1 has rank at most 2n−1 − 1. (In difference to the proof of Lemma 2.4, an explicit
element of the null space is not stated with this argument.)

Observe that both relaxations can be combined by relating equivalent entries of both
reduced representations Y = x⃗ ox⃗ oT and Z = x⃗ ex⃗ eT with equality constraints. A larger
matrix inequality is thus replaced with two smaller matrix inequalities (namely Y and Z
being positive semidefinite). This will be referred to as mixed reduced lifting below.
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Proposition 3.2. For even numbers n the above mixed reduced lifting of order n/2 is exact.

Proof. First, for even numbers n and x ∈ {±1}n let ⃗̂x have components ⃗̂xI :=
∏

i∈I xi

where I ⊆ N only has at most |I| ≤ n/2 entries. Then observe that the proof of Lemma

2.4 also applies in the lower-dimensional setting X̂ = ⃗̂x⃗̂x T ∈ S2n−1

with 2n−1 equidistant
extreme points. This implies a slight strengthening of Lemma 2.4, namely for even n the
lifting of order n/2 is exact.

Now let ⃗̂x o have components ⃗̂x o
I :=

∏
i∈I xi where x ∈ {±1}n is as before and I ⊆ N has

odd cardinality only and |I| ≤ n/2. Likewise assume that ⃗̂x e has components ⃗̂x e
I :=

∏
i∈I xi

where x ∈ {±1}n and I ⊆ N has even cardinality only and |I| ≤ n/2. Thus,

⃗̂x = Π

(
⃗̂x o

⃗̂x e

)
for some permutation matrix Π.

Consider the block-structured simplex

BS := conv

(
{

(
⃗̂x o⃗̂x o T 0

0 ⃗̂x e⃗̂x e T

)
| x ∈ {±1}n }

)
where the dimensions of the matrix blocks follow from the context. As the non-zero entries
of a matrix in BS are associated with even cardinality subsets only, the vectors x and −x
generate the same matrix. Hence, BS is the convex hull of 2n−1 points contained in an
(2n−1−1)-dimensional affine subspace of S2n−1

. Up to a permutation, the mixed reduced

lifting of BS coincides with the semidefinite approximation of ⃗̂x⃗̂x T projected to a block
diagonal format. This projection is consistent with respect to the semidefinite ordering
and with respect to the equality constraints “X̂I,J = X̂K,L for I△J = K△L”, so that the
arguments in the proof of Lemma 2.4 are applicable again.

4 Including Linear Constraints

A key observation used in the approach of Lovász and Schrijver [12] concerns the inclusion
of inequalities: Let a feasible set IP be given by the convex hull of ±1-vectors satisfying
linear inequalities (a(j))Tx+ αj ≥ 0 for j ∈ M with some finite set M ,

IP = conv({x | x ∈ {±1}n, (a(j))Tx+ αj ≥ 0 for j ∈ M}).

Then, since squared variables are identical to one, any finite product of these inequalities
can be expressed as linear inequalities in terms of elements of the augmented vectors x⃗, the
constant terms αj being represented via x⃗∅ = 1. Analogously, products of inequalities of
the form (±xi +1) ≥ 0 for 1 ≤ i ≤ n can be represented as follows: For a vector p ∈ {0, 1}n
let the vector p̄ ∈ R2n be defined by the identity

p̄T x⃗ ≡
n∏

i=1

((−1)pixi + x⃗∅) for any x ∈ {±1}n and the associated x⃗ ∈ {±1}2
n

.

In the next lemma it is observed that an exact relaxation of IP is obtained when augmenting
the components of the vectors a(j) ∈ Rn for j ∈ M to vectors

ā(j) := (αj , (a
(j))T , 0, . . . , 0) ∈ R2n
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and when forming the semidefinite relaxation of order n with the same constraints as in
(2.2) and with 2n|M | additional constraints

⟨p̄(ā(j))T + ā(j)(p̄)T , X⟩ ≥ 0 for j ∈ M and all p ∈ {0, 1}n and their associated p̄. (4.1)

Lemma 4.1. The first components X∅,{1}, . . . , X∅,{n} of the above semidefinite relaxation
represent the exact convex hull IP of all vectors x ∈ {±1}n satisfying the linear inequalities
(a(j))Tx+ αj ≥ 0 for j ∈ M .

Proof. For M = ∅ the all-one-diagonal of X and semidefiniteness of X imply the trivial fact
that the vector (X∅,{1}, . . . , X∅,{n})

T is contained in the convex hull [−1, 1]n of all {±1}-
vectors in Rn. When M ̸= ∅ assume that x̄ ∈ {±1}n is a vector violating the constraint
(a(j))T x̄+ αj ≥ 0 for some j ∈ M . Selecting p = (1− x̄)/2 in (4.1) and using

p̄T ⃗̄x =

n∏
i=1

((−1)pi x̄i + ⃗̄x∅) = 2n > 0

it follows that (4.1) is violated by X = ⃗̄x⃗̄xT . On the other hand p̄T x⃗ = 0 for any other
x ∈ {±1}n, since at least one of the factors ((−1)pixi + x⃗∅) is zero. Thus, (4.1) is satisfied
with equality by any other vertex x⃗x⃗T . Due to Lemma 2.4 any point in the semidefinite
relaxation of order n is a convex combination of vertices x⃗x⃗T and by the above observation
only vertices x⃗x⃗T satisfying all constraints occur in the convex combination.

Based on ideas from [12] a simple proof of Lemma 4.1 is also given in [9]. Note that the
approach in [12] is slightly different: The {±1}-formulation is replaced with the equivalent
{0, 1}-formulation, and the constraints ±xi + 1 ≥ 0 are added to the constraints in M
forming a set M̃ (with |M̃ | = 2n + |M |). Then the 2nM constraints in (4.1) are replaced
with |M̃ |n constraints

n∏
ℓ=1

((a(jℓ))Tx+ αjℓ) ≥ 0 (4.2)

for all choices of jℓ ∈ M̃ . Again (4.2) can be expressed as linear constraints of the entries of
X forming an extended lifting that includes all the constraints of the form (4.1). (Some of
these constraints are redundant.)

When reducing the extended lifting of order n to an order less than n, the relaxation
based on (4.2) is an improvement compared to (4.1), but Lemma 4.1 indicates that (4.1) is
sufficient for the semidefinite lifting of order n.
Unfortunately, for all approaches, the dimensions of the liftings of order higher than one
generally are too large to be computationally competitive, and therefore so far they are
mostly of theoretical interest.
To conclude note that for linear equality constraints (a(j))Tx+αj = 0 on the binary variable
x ∈ {±1}n the constraints (4.1) can be simplified (substantially) to just |M | constraints

⟨ā(j)(ā(j))T , X⟩ = 0 for j ∈ M. (4.3)

Indeed if (4.3) is satisfied, then by semidefiniteness of X the vectors ā(j) lie in the null space
of X and then all constraints (4.1) are satisfied so that the argument in the proof of Lemma
4.1 remains valid.
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5 Relations to Earlier Results

There is vast literature on liftings for hard combinatorial problems. Some selected relations
are detailed next.

The observation of Proposition 2.1 can be found in [10], for example, where it is also
noted that any d-dimensional 0-1 polytope can be realized as the projection of a (2d−1)-

dimensional simplex. For the max-cut-polytope, d = n(n−1)
2 , but due to the regular structure

of the max-cut-polytope, the dimension of the associated simplex only is 2n−1.
Lemma 2.4 has been derived in several earlier works based on an operator M which is

defined below.
Observe that for X ∈ A the first column x of X (with components xI = XI,∅ for I ⊆ N

and x∅ = 1) uniquely determines the remaining entries XI,J = XI△J,∅ of X (see Definition
(2.1) of A). In [8, 10] and others, the notation X = M(x) is used in this situation, and M
is denoted a moment matrix.

Let the 2n vertices of S be denoted by x⃗(i)(x⃗(i))T for 1 ≤ i ≤ 2n. Proposition 2.1 implies
that the vertices are pairwise orthogonal to each other and that Z := [x⃗(1), . . . , x⃗(2n)] satisfies
ZTZ = 2nI i.e. 2−n/2Z is an orthogonal matrix. (Here, I denotes the identity matrix in
S2n .)

The linear identity
M(x) = 2−nZDiag(ZTx)ZT (5.1)

can be verified for any vector x = x⃗(i) with 1 ≤ i ≤ 2n since 2−nZT x⃗(i) is the i-th canonical
unit vector in R2n and the first column of M(x⃗(i)) = x⃗(i)(x⃗(i))T is x⃗(i) (using (x⃗(i))∅ = 1).
Since the x⃗(i) form a basis of R2n , (5.1) is indeed valid for all x ∈ R2n , in particular for all
x with x∅ = 1, i.e. for all x with M(x) ∈ A.

Since 2−n/2Z is an orthogonal matrix, relation (5.1) actually is an eigenvalue decomposi-
tion. The eigenvectors x⃗(i) are independent of the particular choice of x i.e. of X = M(x) ∈
A, and the vector of eigenvalues is given by ZTx. Thus, X = M(x) satisfies

X ∈ S̃ ⇐⇒ ZTx ≥ 0 ⇐⇒ X ∈ S,

where the second equivalence uses the fact that 2n = trace(X) = eTZTx so that ZTx ≥ 0
is equivalent to ZTx being a convex combination of canonical unit vectors multiplied by 2n.

This is a second proof of Lemma 2.4 that is closer to the proofs in the earlier papers [8, 10]
where relation (5.1) is derived directly by algebraic arguments and then used to establish
Lemma 2.4.

A benefit of the introduction of the operator M lies in the observation that M applied
to a convolution of vectors x and y in R2n can be easily analyzed and exploited, see e.g.
Lemma 2 and Lemma 3 in [10].

Another derivation of Lemma 2.4 can be found in Lemma 8.15 in [11], and a simple proof
of a result equivalent to Lemma 2.4 is also given in [2].

6 Conclusion

This paper is intended as a reference providing a self-contained and simple proof of the known
fact that the n-th semidefinite lifting of binary problems is exact. The unconstrained case of
the max-cut-polytope is considered first and the results are then extended to reduced liftings
with just rows corresponding to odd/even subsets of variables, a mixed reduced setting, and
finally, the constrained case with both inequalities and equalities. A brief discussion of some
related work concludes this paper.
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While the quality of the liftings improves with the order of the liftings, the dimension
of the liftings grows dramatically during the first lifting steps, so that even low orders of
the lifting are computationally very expensive. It is still an open problem to modify the
liftings such that they can be solved efficiently. For a survey exploiting algebraic symmetry
properties it is referred to [7].
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