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In Section 3, we introduce right and left eigenvalues for a square dual quaternion matrix.
If a right eigenvalue is a dual number, then it is also a left eigenvalue. In that case, it is
simply called an eigenvalue. We show that the standard part λst of a right eigenvalue λ of
a square dual quaternion matrix A must be a right eigenvalue of the standard part Ast of
A. Then we show that a right eigenvalue λ of a dual quaternion Hermitian matrix A must
be a dual number, and present formulas of λ, its standard part λst and infinitesimal part
λI . Thus, a right eigenvalue of a dual quaternion Hermitian matrix A is an eigenvalue of
A. We further show that if λst is a simple right eigenvalue of Ast, then with formula of
λI , λ = λst + λIϵ is an eigenvalue of A. Then we show that two eigenvectors of a dual
quaternion Hermitian matrix, associated with two eigenvalues with distinct standard parts,
are orthogonal to each other.

We present a unitary decomposition of a dual quaternion Hermitian matrix in Section 4.
A dual quaternion Hermitian matrix can always be diagonalized by a unitary decomposition.
Thus, an n × n dual quaternion Hermitian matrix has exactly n eigenvalues. It is positive
semidefinite, or positive definite, if and only if all of its eigenvalues are nonnegative, or
positive and appreciable, dual numbers, respectively.

To establish the singular value decomposition for a general m×n dual quaternion matrix
A, we need to decompose the n× n positive semidefinite dual quaternion Hermitian matrix
M = A∗A to the form of UΣ2U∗, i.e., M = L2 for L = UΣU∗, where U is a unitary n× n
dual quaternion matrix, Σ is an n×n block diagonal dual quaternion matrix, and “∗” stands
for the conjugate transpose which will be introduced in Section 3. This is always possible
for a real, complex or quaternion positive semidefinite Hermitian matrix M . But it is not
always possible for a positive semidefinite dual quaternion Hermitian matrix M . However,
it is still possible for M = A∗A for a general m × n dual quaternion matrix A. Hence, we
call such a positive semidefinite dual quaternion Hermitian matrix M a perfect Hermitian
matrix, and show that M = A∗A is a perfect Hermitian matrix in Section 5.

In Section 6, we present the singular value decomposition for a general dual quaternion
matrix. The singular values of a dual quaternion matrix are nonnegative dual numbers. The
rank and the appreciable rank of a general dual quaternion matrix are introduced in terms
of the number of positive singular values and the number of those with positive standard
parts.

Some final remarks are made in Section 7.
We denote scalars, vectors and matrices by small letters, bold small letters and capital

letters, respectively.

2 Preliminaries

2.1 Dual Numbers

Denote R and D as the set of the real numbers, and the set of the dual numbers, respectively.
A dual number q has the form q = qst + qIϵ, where qst and qI are real numbers, and ϵ is
the infinitesimal unit, satisfying ϵ2 = 0. We call qst the real part or the standard part of q,
and qI the dual part or the infinitesimal part of q. The infinitesimal unit ϵ is commutative
in multiplication with real numbers, complex numbers and quaternion numbers. The dual
numbers form a commutative algebra of dimension two over the reals. If qst ̸= 0, we say
that q is appreciable, otherwise, we say that q is infinitesimal.

In [11], a total order was introduced for dual numbers. Given two dual numbers p, q ∈ D,
p = pst + pIϵ, q = qst + qIϵ, where pst, pI , qst and qI are real numbers, we say that p ≤ q,
if either pst < qst, or pst = qst and pI ≤ qI . In particular, we say that p is positive,
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nonnegative, nonpositive or negative, if p > 0, p ≥ 0, p ≤ 0 or p < 0, respectively.

2.2 Quaternions

Following from [15, 14], we adopt the notation Q to denote as the set of the quaternions, while
some authors [12] use H to memorize the inventor of quaternions, Hamilton. A quaternion
q has the form q = q0 + q1i+ q2j+ q3k, where q0, q1, q2 and q3 are real numbers, i, j and k
are three imaginary units of quaternions, satisfying

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The real part of q is Re(q) = q0. The imaginary part of q is Im(q) = q1i + q2j + q3k. A
quaternion is called imaginary if its real part is zero. The multiplication of quaternions
satisfies the distribution law, but is noncommutative.

The conjugate of q = q0+ q1i+ q2j+ q3k is q̄ := q∗ = q0− q1i− q2j− q3k. The magnitude
of q is |q| =

√
q20 + q21 + q22 + q23 . It follows that the inverse of a nonzero quaternion q is given

by q−1 = q∗/|q|2. For any two quaternions p and q, we have (pq)∗ = q∗p∗.
Two quaternions p and q are said to be similar if there is a nonzero quaternion u such

that p = u−1qu. We denote p ∼ q. It is easy to check that ∼ is an equivalence relation on
the quaternions. Denote by [q] the equivalence class containing q. Then [q] is a singleton if
and only if q is a real number.

Denote the collections of n-dimensional quaternion vectors by Qn. For x=(x1, x2, . . . , xn)
⊤,

y = (y1, y2, . . . , yn)
⊤ ∈ Qn, define x∗y =

∑n
i=1 x

∗
i yi, where x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) is the con-

jugate transpose of x. Also, denote x̄ = (x∗
1, x

∗
2, . . . , x

∗
n)

⊤, the conjugate of x.

2.3 Quaternion Matrices

Denote the collections of complex and quaternion m × n matrices by Cm×n and Qm×n,
respectively. Denote a quaternion matrix A = (aij) ∈ Qm×n as A = A0 +A1i+A2j+A3k,
where A0, A1, A2, A3 ∈ Rm×n. The transpose of A is denoted as A⊤ = (aji). The conjugate
of A is denoted as Ā = (a∗ij). The conjugate transpose of A is denoted as A∗ = (a∗ji) = Ā⊤.

Let A ∈ Qm×n and B ∈ Qn×r. Then we have (AB)∗ = B∗A∗. In general, (AB)⊤ ̸=
B⊤A⊤ and AB ̸= ĀB̄.

A square quaternion matrix A ∈ Qn×n is called normal if A∗A = AA∗, Hermitian if
A∗ = A; unitary if A∗A = I; skew-Hermitian if A∗ = −A; and invertible (nonsingular) if
there exists AB = BA = In for some B ∈ Qn×n. In this case, we denote A−1 = B. Here In
stands for the n× n identity matrix.

We have (AB)−1 = B−1A−1 if A and B are invertible, and (A∗)
−1

=
(
A−1

)∗
if A is

invertible.
A quaternion Hermitian matrix A is called positive semidefinite if for any x ∈ Qn,

x∗Ax ≥ 0; A is called positive definite if for any x ∈ Qn with x ̸= 0, we have x∗Ax > 0. A
square quaternion matrix A ∈ Qn×n is unitary if and only if its column (row) vectors form
an orthonormal basis of Qn.

Suppose that A ∈ Qn×n, x ∈ Qn with x ̸= 0, and λ ∈ Q, satisfy Ax = xλ. Then λ is
called a right eigenvalue of A, with x as an associated right eigenvector. If λ is complex and
its imaginary part is nonnegative, then λ is called a standard right eigenvalue of A. On the
other hand, if there are x ∈ Qn with x ̸= 0, and λ ∈ Q, satisfying Ax = λx, then λ is called
a left eigenvalue of A, with x as an associated left eigenvector. If λ is a real number and a
right eigenvalue of A, then it is also a left eigenvalue of A, as a real number is commutative
with a quaternion vector.
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The following theorem collects some known results of the right eigenvalues of quaternion
matrices [12, 14, 15].

Theorem 2.1. Suppose that A ∈ Qn×n. Then we have the following properties of the right
eigenvalues of A.

1. If λ ∈ Q is a right eigenvalue of A, then µ ∈ [λ] is also a right eigenvalue of A.

2. If λ ∈ C is a right eigenvalue of A, then λ̄ is also a right eigenvalue of A.

3. A has exactly n standard right eigenvalues.

4. A is normal if and only if there is a unitary matrix U ∈ Qn×n such that

U∗AU = D = diag(λ1, λ2, . . . , λn), (2.1)

where λ1, λ2, . . . , λn are right eigenvalues of A.

5. A is Hermitian if and only if A is normal, and all the right eigenvalues of A are real.

6. If A is Hermitian, then A has exactly n real right eigenvalues, and there is a unitary
matrix U ∈ Qn×n such that (2.1) holds with λ1 ≥ λ2 ≥ · · · ≥ λn as the real right
eigenvalues of A; A is positive semidefinite if and only if λn ≥ 0; A is positive definite
if and only if λn > 0.

For any x ∈ Qn, if x ̸= 0, then x∗x is a real positive number. It is commutative with a
quaternion. Thus, for any A ∈ Qn×n and x ∈ Qn, x ̸= 0, we have

(x∗x)−1(x∗Ax) = (x∗Ax)(x∗x)−1,

and we may denote

x∗Ax

x∗x
:= (x∗x)−1(x∗Ax) = (x∗Ax)(x∗x)−1.

Thus, we have the following proposition.

Proposition 2.2. Suppose that λ ∈ Q is a right eigenvalue of A ∈ Qn×n, with associated
right eigenvector x ∈ Qn. Then

λ =
x∗Ax

x∗x
.

2.4 Dual Quaternions

Denote the set of dual quaternions as DQ. A dual quaternion q ∈ DQ has the form

q = qst + qIϵ,

where qst, qI ∈ Q are the standard part and the infinitesimal part of q, respectively. If
qst ̸= 0, then we say that q is appreciable.

The conjugate of q is

q∗ = q∗st + q∗Iϵ.

By this, if q = q∗, then q is a dual number.
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Suppose that we have two quaternions p = pst + pIϵ and q = qst + qIϵ, their addition
and multiplications are defined as

p+ q = (pst + qst) + (pI + qI) ϵ

and
pq = pstqst + (pstqI + pIqst) ϵ.

See [8, 9]. Note that under these arithmetic rules, a dual number is commutative with a
dual quaternion or a dual quaternion vector.

A dual quaternion q is called invertible if there exists a quaternion p such that pq = qp =
1. We can derive that q is invertible if and only if q is appreciable. In this case, we have

q−1 = q−1
st − q−1

st qIq
−1
st ϵ.

Two dual quaternions p and q are said to be similar if there is an appreciable quaternion
u such that p = u−1qu. We denote p ∼ q. Then ∼ is an equivalence relation on the dual
quaternions. Denote by [q] the equivalence class containing q. Then [q] is a singleton if and
only if q is a dual number.

Denote the collection of n-dimensional dual quaternion vectors by DQn.
For x = (x1, x2, . . . , xn)

⊤, y = (y1, y2, . . . , yn)
⊤ ∈ DQn, define x∗y =

∑n
i=1 x

∗
i yi, where

x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) is the conjugate transpose of x. We say x is appreciable if at least

one of its component is appreciable. We also say that x and y are orthogonal to each other
if x∗y = 0. By [11], for any x ∈ DQn, x∗x is a nonnegative dual number, and if x is
appreciable, x∗x is a positive dual number.

3 Eigenvalues of Dual Quaternion Matrices

Denote the collections of m × n dual quaternion matrices by DQm×n. Then A ∈ DQm×n

can be written as
A = Ast +AIϵ,

where Ast, AI ∈ Qm×n are the standard part and the infinitesimal part of A, respectively.
Note that for a dual quaternion matrix A = Ast + AIϵ, if Ast = O, the analysis for A
will be analogous to that for the quaternion matrix AI . Thus, unless otherwise stated, we
will assume that the dual quaternion matrix A is appreciable throughout the paper, i.e.,
Ast ̸= O.

The conjugate transpose of A is

A∗ = A∗
st +A∗

Iϵ.

A square dual quaternion matrix A ∈ DQn×n is called normal if A∗A = AA∗, Hermitian
if A∗ = A; unitary if A∗A = I; and invertible (nonsingular) if AB = BA = In for some
B ∈ DQn×n. Indeed, if A = Ast +AIϵ and B = Bst +BIϵ ∈ DQn×n satisfy AB = In, then
Bst = A−1

st and BI = −A−1
st AIA

−1
st . This further implies

BA = BstAst + (BstAI +BIAst) ϵ = I +
(
A−1

st AI −A−1
st AIA

−1
st Ast

)
ϵ = In. (3.1)

Thus, the inverse of A is unique, denoted by A−1, which can be obtained by A−1
st −

A−1
st AIA

−1
st ϵ.

We have (AB)−1 = B−1A−1 if A and B are invertible, and (A∗)
−1

=
(
A−1

)∗
if A is

invertible.
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Suppose that A ∈ DQn×n is a Hermitian matrix. For any x ∈ DQn, we have

(x∗Ax)∗ = x∗Ax.

This implies that x∗Ax is a dual number. With the total order of dual numbers defined in
Section 2, we may define positive semidefiniteness and positive definiteness of dual quater-
nion Hermitian matrices. A dual quaternion Hermitian matrix A ∈ DQn×n is called positive
semidefinite if for any x ∈ DQn, x∗Ax ≥ 0; A is called positive definite if for any x ∈ DQn

with x being appreciable, we have x∗Ax > 0 and is appreciable. A square dual quaternion
matrix A ∈ DQn×n is unitary if and only if its column (row) vectors form an orthonormal
basis of DQn. Let 2 ≤ k ≤ n. We say that A ∈ DQn×k is partially unitary if its column
vectors are unit vectors and orthogonal to each other.

Then, A is a dual quaternion Hermitian matrix if and only if Ast and AI are two
quaternion Hermitian matrices.

Suppose that A ∈ DQn×n. If there are λ ∈ DQ, x ∈ DQn, where x is appreciable, such
that

Ax = xλ, (3.2)

then we say that λ is a right eigenvalue of A, with x as an associated right eigenvector. If
there are λ ∈ DQ, x ∈ DQn, where x is appreciable, such that

Ax = λx,

then we say that λ is a left eigenvalue of A, with x as an associated left eigenvector. If λ is
a dual number and a right eigenvalue of A, then it is also a left eigenvalue of A, as a dual
number is commutative with a dual quaternion vector. In this case, we simply say that it is
an eigenvalue of A, with x as an associated eigenvector.

For any x ∈ DQn, if x is appreciable, then x∗x is an appreciable positive dual number.
It is commutative with a dual quaternion. Thus, for any A ∈ DQn×n and x ∈ DQn with x
appreciable, we have

(x∗x)−1(x∗Ax) = (x∗Ax)(x∗x)−1,

and we may denote

x∗Ax

x∗x
:= (x∗x)−1(x∗Ax) = (x∗Ax)(x∗x)−1.

Similar to Proposition 2.2, we have the following proposition.

Proposition 3.1. Suppose that λ ∈ DQ is a right eigenvalue of A ∈ DQn×n, with associated
right eigenvector x ∈ DQn. Then

λ =
x∗Ax

x∗x
. (3.3)

Suppose that λ is a right eigenvalue of A ∈ DQn×n, with x as an associated right
eigenvector. If q ∈ DQ is appreciable, then we have Ax = xλ implies A(xq) = (Ax)q =
xλq = (xq)(q−1λq). Thus, if λ is a right eigenvalue of A, then any dual quaternion in [λ] is
also a right eigenvalue of A.

We have the following theorem.

Theorem 3.2. Suppose that A = Ast + AIϵ ∈ DQn×n. Then λ = λst + λIϵ is a right
eigenvalue of A with a right eigenvector xst + xIϵ only if λst is a right eigenvalue of the
quaternion matrix Ast with a right eigenvector xst, i.e., xst ̸= 0 and

Astxst = xstλst. (3.4)
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We have

λst =
x∗
stAstxst

x∗
stxst

. (3.5)

Furthermore, if λst is a right eigenvalue of the quaternion matrix Ast with a right eigen-
vector xst, then λ is a right eigenvalue of A with a right eigenvector x if and only if λI and
xI satisfy

xstλI = AIxst +AstxI − xIλst. (3.6)

Proof. By definition, λ is a right eigenvalue of A with a right eigenvector x if and only if
Ax = xλ and xst ̸= 0. We may write Ax = xλ as

(Ast +AIϵ)(xst + xIϵ) = (xst + xIϵ)(λst + λIϵ).

This is equivalent to (3.4) and (3.6). By Proposition 2.2, we have (3.5).

The following theorem indicates that the right eigenvalues of a dual quaternion Hermitian
matrix must be a dual number.

Theorem 3.3. A right eigenvalue λ of a Hermitian matrix A = Ast+AIϵ ∈ DQn×n must be
a dual number, hence an eigenvalue of A, and its standard part λst is a right eigenvalue of the
quaternion Hermitian matrix Ast. Furthermore, assume that λ = λst+λIϵ, x = xst+xIϵ ∈
DQn is an eigenvector of A, associate with the eigenvalue λ, where xst,xI ∈ Qn. Then we
have

λI =
x∗
stAIxst

x∗
stxst

. (3.7)

A dual quaternion Hermitian matrix has at most n dual number eigenvalues and no other
right eigenvalues.

An eigenvalue of a positive semidefinite Hermitian matrix A ∈ DQn×n must be a non-
negative dual number. In that case, Ast must be positive semidefinite. An eigenvalue of a
positive definite Hermitian matrix A ∈ DQn×n must be an appreciable positive dual number.
In that case, Ast must be positive definite.

Proof. Suppose that A ∈ DQn×n is a Hermitian matrix, and λ is a right eigenvalue of A.
Let x be the corresponding right eigenvector. Then we have Ax = xλ, and x is appreciable.
We have

x∗Ax = x∗xλ. (3.8)

Substitute x = xst+xIϵ, A = Ast+AIϵ, λ = λst+λIϵ to (3.8), and consider the infinitesimal
part of the equality. We have

(x∗
Ixst + x∗

stxI)λst + x∗
stxstλI = x∗

IAstxst + x∗
stAstxI + x∗

stAIxst.

Since Astxst = xstλst, x
∗
stAst = λstx

∗
st and λst is a real number, the above equality reduces

to

x∗
stxstλI = x∗

stAIxst.

This proves (3.7). Hence, λ is a dual number and an eigenvalue of A.
Now, the other conclusions follow from Theorems 2.1 and 3.2.

Furthermore, we have the following theorem.
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Theorem 3.4. Suppose that A = Ast + AIϵ ∈ DQn×n is a Hermitian matrix, and λst is
a simple right eigenvalue of Ast with a right eigenvector xst. Then λ = λst + λIϵ is an
eigenvalue of A, where λI is calculated by (3.7). Furthermore, if Ast has n simple right
eigenvalues λst,i’s with associated unit right eigenvectors xst,i’s. Then A has exactly n
eigenvalues

λi = λst,i + λI,iϵ, (3.9)

with associated eigenvectors xi = xst,i + xI,iϵ, i = 1, . . . , n, where

λI,i = x∗
st,iAIxst,i, xI,i =

∑
j ̸=i

xst,jx
∗
st,j(AI − λI,iIn)xst,i

λst,i − λst,j
, i = 1, . . . , n. (3.10)

Proof. Since A is a dual quaternion Hermitian matrix, Ast is a quaternion Hermitian matrix
and λst is real. Then (3.6) becomes

AIxst − xstλI = (λstIn −Ast)xI . (3.11)

Since λst is a simple right eigenvalue of Ast, we claim that (3.11) has a solution xI if
and only if

x∗
stAIxst − x∗

stxstλI = 0. (3.12)

The “only if” part follows readily by premultiplying x∗
st on both sides of (3.11), together

with the fact that x∗
stλstIn = (λstxst)

∗
= (Astxst)

∗
= x∗

stAst. To show the “if” part, we
apply Theorem 2.1 to get a unitary matrix U = (u1, . . . ,un) ∈ Qn×n such that U∗AstU =
diag(λ1, . . . , λn). Without loss of generality, we assume that λst = λ1 is a simple right
eigenvalue of Ast and xst = u1 the corresponding right eigenvector. Then λst − λi ̸= 0, for

all i = 2, . . . , n. Set xI :=
n∑

i=2

uiu
∗
i

λst−λi
(AIxst − xstλI) . Direct calculations lead to

(λstIn −Ast)xI = (In − xstx
∗
st) (AIxst − xstλI) = AIxst − xstλI ,

where the last equality follows from (3.12). This shows that (3.11) holds. Thus, the desired
claim is proved. By (3.7), we know that (3.12) is valid. This implies (3.11) has a solution
xI . By Theorems 3.2 and 3.3, λ is an eigenvalue of A.

For the furthermore part, it suffices to show that AIxst,i−xst,iλI,i = (λst,iIn−Ast)xI,i,
i = 1, . . . , n. By Theorem 2.1, we have

In =

n∑
j=1

xst,jx
∗
st,j and Ast =

n∑
j=1

λst,jxst,jx
∗
st,j .

It follows readily that

(λst,iIn −Ast)xI,i

= (λst,iIn −Ast)
∑
j ̸=i

xst,jx
∗
st,j(AI − λI,iIn)xst,i

λst,i − λst,j

=

∑
j ̸=i

(λst,i − λst,j)xst,jx
∗
st,j

∑
j ̸=i

xst,jx
∗
st,j

λst,i − λst,j

 (AI − λI,iIn)xst,i

=
(
In − xst,ix

∗
st,i

)
(AI − λI,iIn)xst,i

= AIxst,i − λI,ixst,i − xst,ix
∗
st,iAIxst,i + λI,ixst,ix

∗
st,ixst,i

= AIxst,i − xst,ix
∗
st,iAIxst,i

= AIxst,i − xst,iλI,i,
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where the first equality is from the expression of xI,i as defined in (3.10), the fifth equality
is due to x∗

st,ixst,i = 1, and the last equality is from the formula of λI,i as defined in (3.10).
This completes the proof.

For eigenvectors of a dual quaternion Hermitian matrix, we have the following proposi-
tion.

Proposition 3.5. Two eigenvectors of a Hermitian matrix A ∈ DQn×n, associated with
two eigenvalues with distinct standard parts, are orthogonal to each other.

Proof. Suppose x and y are two eigenvectors of a Hermitian matrix A ∈ DQn×n, associated
with two eigenvalues λ = λst + λIϵ and µ = µst + µIϵ, respectively, and λst ̸= µst. By
Theorem 3.3, λ and µ are dual numbers. They are commutative with a dual quaternion.
We have

λ(x∗y) = (xλ)∗y = (Ax)∗y = x∗Ay = x∗yµ = µx∗y,

i.e.,
(λ− µ)(x∗y) = 0.

Since λst ̸= µst, (λ− µ)−1 exists. We have x∗y = 0.

Note that for this proposition, only λ ̸= µ is not enough. For example, let A = I2 +
diag{1, 2}ϵ. Set x = e1+e2ϵ, y = e2+e1ϵ with [e1 e2] = I2, and set λ = 1+ϵ and µ = 1+2ϵ.
We can verify by direct calculations that Ax = xλ and Ay = yµ. Thus, λ and µ are two
distinct eigenvalues (with the same standard parts) of A with associated eigenvectors x and
y, respectively. However, in this case, x and y are not orthogonal since x∗y = 2ϵ. It is
worth mentioning that one can still find orthogonal eigenvectors corresponding to λ and µ,
e.g., x̃ = e1 and ỹ = e2.

If Ast has multiple eigenvalues, then the situation is somewhat complicated. We solve
this problem by presenting a unitary decomposition for dual quaternion Hermitian matrices
in the next section.

4 Unitary Decomposition of Dual Quaternion Hermitian Matrices

Now we present the unitary decomposition of a dual quaternion Hermitian matrix.

Theorem 4.1. Suppose that A = Ast + AIϵ ∈ DQn×n is a Hermitian matrix. Then there
are unitary matrix U ∈ DQn×n and a diagonal matrix Σ ∈ Dn×n such that Σ = U∗AU ,
where

Σ := diag (λ1 + λ1,1ϵ, . . . , λ1 + λ1,k1
ϵ, λ2 + λ2,1ϵ, . . . , λr + λr,kr

ϵ) , (4.1)

with the diagonal entries of Σ being n eigenvalues of A,

Aui,j = ui,j(λi + λi,jϵ), (4.2)

for j = 1, . . . , ki and i = 1, . . . , r, U = (u1,1, . . . ,u1,k1
, . . . ,ur,kr

), λ1 > λ2 > · · · > λr are
real numbers, λi is a ki-multiple right eigenvalue of Ast, λi,1 ≥ λi,2 ≥ · · · ≥ λi,ki

are also
real numbers,

∑r
i=1 ki = n. Counting possible multiplicities λi,j, the form Σ is unique.

Proof. Let A ∈ DQn×n be a Hermitian matrix. Denote A = Ast + AIϵ, where Ast, AI ∈
Qn×n. Then Ast and AI are Hermitian. This implies that there is a quaternion unitary
matrix S ∈ Qn×n and a real diagonal matrix D ∈ Rn×n such that D = SAstS

∗. Suppose
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that D = diag(λ1Ik1
, λ2Ik2

, . . . , λrIkr
), where λ1 > λ2 > · · · > λr, and Iki

is a ki × ki
identity matrix, and

∑r
i=1 ki = n. Let M = SAS∗. Then

M

= D + SAIS
∗ϵ

=


λ1Ik1

+ C11ϵ C12ϵ . . . C1rϵ
C∗

12ϵ λ2Ik2 + C22ϵ . . . C2rϵ
...

...
. . .

...
C∗

1rϵ C∗
2rϵ . . . λrIkr + Crrϵ

 ,

where each Cij is a quaternion matrix of adequate dimensions, each Cii is Hermitian.
Let

P =


Ik1

C12ϵ
λ1−λ2

. . . C1rϵ
λ1−λr

− C∗
12ϵ

λ1−λ2
Ik2

. . . C2rϵ
λ2−λr

...
...

. . .
...

− C∗
1rϵ

λ1−λr
− C∗

2rϵ
λ2−λr

. . . Ikr

 .

Then

P ∗ =


Ik1 − C12ϵ

λ1−λ2
. . . − C1rϵ

λ1−λr
C∗

12ϵ
λ1−λ2

Ik2 . . . − C2rϵ
λ2−λr

...
...

. . .
...

C∗
1rϵ

λ1−λr

C∗
2rϵ

λ2−λr
. . . Ikr

 .

Direct calculations certify PP ∗ = P ∗P = In and

Σ′ := PMP ∗ = (PS)A(PS)∗ = diag(λ1Ik1 + C11ϵ, λ2Ik2 + C22ϵ, . . . , λrIkr + Crrϵ).

Since P and S are unitary matrices, then so is PS. Noting that each Cjj is a Hermitian
quaternion matrix, by applying Theorem 2.1, we can find unitary matrices U1 ∈ Qk1×k1 , . . . ,
Ur ∈ Qkr×kr that diagonalize C11, . . . , Crr, respectively. That is, there exist real numbers
λ1,1 ≥ · · · ≥ λ1,k1 , λ2,1 ≥ · · · ≥ λ2,k2 , . . . , λr,1 ≥ · · · ≥ λr,kr such that

U∗
i CiiUi = diag (λi,1, . . . , λi,ki) , i = 1, . . . , r. (4.3)

Denote V := diag (U1, . . . , Ur). We can easily verify that V is unitary. Thus, U := (PS)∗V
is also unitary. Denote

Σ := diag (λ1 + λ1,1ϵ, . . . , λ1 + λ1,k1
ϵ, λ2 + λ2,1ϵ, . . . , λr + λr,kr

ϵ) .

Then we have U∗AU = Σ, as required. Letting U = (u1,1, . . . ,u1,k1 , . . . ,ur,kr ), we have
(4.2). Thus, λi + λi,jϵ are eigenvalues of A with ui,j as the corresponding eigenvectors, for
j = 1, . . . , ki and i = 1, . . . , r.

Note that those λi,j ’s are all right eigenvalues of Cii’s, where Cii = SiAIS
∗
i with S∗

i ∈
Qn×ki the submatrix formed by an orthonormal basis of the right eigenspace of λi for Ast.
To show the desired uniqueness of Σ, it then suffices to show that for any other orthonormal
basis of the right eigenspace of λi for Ast, say Ŝ∗

i , those λi,j ’s are all right eigenvalues of

Ĉii = ŜiAI Ŝ
∗
i as well. Observe that there exists a unitary matrix Wi ∈ Qki×ki such that

Ŝ∗
i = S∗

i Wi. Then

Ĉii = W ∗
i SiAIS

∗
i Wi = W ∗

i CiiWi = W ∗
i Uidiag (λi,1, . . . , λi,ki)U

∗
i Wi.
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Since U∗
i Wi is also unitary, we have λi,j ’s are all right eigenvalues of Ĉii. The uniqueness is

then proved.

With Theorems 3.4 and 4.1, we have the following theorem.

Theorem 4.2. Suppose that A ∈ DQn×n is Hermitian. Then A has exactly n eigenvalues,
which are all dual numbers. There are also n eigenvectors, associated with these n eigenval-
ues. The Hermitian matrix A is positive semidefinite or definite if and only if all of these
eigenvalues are nonnegative, or positive and appreciable, respectively.

To illustrate the above theorem, a simple example is presented as below.

Example 4.3. Let A = Ast +AIϵ with

Ast = I2, AI =

[
0 j
−j 0

]
.

Now, by Theorem 3.2, we have λst = 1, which is a double right eigenvalue of Ast = I2. Now
(3.6) has the form

AIxst = λIxst.

This means that there is no constraint on xI , and λI is a right eigenvalue of the quaternion
Hermitian matrix AI , with a right eigenvector xst. We know that the quaternion Hermitian
matrix AI has two right eigenvalues 1 and −1, with corresponding right eigenvectors

x
(1)
st =

[
j
1

]
, x

(2)
st =

[
1
j

]
.

Let
x
(1)
I = x

(2)
I = 0,

and normalize x(1) and x(2). Then A has two eigenvalues λ1 = 1 + ϵ and λ2 = 1 − ϵ, with
two corresponding eigenvectors

x(1) =
1√
2

[
j
1

]
, x(2) =

1√
2

[
1
j

]
.

Note that x(1) and x(2) are orthogonal to each other.

5 Perfect Hermitian Matrices

Suppose that M ∈ Qn×n is a positive semidefinite quaternion Hermitian matrix. Then there
is a positive semidefinite quaternion Hermitian matrix L ∈ Qn×n such that M = L2. This
is easy to verify, as we may write M = UDU∗, where U ∈ Qn×n is a unitary quaternion
matrix, and D ∈ Rn×n is a diagonal matrix with real nonnegative diagonal entries. Then
letting L = UD

1
2U∗, we have the desired result.

However, this does not work in general for a positive semidefinite dual quaternion Her-
mitian matrix M ∈ DQn×n. Let M = Inϵ, where In is the n × n identity matrix. One
cannot find L ∈ DQn×n such that M = L2.

We call a positive semidefinite dual quaternion Hermitian matrix M ∈ DQn×n a perfect
Hermitian matrix if there is a positive semidefinite dual quaternion Hermitian matrix L ∈
DQn×n such that M = L2. In this section, we show that M = B∗B is a perfect Hermitian
matrix for any B ∈ DQm×n. This property plays a key role in establishing the singular
value decomposition of B, in the next section.
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Theorem 5.1. Suppose that B ∈ DQm×n and A = B∗B. Then there exists a unitary
matrix U ∈ DQn×n such that

U∗AU = diag(λ1 + λ1,1ϵ, . . . , λ1 + λ1,k1
ϵ, λ2 + λ2,1ϵ, . . . , λs + λs,ks

ϵ, 0, . . . , 0), (5.1)

where λ1 > · · · > λs > 0, λ1,1 ≥ · · · ≥ λ1,k1
, . . . , λs,1 ≥ · · · ≥ λs,ks

are real numbers,∑s
i=1 ki ≤ n. Counting possible multiplicities λi,j, the real numbers λi and λi,j for i =

1, . . . , s and j = 1, . . . , ki are uniquely determined.

Proof. Since A is a positive semidefinite dual quaternion Hermitian matrix, by virtue of
Theorem 4.1, together with Theorem 4.2, we know that A can be diagonalized by U as
defined in Theorem 4.1, and A has exactly n eigenvalues which are all nonnegative dual
numbers, say λi+λi,jϵ, i = 1, . . . , r, j = 1, . . . , ki, and λ1 > · · · > λr ≥ 0, λ1,1 ≥ · · · ≥ λ1,k1 ,
. . . , λr,1 ≥ · · · ≥ λr,kr

. It then suffices to show that if λr = 0, then λr,j = 0 for every
j = 1, . . . , kr. Note that

u∗
r,jAur,j = u∗

r,jλr,jur,jϵ = λr,jϵ, j = 1, . . . , kr. (5.2)

Combining with

u∗
r,jAur,j = u∗

r,jB
∗
stBstur,j + u∗

r,j (B
∗
stBI +B∗

IBst)ur,jϵ, (5.3)

we have
u∗
r,jB

∗
stBstur,j = 0, (5.4)

and hence Bstur,j = 0. This further leads to

u∗
r,j (B

∗
stBI +B∗

IBst)ur,j

= (Bstur,j)
∗
BIur,j + u∗

r,jB
∗
I (Bstur,j)

= 0.

By invoking equations (5.2) and (5.3), we immediately get λr,j = 0 for every j = 1, . . . , kr.
This completes the proof.

Corollary 5.2. Suppose that B ∈ DQm×n and A = B∗B. Then A is a perfect Hermitian
matrix.

Proof. In Theorem 5.1, let

L=Udiag

(√
λ1+

λ1,1

2
√
λ1

ϵ, . . . ,
√

λ1+
λ1,k1

2
√
λ1

ϵ,
√

λ2+
λ2,1

2
√
λ2

ϵ, . . . ,
√
λs +

λs,ks

2
√
λs

ϵ, 0, . . . , 0

)
U∗.

Then L is Hermitian and positive semidefinite, and L2 = A.

6 Singular Value Decomposition of a Dual Quaternion Matrix

We now present the singular value decomposition of dual quaternion matrices.

Theorem 6.1. Suppose that B ∈ DQm×n. Then there exists a dual quaternion unitary
matrix V̂ ∈ DQm×m and a dual quaternion unitary matrix Û ∈ DQn×n such that

V̂ ∗BÛ =

[
Σt O
O O

]
, (6.1)
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where Σt ∈ Dt×t is a diagonal matrix, taking the form

Σt = diag (µ1, . . . , µr, . . . , µt) ,

r ≤ t ≤ min{m,n}, µ1 ≥ µ2 ≥ · · · ≥ µr are positive appreciable dual numbers, and
µr+1 ≥ · · · ≥ µt are positive infinitesimal dual numbers. Counting possible multiplicities
of the diagonal entries, the form Σt is unique.

Proof. Let A = B∗B. It follows from Theorem 5.1 that there exists a unitary matrix
U ∈ DQn×n as defined in Theorem 4.1 such that A can be diagonalized as in (5.1). Set

r =
s∑

j=1

kj , and

Σr := diag (σ1 + σ1,1ϵ, . . . , σ1 + σ1,k1
ϵ, σ2 + σ2,1ϵ, . . . , σs + σs,ks

ϵ) (6.2)

with σi =
√
λi, σi,j =

λi,j

2
√
λi
, j = 1, . . . , ki, i = 1, . . . , s. Denote U1 = U:,1:r and U2 = U:,r+1:n.

By direct calculations, we have

AU = [B∗BU1 B∗BU2] = [U1Σ
2
r O],

yielding
U∗
1B

∗BU1 = Σ2
r, U∗

2B
∗BU2 = O.

Therefore, BU2 = Mϵ with some quaternion matrix M .
Let V1 = BU1Σ

−1
r ∈ DQm×r. Then

V ∗
1 V1 = Is, V ∗

1 BU1 = V ∗
1 V1Σr = Σr, V ∗

1 BU2 =
(
Σ−1

r

)∗
U∗
1 (B

∗BU2) = O.

Take V2 ∈ DQm×(m−r) such that V = (V1, V2) is a unitary matrix. We see that

V ∗
2 BU1 = V ∗

2 V1Σr = O, V ∗
2 BU2 = V ∗

2 Mϵ = Gϵ,

where G is an (m− r)× (n− r) quaternion matrix. Thus,

V ∗BU =

[
V ∗
1 BU1 V ∗

1 BU2

V ∗
2 BU1 V ∗

2 BU2

]
=

[
Σr O
O Gϵ

]
.

Applying Theorem 7.2 in [15], there exist unitary matrices W1 ∈ Q(m−r)×(m−r) and W2 ∈
Q(n−r)×(n−r) such that W ∗

1GW2 = D, where D ∈ Q(m−r)×(n−r) with Dij = 0 for any i ̸= j
and Dii ≥ 0 for each i = 1, . . . ,min{m− r, n− r}. Denote

V̂ := V

(
Ir

W1

)
, and Û := U

(
Ir

W2

)
. (6.3)

It is obvious that both V̂ and Û are unitary and V̂ ∗BÛ =

[
Σr O
O Dϵ

]
. Then we have (6.1).

The uniqueness of Σt follows from Theorems 4.1 and 5.1. This completes the proof.

We call µ1, . . . , µt and possibly µt+1 = · · · = µmin{m,n} = 0, if t < min{m,n}, the
singular values of B, t the rank of B, and r the appreciable rank of B. Several properties
on the rank and the appreciable rank of a dual quaternion matrix are stated as follows.
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Proposition 6.2. Suppose that B = Bst + BIϵ ∈ DQm×n is of rank t and of appreciable
rank r. Then min{m,n} ≥ t ≥ r = rank(Bst).

Proof. As one can see from the proof of Theorem 6.1, the appreciable rank of B is exactly
the number of positive eigenvalues of A = B∗B. Together with Theorem 4.1 and Theorem
5.1, this number is exactly the number of real positive right eigenvalues of Ast = B∗

stBst,
which is indeed the rank of Bst from Theorem 7.2 in [15].

Proposition 6.3. Suppose that P ∈ DQm×n is partially unitary. Then both the appreciable
rank of P and the rank of P are exactly n.

Proof. By the definition of partially unitary matrices, we have P ∗P = In. It then follows
from the proof of Proposition 6.2 that the appreciable rank of P is indeed the rank of
P ∗
stPst = In, which is exactly n. Since the rank of P is no less than its appreciable rank,

and no greater than min{m,n}. Thus, the rank of P is also n.

7 Final Remarks

In this paper, we studied eigenvalues of dual quaternion Hermitian matrices and singular
values of general dual quaternion matrices. This is a new area of applied mathematics, with
the following three features:

1. It has a nice mathematical structure. An n×n dual quaternion Hermitian matrix has
exactly n eigenvalues. They are dual numbers. The Hermitian matrix is positive definite
or positive semi-definite if and only if these n eigenvalues are positive and appreciable, or
nonnegative, respectively.

2. Its mathematical structure is even richer than complex or quaternion matrices. The
dual numbers and ϵ have more flexibilities.

3. It is at the intersection of Clifford algebra, quaternion matrix theory and applications.
These features make this new area attractive.
The area is new. At this moment, there are dual quaternion-based study on the modelling

and control of single drone or satellite [1, 10]. As drone swarm and constellation satellites
come to the use, the study of dual quaternion matrices will be inevitable.

Some questions may be further considered.
1. What is the rank theory of dual quaternion matrices?
2. If the entries of a dual quaternion matrix are all unit dual quaternions, what special

properties does such a matrix have?
3. Is there a determinant theory for dual quaternion matrices?
4. Besides the dual quaternion matrix recovery problem, can we list more application

problems to motivate our study?
Clearly, more problems on dual quaternion matrices are worth exploring.
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