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when the disruptions of demand and cost were private information in supplier chains. They
indicated linear contract menus to analyze the situations in supply chain under demand
and cost disruptions being asymmetric information. They also pointed out that the optimal
contract for the supplier, and showed how asymmetric disruption information affected the
performance of the supplier, the retailer and the supply chain.

Motivated by the importance of information transparency in supply chain operations,
it is necessary to investigate how supply chain members should make their decisions under
asymmetric information. From now on, we focus on the pattern of asymmetric information
in market. In what follows, a stochastic Stackelberg-Nash-Cournot equilibrium problem in
supply chain model is introduced under an asymmetric information pattern. A key feature
of this kind of model is that the players possess asymmetric information about the market.
The model relies on the fact that the leader withholds certain information related to market
shakes, and the behavior of the followers are known to the leader. The relationship between
leader and followers is modeled by a stochastic non-cooperative Stackelberg games.

A stochastic Stackelberg-Nash-Cournot equilibrium problem in supply chain
under asymmetric information Consider a supply side oligopoly market where N + 1
firms compete to supply a homogeneous product in a non-cooperative manner. One of them,
called leader, knows the behaviors of the others. The leader wants to obtain a optimal
quantity to supply in order to maximize his total profit. The other firms, called followers,
attempt to maximize their profits by supplying product under Cournot conjecture that
the remaining firms will hold their supplies. It is well-known that such a problem can be
described as the Stackelberg-Nash-Cournot game.

A Stackelberg-Nash-Cournot equilibrium is the situation where the leader chooses an
optimal supply that maximizes his profit, given his knowledge of the followers’ reaction to
his choice of supply, the followers reaching a Nash-Cournot equilibrium where each firm can-
not improve his profit by unilaterally changing his supply. The Stackelberg-Nash-Cournot
equilibrium model has been studied extensively, see [27, 29] and reference therein. In Sherali
et.al.[27], the authors applied a quadratic programming approach to analyze the followers’
Nash-Cournot equilibrium and presented a numerical method to find the equilibrium. De
Wolf and Smeers [29] considered a stochastic version of the Stackelberg-Nash-Cournot equi-
librium model. The stochastic factors came from some uncertainties of market demand at
the time when the leader made his decision on supply quantity. It was assumed that the
leader knew the distribution of the stochastic variables. Since the stochastic demand is
not realized at the time when the leader makes a decision, the leader had to maximize the
expected profit based on his knowledge of the distribution of demand and the followers’
reaction in each realization. The authors used a method proposed by Sherali et al. [27] to
find the stochastic Stackelberg-Nash-Cournot equilibrium, and applied these results to the
European gas market.

In our settings, we describe the market shakes with the inverse demand function p(q, ξ),
where q is the total quantity of supply to the market, ξ : Ω → Ξ ⊂ Rn is a random shock
with known distribution, and p(q, ξ) is the market price. As we mentioned, the random
shock reflected the price of product at the time when the leader makes a decision. Let x
denote the decision variable of the leader, that is, the product quantity of the leader to be
supplied in the market; qi (i = 1, . . . , N) denote the decision variable of follower i, that is,
the quantity supplied by firm i to the market; and ci (i = 0, 1, . . . , N) denote the production
cost function of the leader’s and the followers’, respectively.

The followers’ decision problem. Assumed that each firm i (i = 0, 1, . . . , N) is faced with
a production cost function ci, which depends, in general, only on firm i’s supply. In this
case, the production cost of a particular firm depends only on his production output, not
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on those of the other firms.
If the quantity supplied by the leader is x, random shock of the price is ξ, and each firm

i’s supply is qi, then the market price of the product in this situation is

p

(
x+

N∑
i=1

qi, ξ

)
.

The total revenue of firm i (i = 1, . . . , N) is

qip

(
x+

N∑
i=1

qi, ξ

)
.

Then firm i’s profit can be formulated as

fi (qi) = qip

(
x+

N∑
i=1

qi, ξ

)
− ci (qi) .

Since the market price depends partly on qi (firm i has his market power), firm i should
to choose an optimal qi in order to maximize his profit fi (qi). Therefore, follower i’s profit
maximization problem can be written as

max
qi≥0

fi (qi) = qip

x+ qi +

N∑
k=1,k ̸=i

qk, ξ

− ci (qi) . (1.1)

For each firm i’s decision problem as in (1.1), firm i treats the other firms’ supplies as
constant. A Nash-Cournot equilibrium among followers (in the leader’s decision x and
random shock scenario ξ) is a situation where no firm can improve its profit by unilaterally
changing its supply. We denote such an equilibrium by (q1(x, ξ), . . . , qN (x, ξ)) where qi(x, ξ)
is the global optimal solution of (1.1), if p(·, ξ) is concave with respect to qi and ci(·) is
convex with respect to qi.

The leader’s decision problem. Based on the preceding discussions, we can formulate the
leader’s decision problem as follow:

max
x≥0

f0(x) = E

[
xp

(
x+

N∑
i=1

qi(x, ξ), ξ

)]
− c0(x). (1.2)

Note that unlike the followers’ optimization problem, the leader’s objective function is not
necessarily concave in general. Therefore, the “maximum” of the leader’s expected profit
may not refer to the global maximum of (1.2).

We investigate the situation where the leader maximizes the expected profit while the
followers reach a Nash-Cournot equilibrium under the leader’s decision x and every random
shock scenario ξ.

A stochastic Stackelberg-Nash-Cournot equilibrium is to find strategies (x∗, q1(x
∗, ·), . . . ,

qN (x∗, ·)) such that

f0 (x
∗) = max

x≥0
E

[
xp

(
x+

N∑
i=1

qi(x, ξ), ξ

)]
− c0(x), (1.3)
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where

qi(x, ξ) ∈ argmax
qi≥0

qip
x+ qi +

N∑
k=1,k ̸=i

qk(x, ξ), ξ

− ci (qi)

 . (1.4)

In the rest of this paper, we will propose a new approach-ERM method, which is an-
other main motivation, to investigate stochastic Stackelberg-Nash-Cournot equilibria. The
approach is based on the optimality conditions of the equilibria, and consequently, the
stochastic Stackelberg-Nash-Cournot equilibrium is transformed into a two-stage stochastic
complementarity problem and further into an ERM problem.

The paper is organized as follows. In the following section, the framework of the two-
stage SCP is introduced. In section 3, we investigate the convergence anlysis of the sample
average approximations of ERM formulation. And we propose an ERM formulation of the
two-stage SCP in section 4. The corresponding error bound and solvability are also obtained.
Then, in section 5, we solve an simple example of stochastic Stackelberg game problem by
applying the proposed ERM method and give some numerical experiments.

2 A Compact Reformulation of the Model

In this section, we investigate the optimality conditions of stochastic Stackelberg-Nash-
Cournot equilibrium and reformulate it as a two-stage stochastic complementary problems
framework. We need some assumptions for the study of the model.

Assumption 2.1. For i = 0, 1, . . . , N, ci(q) is twice continuously differentiable, c′i(q) ≥ 0
and c′′i (q) ≥ 0 for q ≥ 0.

This is a standard assumption, and it requires that the cost function of each firm is
sufficiently smooth and convex.

Assumption 2.2. The inverse demand function p(q, ξ) satisfies the following:
(i) for q ≥ 0 and a.e. ξ ∈ Ξ, p(q, ξ) is twice continuously differentiable in q and p′q(q, ξ) <

0;
(ii) for q ≥ 0 and a.e. ξ ∈ Ξ, p′q(q, ξ) + qp′′qq(q, ξ) ≤ 0.

This assumption is similar to an assumption made by Sherali et al. [27] and De Wolf
and Smeers [29]. If the leader’s decision is x and the follower i’s decision is qi (i = 1, . . . , N),

then the leader’s revenue under random shock scenario ξ is x ·p(x+
∑N

i=1 qi, ξ). Consider an

extraneous supply K ≥ 0. Then, the marginal revenue is p(x+
∑N

i=1 qi +K, ξ) + x · p′x(x+∑N
i=1 qi +K, ξ). The rate of change of this marginal revenue with respect to the increase in

the extraneous supply K is p′x(x+
∑N

i=1 qi +K, ξ)+ x · p′′x(x+
∑N

i=1 qi +K, ξ). Assumption
2.2 (ii) implies that this rate is non-positive when K = 0 for a.e. ξ ∈ Ξ. In other words,
any extraneous supply will potentially reduce the leader’s marginal revenue in any random
shock scenario [27].

Assumption 2.3. There exists qu, such that

c′i(q) ≥ p(q, ξ), for q ≥ qu, a.e. ξ ∈ Ξ, i = 0, 1, . . . , N.

The assumption implies that each firm i’s marginal cost at total output quantity qu or
above would exceed any possible market price. Therefore, none of the firms would wish to
supply more than qu. See discussions in [27, 29].
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Proposition 2.1 ([30]). Under Assumptions 2.1, 2.2 and 2.3,

(i) for any x ≥ 0, f0(x) is non-negative and bounded,

(ii) for any x ≥ 0 and a.e. ξ ∈ Ξ, there exists an unique Nash-Cournot equilibrium
(q1(x, ξ), . . . , qN (x, ξ)) among followers, which solves (1.4); moreover, qi(x, ξ) ∈ [0, qu) ,
for i = 1, . . . , N .

Our first step is to formulate the followers’ Nash-Cournot equilibrium as a nonlinear
complementarity problem. Under the leader supply x and a random shock scenario ξ,
the follower i’s Nash-Cournot equilibrium problem by considering the Karush-Kuhn-Tucker
condition is:

p(x+ qi +

N∑
k=1,k ̸=i

qk, ξ) + qip
′
qi(x+qi +

N∑
k=1,k ̸=i

qk, ξ)− c′i (qi) + µi = 0,

µi ≥ 0, qi ≥ 0, µiqi = 0.

(2.1)

This is a parameterized N -dimensional nonlinear complementarity problem where
both x and ξ become parameters. Let q = (q1, . . . , qN )

T
, e = (1, . . . , 1)T , c(q) =

(c1(q1), . . . , cN (qN ))
T
. Let

G(q, x, ξ) ≡ −p
(
x+ qT e, ξ

)
e− p′q

(
x+ qT e, ξ

)
q+∇c(q).

Then the KKT condition (2.1) can be rewritten as

0 ≤ q ⊥ G(q, x, ξ) ≥ 0.

In addition, under suitable conditions, we can write down the leader’s (weak) optimality
condition, i.e.

E

[
p

(
x+

N∑
i=1

qi(x, ξ), ξ

)
+ x∇xp

(
x+

N∑
i=1

qi(x, ξ), ξ

)
−∇c0(x)− λ

]
= 0,

x ≥ 0, λ ≥ 0, λ ⊥ x.

The above optimality system is weaker than the conventional saddle-point condition. More
specifically, stationarity comes from the first order optimality condition, where the relation
∂E [Φ(x, ξ)] ⊆ E [∂xΦ(x, ξ)] (in the sense of Aumman[1]) implies a weaker condition for
optimality.

Rewrite the leader’s and the followers’ optimality systems together in a compact form as
a two-stage stochastic complementary system, which is to find the strategy pair (x,q(·)) ∈
R+ × Y+ satisfying

0 ≤ x ⊥ E

[
p

(
x+

N∑
i=1

qi(x, ξ), ξ

)
+ x∇xp

(
x+

N∑
i=1

qi(x, ξ), ξ

)
−∇cj(xj)

]
≥ 0,

0 ≤ q ⊥a.s. G(q, x, ξ) ≥ 0,

where q(·) ∈ Y+ with Y being the space of measurable functions from Ω to Rm such that the
involved expectation is well defined; Y+ means that y(·) ∈ Y and for a.e. ξ ∈ Ξ, y(ξ) ≥ 0.
“a.e.” is the abbreviation for “almost every”; “a.s.” means that almost surely or with
probability one.
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In the first stage, the leader aims to find the “here and now” decision x ∈ Rn before
realizing the uncertainty ξ; in the second stage, as soon as the “here and now” variable x
has been given and the uncertainty ξ has been realized, the followers determine their “wait
and see” solution qi(x, ξ) to attempt to achieve their maximal profits.

Notice that when the involved function is linear w.r.t. x and q, the above stochastic
complementary system becomes the special case of the canonical two-stage stochastic linear
complementarity problem (SLCP), which is to find x ∈ Rn

+ and y(·) ∈ Y such that

0 ≤ x ⊥ Ax+ E[B(ξ)y(ξ)] + q1 ≥ 0, (2.2)

0 ≤ y(ξ)⊥ N(ξ)x+M(ξ)y(ξ) + q2(ξ) ≥ 0, a.e. ξ ∈ Ξ, (2.3)

where A ∈ Rn×n, B(ξ) : Ξ → Rn×m, N(ξ) : Ξ → Rm×n, M(ξ) : Ξ → Rm×m, q1 ∈ Rn,
q2(ξ) : Ξ → Rm. In the recent two decades, the stochastic complementary problems have
been studied extensively, and widely used in modelling various problems under uncertainty,
see [3, 14, 17, 21, 12, 28, 16] for details. Moreover, the recently proposed two-stage stochastic
complementary problems can be applied to the case when the decision makers need to make
decisions in two stages in stochastic environments [7, 4, 6, 5, 22, 25, 24].

3 Convergence Analysis

In this section, firstly, we shows the existence and the uniqueness of the solution set of
the two-stage SLCP when the random vector follows either a continuous distribution or a
discrete distribution.

Assumption 3.1. For a.e. ξ ∈ Ξ,

(zT , uT )

(
A B(ξ)

N(ξ) M(ξ)

)(
z
u

)
≥ 0, ∀z ∈ Rn, ∀u ∈ Rm,

and E[∥B(ξ)∥] ≤ ∞, E[∥M(ξ)∥] ≤ ∞, E[∥N(ξ)∥] ≤ ∞, E[∥q(ξ)∥] ≤ ∞.

Assumption 3.2. There exists a positive continuous function κ(ξ) such that E[κ(ξ)] <∞
and for a.e. ξ ∈ Ξ0 ⊆ Ξ with P(Ξ0) > 0,

(zT , uT )

(
A B(ξ)

N(ξ) M(ξ)

)(
z
u

)
≥ κ(ξ)(∥z∥2 + ∥u∥2), ∀z ∈ Rn, ∀u ∈ Rm.

Lemma 3.1. When Assumption 3.1 and 3.2 are satisfied, the two-stage SLCP (2.2) and
(2.3) has a unique solution.

Proof. First, we prove monotonicity of the infinite complementarity system (2.2) and (2.3).
Let ⟨·, ·⟩ denote the scalar product in the Hilbert space Rn×Y equipped with L2-norm, that
is, for x, z ∈ Rn and y, u ∈ Y ,

⟨(x, y), (z, u)⟩ := xT z +

∫
Ξ

y(ξ)Tu(ξ)P (dξ).

Then, for any (x, y(·)), (z, u(·)) ∈ Rn × Y , we have

⟨(
A(x− z) + E[B(ξ)(y(ξ)− u(ξ))])
M(ξ)(y(ξ)− u(ξ)) +N(ξ)(x− z)

)
,

(
x− z

y(ξ)− u(ξ)

)⟩
=E
[(

x− z
y(ξ)− u(ξ)

)T (
A B(ξ)

N(ξ) M(ξ)

)(
x− z

y(ξ)− u(ξ)

)]
.
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The existence of solution follows from the assumptions, see [15].

Suppose the two-stage SLCP admits two different solutions (x, y(·)), (z, u(·)) ∈ Rn ×Y .
Then it follows ⟨( Ax+ E[B(ξ)y(ξ)] + q1

M(ξ)y(ξ) +N(ξ)x+ q2(ξ)

)
,

(
x− z

y(ξ)− u(ξ)

)⟩
≤ 0,

and ⟨( Az + E[B(ξ)u(ξ)] + q1
M(ξ)u(ξ) +N(ξ)z + q2(ξ)

)
,

(
z − x

u(ξ)− y(ξ)

)⟩
≤ 0.

Adding these two inequalities together, we get

E
[( x− z

y(ξ)− u(ξ)

)T (
A B(ξ)

N(ξ) M(ξ)

)(
x− z

y(ξ)− u(ξ)

)]
=

∫
Ξ\Ξ0

(
x− z

y(ξ)− u(ξ)

)T (
A B(ξ)

N(ξ) M(ξ)

)(
x− z

y(ξ)− u(ξ)

)
P (dξ)

+

∫
Ξ0

(
x− z

y(ξ)− u(ξ)

)T (
A B(ξ)

N(ξ) M(ξ)

)(
x− z

y(ξ)− u(ξ)

)
P (dξ)

≤0,

which is a contradictions with the Assumptions 3.1 and 3.2.

It is possible to reformulate the two-stage SLCP (2.2)-(2.3) in the following equivalent
problem. Let ŷ(x, ξ) be a solution function of the second stage problem (2.3) for x ≥ 0 and
a.e. ξ ∈ Ξ, i.e.,

0 ≤ ŷ(x, ξ) ⊥ N(ξ)x+M(ξ)ŷ(x, ξ) + q2(ξ) ≥ 0, a.e. ξ ∈ Ξ,

Then the first stage problem (2.2) becomes

0 ≤ x ⊥ Ax+ E[B(ξ)ŷ(x, ξ)] + q1 ≥ 0. (3.1)

If x is a solution of (3.1), then (x, ŷ(x, ·)) is a solution of (2.2)-(2.3). Conversely, if (x, ŷ(x, ·))
is a solution of (2.2)-(2.3), then x is a solution of (3.1).

In general, for some x ≥ 0, there are more than one solution of the second stage prob-
lem (2.3). In these cases, the choice of ŷ(x, ξ) is somewhat confused, which motivates the
following assumption.

Assumption 3.3. For every x ≥ 0 and a.e. ξ ∈ Ξ, the second stage problem (2.3) has a
unique solution.

Assumption 3.3 holds when M(ξ) is a P-matrix for every x ≥ 0 and a.e. ξ ∈ Ξ. Under
Assumption 3.3, suppose that ŷ(x, ξ) is uniquely defined for all x ≥ 0 and a.e. ξ ∈ Ξ, then
the two-stage SLCP (2.2)-(2.3) can be written equivalently as (3.1).

Now, we consider the sample average approximation (SAA) problem of the two-stage
SLCP (2.2)-(2.3), which is to find (xν , y(ξ1), . . . , y(ξν)), such that the following collection
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of complementarity problems is satisfied:

0 ≤ xν ⊥ Ax+
1

ν

ν∑
i=1

[B(ξi)y(ξi)] + q1 ≥ 0,

0 ≤ y(ξ1)⊥ N(ξ1)x+M(ξ1)y(ξ1) + q2(ξ
1) ≥ 0,

...

0 ≤ y(ξν)⊥ N(ξν)x+M(ξν)y(ξν) + q2(ξ
ν) ≥ 0,

(3.2)

where ξ1, . . . , ξν are ν independent identically distributed samples of the random variable ξ.
If we know the distribution of ξ and can integrate out the expected value explicitly,

then the problem becomes deterministic, no discretization procedures are required. Unfor-
tunately, the expected value of stochastic functions generally can not be calculated in a
closed form or is difficult to evaluate exactly, so we will have to approximate it through dis-
cretization. The SAA method was studied in detail by Shapiro et.al.[26]. The idea of SAA
method is that samples ξ1, . . . , ξν of ν independent identically distributed samples of the
random variable ξ is generated and the involved expected value function is approximated by
the corresponding sample average function. It has shown that SAA method is efficient for
solving stochastic programming problems [26]. For the above interesting facts, this paper
will establish convergence analysis for the two-stage SLCP by using sample average approx-
imation method. To obtain the convergence analysis, we need the following boundedness
condition.

Assumption 3.4. For every x ≥ 0 and a.e. ξ ∈ Ξ, there is a neighborhood V of x and a
measurable function v(ξ) such that ∥ŷ (x′, ξ)∥ ≤ v(ξ) for all x′ ∈ V ∩ Rn

+.

Denote by S∗ the set of solutions of the first stage problem (2.2) and by SN the set of
solutions of the first stage problem of the SAA problem (3.2).

Theorem 3.2. Suppose that: (i) Assumptions (3.3)-(3.4) hold, (ii) there is a compact
subset X of Rn

+ such that S∗ ⊂ X and for all N large enough the set ŜN is nonempty and
is contained in X, almost surely, (iii) E[B(ξ)ŷ(x, ξ)] is dominated by an integrable function.
Then,

D
(
ŜN ,S∗

)
→ 0, w.p.1, as N → ∞.

Proof. The proof is similar to [5, Theorem 2.4] and we omit the details.

4 An ERM Formulation

In this section, we proceed with an ERM-formulation which provides a reasonable solution
better suits the overall inequalities, see [3] for details.

Definition 4.1. [12] A function ϕ : R2 → R is called an NCP function if it has the property

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Two popular NCP functions are the “min” function

ϕ(a, b) = min(a, b)
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and the Fischer-Burmeister (F-B) function

ϕ(a, b) = a+ b−
√
a2 + b2.

By using the NCP functions, (NCP) can be reformulated as a system of nonlinear equations

Γ(x, F (x)) =

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 = 0

with ϕ being the “min” function or F-B function. All NCP functions, including the “min”
function and Fischer-Burmeister function have the same solution set in the sense of reformu-
lating any complementarity problem as a system of nonlinear equations. But in stochastic
cases, we may not have such equivalence [3].

In order to deal with the second stage problem (2.3), one have to similarly introduce a
collection of NCP functions whose properties would be similar to those in Definition 1.1 and
ask that whether ψ(x, y(ξ), ξ) = 0, a.e. ξ ∈ Ξ or not, if and only if the following parametric
stochastic complementarity problems

0 ≤ y(ξ)⊥F (x, y(ξ), ξ) ≥ 0, a.e. ξ ∈ Ξ

hold.

Definition 4.2 (stochastic-NCP function). Consider the following collection of stochastic
nonlinear complementarity problems (SNCPs): find x ∈ Rn and y(·) ∈ Y , such that

0 ≤ y(ξ)⊥ F (x, y(ξ), ξ) ≥ 0, a.e. ξ ∈ Ξ,

A function ψ : Rn ×Rm ×Ξ → R is a Stochastic-NCP function for these problems if for any
(x, y(·)) ∈ Rn × Y , it holds that

0 ≤ y(ξ)⊥F (x, y(ξ), ξ) ≥ 0, a.e. ξ ∈ Ξ ⇐⇒ ψ(x, y(ξ), ξ) = 0, a.e. ξ ∈ Ξ.

For the two-stage stochastic linear complementarity problem in this definition is in line
with the second stage problem (2.3). Chen et.al.[7] first introduce second stage recourse
variables into SVI, which is to find x and u(x, ξ) such that

0 ∈ f(u(x, ξ), ξ) +NC(ξ)(u(x, ξ)).

In [4], Chen et.al. extend the ERM formulation from one-stage SVI to two-stage SVI.
The authors investigated the solvability, differentiability and convexity of the two-stage
ERM formulation and the convergence of its sample average approximation are established.
They also consider stochastic traffic assignments on arcs flow which is then formulated as a
two-stage stochastic variational inequality based on Wardrop flow equilibrium and present
numerical results for the corresponding two-stage stochastic programming with recourse by
applying the Douglas-Rachford splitting method.

In this paper, we use NCP functions and stochastic-NCP functions to define residuals
of (2.2) and (2.3), and minimize the expected residuals. This idea leads us to seeking a
solution of the following stochastic programming

min
(x,y(·))∈Rn×Y

∥Φ(x, y(ξ))∥2 + λ E∥Ψ(x, y(ξ), ξ)∥2

s.t. x ≥ 0, (4.1)

y(ξ) ≥ 0, a.e. ξ ∈ Ξ,
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where

Φ(x, y(ξ)) :=

 ϕ
(
x1, (Ax+ E[B(ξ)y(ξ)] + q1)

)
1

...
ϕ
(
xn, (Ax+ E[B(ξ)y(ξ)] + q1)

)
n

 , (4.2)

Ψ(x, y(ξ), ξ) =:

 ψ
(
y(ξ)1, (N(ξ)x+M(ξ)y(ξ) + q2(ξ)

)
1

...
ψ
(
y(ξ)m, (N(ξ)x+M(ξ)y(ξ) + q2(ξ)

)
m

 , (4.3)

ϕ and ψ are NCP functions and stochastic-NCP functions, respectively; λ is a positive
penalty factor which allows for a further adjustment of the weight to ascribe to the required
recourse decisions and residuals. If λ is relatively large, one will end up with a solution that
essentially avoids few violations of the second stage problem (2.3).

It’s easy to verify that the function ∥Ψ(x, y(ξ), ξ)∥ defined in (4.3) can be served as a
residual function defined in [7] for our collection SLCPs (2.3). The stochastic programming
(4.1) includes the expected value (EV) and the expected residual minimization (ERM) for
stochastic complementarity problems as special cases.

Next, we need to obtain the following global error bounds for the two-stage SLCP, that is,
the residual function defined in (4.1) can be used to give some quantitative information about
the distance between the objective function of (4.1) and the solution set of the two-stage
SLCP (2.2) and (2.3). Although the “min” function and the F-B function have a number of
nice properties respectively, the F-B function has much better properties in differentiability.
Among others, a distinctive property from the “min” function is that ∥Φ(x, y(ξ))∥2 and
∥Ψ(x, y(ξ), ξ)∥2 defined by the F-B function is continuously differentiable in x everywhere.
However, the F-B function has poor performance in dealing with the LCP. In this paper, we
concentrate on the ERM formulation (4.1) defined by the “min” function.

The theorem below shows the existence of the solution of the two-stage SLCP when the
random vector follows a discrete distribution and the error bound for the two-stage SLCP
under mild conditions.

Consider the ERM formulation (4.1) in the case of Ξ = {ξ1, ξ2, . . . , ξν} with P (ξi) =
pi > 0, i = 1, . . . , ν,

min
(x,y(ξ1),...,y(ξν))∈Rn

+×Rmν
+

fν(x, y(ξ), ξ) := ∥Φ(x, y)∥2 + λ ·
ν∑

i=1

pi∥Ψ(x, y(ξi), ξi)∥2(4.4)

where

Φ(x, y) =

 min(x1, (Ax+
∑ν

i=1 piB(ξi)y(ξi) + q1))1
...

min(xn, (Ax+
∑ν

i=1 piB(ξi)y(ξi) + q1))n

 , (4.5)

Ψ(x, y(ξi), ξi) =

 ψ(y(ξi)1, (N(ξi)x+M(ξi)y(ξi) + q2(ξ
i)))1

...
ψ(y(ξi)m, (N(ξi)x+M(ξi)y(ξi) + q2(ξ

i)))m

 . (4.6)

Theorem 4.3. Suppose Ξ = {ξ1, ξ2, . . . , ξν} ⊆ Rq with P (ξi) = pi > 0, i = 1, . . . , ν. If for
any z = (x, y(ξ1), . . . , y(ξν)), at least one of the following statements holds:
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(i) xT (Ax+
∑ν

i=1 piB(ξi)y(ξi)) > 0,

(ii) there exists at least one i ∈ {1, . . . , ν}, such that y(ξi)T (N(ξi)x+M(ξi)y(ξi)) > 0.

Then, there is a positve constant βν such that

∥z − z∗∥2 ≤ βν · (∥Φ(z)∥2 + λ · E[∥Ψ(z)∥2])

for any λ ≥ 1
mini pi

, where z∗ is the unique solution of the two-stage SLCP.

Proof. Notice that when Ξ is finite, the two-stage SLCP (2.2) and (2.3) can be written as

0 ≤ x ⊥ Ax+

ν∑
i=1

pi[B(ξi)y(ξi)] + q1 ≥ 0,

0 ≤ y(ξ1)⊥ N(ξ1)x+M(ξ1)y(ξ1) + q2(ξ
1) ≥ 0,

...

0 ≤ y(ξν)⊥ N(ξν)x+M(ξν)y(ξν) + q2(ξ
ν) ≥ 0,

or equivalently,

0 ≤


x

y(ξ1)
...

y(ξν)

⊥


A p1B(ξ1) · · · pνB(ξν)

N(ξ1) M(ξ1)
...

. . .

N(ξν) M(ξν)




x
y(ξ1)
...

y(ξν)

+


q1

q2(ξ
1)

...
q2(ξ

ν)

 ≥ 0,

(4.7)

for any x ∈ Rn, and y(ξi) ∈ Rm, i = 1, 2, . . . , ν. Denote

Qν :=


A p1B(ξ1) · · · pνB(ξν)

N(ξ1) M(ξ1)
...

. . .

N(ξν) M(ξν)

 , qν :=


q1

q2(ξ
1)

...
q2(ξ

ν)

 ,

it’s easy to verify that Q is a P-matrix under the assumptions. Then, we can obtain that
LCP(Q, q) (4.7) has an unique solution z∗ = (x∗, y∗(ξ1), . . . , y∗(ξν)). And from [8], for any
z = (x, y(ξ1), . . . , y(ξν)), we have the following error bound

∥z − z∗∥2 ≤ max
d∈[0,1]n

∥(I −D +DQ̂ν)
−1∥2∥Θ(z)∥2, (4.8)

where D is a diagonal matrix whose diagonal elements are d := (d1, . . . , dn+mν) ∈ [0, 1]n+mν ,
and

Θ(z) =


min(x, νAx+ ν

∑ν
i=1 piB(ξi)y(ξi) + νq1))

min(y(ξ1), N(ξ1)x+M(ξ1)y(ξ1) + q2(ξ
1))

...
min(y(ξν), N(ξν)x+M(ξν)y(ξν) + q2(ξ

ν))

 .

Since

∥Θ(z)∥2 = ∥Φ(z)∥2 +
ν∑

i=1

∥Ψ(z)∥2,
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if λ ≥ 1
mini pi

, then (4.8) implies that

∥z − z∗∥2 ≤ max
d∈[0,1]n

∥(I −D +DQ̂ν)
−1∥2 (∥Φ(z)∥2 + λE[∥Ψ(z)∥2]).

Let βν = maxd∈[0,1]n ∥(I −D +DQ̂ν)
−1∥2, which completes the proof.

Remark 4.4. When the random vector follows a discrete distribution, the assumptions
to guarantee the existence and the uniqueness of the solution set of the two-stage SLCP
are much weaker than those in Lemma 3.1. In processes of dealing with many practical
examples, the assumptions in Theorem 4.3 are satisfied by using the regularized method. In
fact, the optimality conditions of two-stage stochastic linear program are as follows:

0 ≤ α ⊥ Ãα+ E[B̃(ξ)β(ξ)] + q̃1 ≥ 0,

0 ≤ β(ξ)⊥ Ñ(ξ)α+ M̃(ξ)β(ξ) + q̃2(ξ) ≥ 0, a.e. ξ ∈ Ξ,
(4.9)

where the vector α, β(ξ), q̃1, q̃2(ξ) and the matrices Ã, B̃(ξ), Ñ(ξ), M̃(ξ) are defined the same
as (2.2) and (2.3). It’s obviously that the assumptions of Theorem 4.3, together with As-
sumption 2.1 in [6] may not be satisfied by these matrices, so we can not obtain the existence
of the solution set of the two-stage SLCP (4.9). However, the regularized problem of the
two-stage SLCP (4.9) satisfies the assumptions of Theorem 4.3, and hence, there is a unique
regularized solution. Similar method can also be found in the two-stage stochastic game
problems as mentioned in [6].

To find a solution of an ERM problem (4.1) numerically, it is necessary to study the
objective function of ERM problem (4.1) defined by NCP functions. In what follows, we
will investigate the properties of the ERM formulation (4.1).

Proposition 4.5. If Ξ = {ξ1, ξ2, . . . , ξν} ⊆ Rq, then the solution set of the ERM formula-
tion (4.4) is nonempty.

Proof. Let z = (x, y(ξ1), . . . , y(ξν)), and consider the complementarity problem

0 ≤


x

y(ξ1)
...

y(ξν)

⊥


A p1B(ξ1) · · · pνB(ξν)
0 0
...

. . .

0 0




x
y(ξ1)
...

y(ξν)

+


q1
0
...
0

 ≥ 0,

then the squared norm of the function Φ(z) = min(z, Q̃z + q) can be represented as

∥Φ(z)∥2 = (Q̃jz + qj)T (Q̃jz + qj), z ∈ P j , j = 1, . . . , k,

where

Q̃ =


A p1B(ξ1) · · · pνB(ξν)
0 0
...

. . .

0 0

 ,

P j are polyhedral convex sets comprising a partition of Rn+νm
+ , each (Q̃j , qj) is a row

representative of

((
I

Q̃

)
,

(
0
q1

))
, and j ≤ 2n+νm. Since Q̃jT Q̃j is positive semi-definite,

∥Φ(z)∥2 is a piecewise quadratic function and nonnegative on Rn+νm
+ . Similar arguments can

be applied to ∥Ψ(z)∥2. By the Frank-Wolfe Theorem [13], the objective function f1(x, y(ξ), ξ)
defined in problem (4.1) attains its minimum on Rn+νm

+ .
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4.1 Numerical experiment

In this section, we conduct some numerical experiments to test the efficiency of our proposed
ERM method to solve the stochastic Stackelberg game problems in the supply chain under
asymmetric information.

To clarify how the stochastic Stackelberg game problem can be applied, let us consider
two firms competing to supply similar products in an open market, say products 1 and 2.
Each firm need to arrange the quantities of the two products, however, in a different way.
Firm 1, possessing stronger market power, has to make a production plan now, without
observing the stochastic shock of the prices of the products. But, he knows the amount of
the products of firm 2 to release in market. Firm 2, called the follower, whose decision will
be made after the stochastic shock of the prices and the behaviors of firm 1 are disclosed.
Each firm wants to decide the amount of each product to supply to maximize their respective
revenues.

Let the amounts of product 1 and product 2 to be supplied by firm 1 be x1 and x2, and
firm 2 be y1 and y2, respectively. Following the notation in Section 1, we define, for a.e.
ξ ∈ Ξ,

x =

(
x1
x2

)
, y(ξ) =

(
y1(ξ)
y2(ξ)

)
, z(ξ) =

(
x
y(ξ)

)
.

We consider a particular case when the inverse demand function p(q, ξ) : R2 × R2 → R2

is affine, that is,

p(q, ξ) = a−Bq + ξ,

where a =

(
a1
a2

)
, B =

(
b1 0
0 b2

)
, ξ =

(
ξ1
ξ2

)
, and the cost function of firm i (i = 1, 2)

is quadratic, in term of

ci (qi) = αi + βiqi +
1

2
γiq

2
i .

These assumptions guarantee the existence, uniqueness of the firm 2’s optimal solution
as well as the concavity of the firm 1’s objective functions. Then, in such a relatively simple
case, the decision problem (2.1) of firm 2 is quadratic, and the optimality condition can be
simplified as

0 ≤
(

y1
y2

)
⊥
[(

β1
2

β2
2

)
−
((

a1
a2

)
−
(

b1 0
0 b2

)(
x1
x2

)
+

(
ξ1
ξ2

))
+

(
2b1 + γ1

2 0

0 2b2 + γ2
2

)(
y1
y2

)]
≥ 0 (4.10)

where y may depend on x and ξ. And, if for each i = 1, 2,

βi
2 < ai − bixi + ξi,

then the complementary problem (4.10) has an unique solution

y(x, ξ) = R−1[(a−Bx) + ξ − β2],

where R = 2B + Γ2, Γ2 =

(
γ12 0
0 γ22

)
and β2 =

(
β1
2

β2
2

)
.

Moreover, firm 1’s profit maximization problem is

max
x≥0

f1(x) = x · E
[
a+ ξ −B

(
x+R−1 ((a−Bx) + ξ − β2)

)]
− α1 − β1x− 1

2
xTΓ1x.
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Note that when f ′1(x) = (Λ− Γ1)x + η + ζ = 0, where Λ = −2B + 2BR−1B, η = (I +
BR−1) E[ξ], and ζ = (a− β1) (I − BR−1). It is easy to check that if bi(bi + γi1) ̸= 0, then

x∗ = (Γ1 − Λ)
−1

(η + ζ). and y∗(ξ) = R−1[(a−Bx∗) + ξ − β2].
Assume that there are two scenarios of the stochastic shock with probabilities p1 = 0.6

and p2 = 0.4, respectively. The two scenarios are Ξ =
{
ξ1, ξ2

}
,

ξ1 =

(
ξ11
ξ21

)
=

(
1
1

)
, ξ2 =

(
ξ12
ξ22

)
=

(
−1
−1

)
.

Then, the stochastic Stackelberg game problem is to find 6-dimension vector z(ξ) = x
y(ξ1)
y(ξ2)

, such that

0 ≤ x ⊥ (−2B − Γ1)x−B(p1y(ξ1) + p2y(ξ2)) + (a+ E[ξ]− β1) ≥ 0,

0 ≤ y(ξ1) ⊥ Bx+ (2B + Γ2)y(ξ1) + (β2 − a− ξ1)) ≥ 0,

0 ≤ y(ξ2) ⊥ Bx+ (2B + Γ2)y(ξ2) + (β2 − a− ξ2)) ≥ 0,

where a =

(
a1
a2

)
=

(
3
5

)
, B =

(
b1 0
0 b2

)
=

(
1 0
0 1

)
, Γ1 =

(
γ121 0
0 γ21

)
=(

1
2 0
0 1

2

)
, β1 =

(
β1
1

β2
2

)
=

(
2
4

)
, Γ2 =

(
2 0
0 2

)
, β2 =

(
β1
2

β2
2

)
=

(
1
2

)
.

The game has an unique solution x =
(
1
2 ,

1
2

)T
, y1 =

(
5
8 ,

7
8

)T
, y2 =

(
1
8 ,

3
8

)T
. And the

numerical result of our ERM method ends up as in the following Table 1. All numerical
experiments are run in Matlab R2017a and on a PC with an Intel(R) Core(TM) i5-6200U
CPU @2.30 GHz and 8 GB of RAM under the Windows 7 operating system. In our settings,
we let λ = 2.5 and the starting point z0 = 0.

Table 1: The numerical results for ERM method

x1 x2 y11 y21 y21 y22 f(z)
0.4894 0.4894 0.6316 0.8751 0.2197 0.3751 4.9183e-07

5 Conclusions

In practical activities, stochastic Stackelberg game problems, which impose great impacts on
production decisions between manufacturing companies, often arise in supply chain mem-
bers’ behaviors under asymmetric information. However, most existing studies on supply
chain under asymmetric information focus on contracts in supply chain. Fewer studies pay
close attention to the decisions of both leader and followers simultaneously. In order to
address this gap, we propose a class of stochastic Stackelberg game problems where both
leader and followers want to maximize his total profit under asymmetric information. This
paper then proved that this kind of problems can be equivalently reformulated as a two-
stage stochastic complementary problems by putting their individual optimality conditions
together. Second, based on the development of stochastic programming, we bring the ERM
method to deal with this kind of problems. By using the ERM method, we reformulate the
two-stage stochastic complementary problems as stochastic constrained optimization prob-
lems. The error bound, solvability of the ERM problem and the convergence of its sample
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average approximation are established. Finally, we present some numerical results to show
ERM is a practicable method to handle this kind of problem.

With regard to future research, this work can be extended in several directions. Al-
though, in our paper, the ERM method is used to solve two-stage stochastic complementary
problems, it also can be used in other forms of two-stage stochastic equilibrium problems.
In addition, our method can be applied not only in game theory, but other stochastic hi-
erarchical problems where individual decision maker is in different level of cooperation and
coordination.

Acknowledgments

We would like to thank two anonymous referees for constructive comments and helpful
suggestions which helped to improve this paper substantially.

References

[1] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12(1965) 1–12.

[2] G.P. Cachon and M.A. Lariviere, Capacity choice and allocation: strategic behavior
and supply chain performance, Manage. Sci. 45 (1999) 1091–1108.

[3] X. Chen and M. Fukushima, Expected residual minimization method for stochastic
linear complementarity problems, Math. Oper. Res. 30 (2005) 1022–1038.

[4] X. Chen, T.K. Pong and R.J-B. Wets, Two-stage stochastic variational inequalities: an
ERM-solution procedure, Math. Program. 165 (2017) 71–111.

[5] X. Chen, A. Shapiro and H. Sun, Convergence analysis of sample average approximation
of two-stage stochastic generalized equations, SIAM J. Optim. 29 (2019) 135–161.

[6] X. Chen, H. Sun and H. Xu, Discrete approximation of two-stage stochastic and dis-
tributionally robust linear complementarity problems, Math. Program. 177 (2019) 255–
289.

[7] X. Chen, R.J-B. Wets and Y. Zhang, Stochastic variational inequalities: Residual min-
imization smoothing sample average approximations, SIAM J. Optim. 22 (2012) 649–
673.

[8] X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complemen-
tarity problems, Math. Program. 106 (2006) 513–525.

[9] C. Corbett, Stochastic inventory systems in a supply chain with asymmetric informa-
tion: Cycle stocks, safety stocks, and consignment stock, Oper. Res. 49 (2001). 487–500.

[10] C. Corbett and X. De Groote, A supplier’s optimal quantity discount policy under
asymmetric information, Manage. Sci. 46 (2000) 444-450.

[11] M. Esmaeili and P. Zeephongsekul, Seller-buyer models of supply chain management
with an asymmetric information structure, Int. J. Prod. Econ. 123 (1997) 146-154.

[12] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, Springer-Verlag, New York, 2003.



798 J. MENG, Y. GAO AND L. CHEN

[13] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. 3
(1956) 95–110.
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