
2022
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However, in the process of acquiring, storing, transmitting, or displaying, the observation
may be inevitably degenerated by various noises, such as heavy-tailed noise, Gaussian noise
or uniformly distributed noise, etc. Actually, ȳ is not a real observation and not unique even
under the same experimental conditions. The challenges of problem (1.1) come not only
from the non-smoothness of the upper-level problem [24, 25] but also from the uncertainty
of observation. Fortunately, we can utilize some prior knowledge to generate warm-start to
guide the optimization process. Suppose x̂ is an approximation lower-level solution of (1.1)
obtained by some prior knowledge. Following [17, Theorem 1], we define b = Ax̂, then the
original bi-level model (1.1) can be equivalently reformulated as the following single-level
constrained optimization problem:

min
x

∥x∥1 +
β

2
∥x∥22 subject to Ax = b. (1.2)

The penalized form of the (1.2), in which the linear constraints are penalized by using a
square of its ℓ2-norm,

min
x∈Rn

1

2
∥Ax− b∥22 + λ(∥x∥1 +

β

2
∥x∥22), (1.3)

where λ > 0 is a weighting parameter to balance both terms for minimization. This model
also called the elastic net problem is proposed for variable selection and regularization in
statistical analysis [36], which reduces to the Lasso problem [26] if β = 0. Although the
Lasso has shown success in many situations [1, 6], it has some limitations and shortcomings
[36, 26], for instance, the Lasso tends to select only one variable from the group but does
not care which one is selected when there is a group of variables among which the pairwise
correlations are very high [26]. Furthermore, Problem (1.3) has a ℓ2 norm in the regularizer
term, so it is less sensitive to noise than the Lasso problem. Compared to the Lasso, the
elastic net simultaneously does automatic variable selection and continuous shrinkage, and
it can select groups of correlated variables. The exact regularization property of ℓ1-ℓ2-
type penalty has been studied in many literatures [20, 33], which has been extensively used
in many fields, such as uncovering the consistent networks of functional disconnection in
Alzheimers disease [23], estimating global bank network connectedness [10], neuroimaging
[5], genome analysis [8] and so on.

The goal of this paper is to design a more flexible and robust reconstruction model which
inherits the excellent properties of the regularizer term of elastic net model, as well as unified
efficient algorithms with convergence guarantee to be capable of dealing with the different
types of noise. Therefore, we consider the following more generalized ℓp ℓ1-ℓ2 minimization
problem

min
x∈Rn

∥Ax− b∥p + λ(∥x∥1 +
β

2
∥x∥22), (1.4)

where β ≥ 0 and ∥ · ∥p is a ℓp-norm function with p ≥ 1, e.g., p = 1, 2,∞. The data
fidelity with form ∥Ax − b∥2, say square-root-loss stated by Belloni et al. [4] is proved to
be achieving the near-oracle rates of convergence without knowing the standard deviation
of the noise under suitable design conditions [2, 9]. In addition, the data fidelity with form
∥Ax− b∥1 has also been evidently shown to be more robust than the least-square form when
encountering not normal but heavy-tailed or heterogeneous noises [3, 19, 27, 30]. Meanwhile,
the data fidelity with form ∥Ax− b∥∞ is also known to be very suitable for dealing with the
uniformly distributed noise and quantization error [31, 35]. Therefore, the model (1.4) has
many attractive features. Not only does it have the advantage of the elastic net for variable
selection, but the ∥Ax−b∥p data fidelity term makes it can deal with different types of noise
if p is chosen adaptively. For example, p = 1 for log-normal noise as well as heavy-tailed
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noise, p = 2 for Gaussian noise but the quality of the solutions derived does not relies on
the knowing of the standard deviation of the noise, and p = ∞ for uniformly distributed
noise [11].

Nevertheless, model (1.4) is more difficult and challenging to solve due to the non-
differentiability of the ℓp-norm comparing with (1.3). To tackle the tricky trouble, we design
two algorithms based on alternating direction method of multipliers (ADMM) that can fully
exploit the structures of the problem (1.4). For many convex optimization problems with
separable structures, the ADMM is a widely applicable, easy to understand and implement
method [32, 15]. The first algorithm for solving (1.4) is the semi-proximal ADMM (semi-
ADMM) [13] by introducing a variable. Recently, the semi-ADMM has solved a series of
problems via their favorable structures and achieved good numerical performance, see e.g.,
[12, 29, 28]. Another algorithm uses the direct extension of ADMM for a 3-block convex
minimization problem on the introduction of a pair of variables, and the convergence result
can be easily followed from [7]. In fact, the second algorithm also falls into the semi-ADMM
framework, so the convergence results can also be obtained from [13]. We show that each
subproblem involved in both algorithms is easily performed. In addition, some numerical
experiments in signal reconstruction demonstrate that both of our proposed model and
algorithms outperform the Lasso and the corresponding algorithm solved by ADMM.

The remaining parts of this paper are organized as follows. In Section 2, we summarize
some basic definitions or concepts for subsequent arithmetic design. In Section 3, we apply
the semi-ADMM to solve the model (1.4), the convergence results for the proposed algo-
rithm under certain conditions are also included. In Section 4, we turn our attention to the
application of direct extension of ADMM for 3-block convex problem evolved from (1.4) un-
der the case of introducing two auxiliary variables. Numerical experiments and performance
comparisons are reported in Section 5. Finally, the paper is concluded with some remarks
in Section 6.

2 Preliminaries

In this section, we summarize some basic concepts in convex analysis for subsequent devel-
opments. Let X be a finite dimensional real Euclidean space equipped with an inner product
⟨·, ·⟩ and its induced norm ∥ · ∥2. A subset C of X is said to be convex if (1 − λ)x+ λy ∈ C
whenever x ∈ C, y ∈ C, and 0 ≤ λ ≤ 1. Let ∥ · ∥ be a norm function defined on X . Then its
dual norm ∥ · ∥∗ is defined as:

∥x∥∗ = sup
y
{x⊤y | ∥y∥ ≤ 1}.

It is easy to see that the dual norm of ℓ1-norm is ℓ∞-norm, and the dual norm of ℓ2-norm
is ℓ2-norm itself. Give f : Rn → (−∞,+∞] be a proper closed convex function. We use
dom(f) to denote the domain of f , that is, dom(f) = {x ∈ Rn | f(x) < ∞}. The Fenchel
conjugate of f is defined by f∗(x∗) := supx∈Rn{⟨x, x∗⟩ − f(x)}. Denote by Φtf (x) the
Moreau envelope function [21, 34] of f with parameter t > 0,

Φtf (x) := min
y∈Rn

{f(y) + 1

2t
∥y − x∥22}, ∀x ∈ Rn.

The proximal mapping of f with t > 0 is defined by

Proxf (x) := argmin
y∈Rn

{f(y) + 1

2t
∥y − x∥22}, ∀x ∈ Rn.
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Then the following Moreau’s identity theorem [22, Theorem 35.1] will be used in the subse-
quent analysis:

Proxtf (x) + tProxf∗/t(x/t) = x. (2.1)

Let ΠC(z) denote the metric projection of z onto C, which is the optimal solution of the
minimization problem miny{∥y − z∥2 | y ∈ C}. For a nonempty closed convex set C, the
symbol δC(x) represents the indicator function over C such that δC(x) = 0 if x ∈ C and
+∞ otherwise. The Fenchel conjugate of an indicator function δC(x) is named as support
function defined by δ∗C(x) = sup{⟨x, y⟩|y ∈ C}. It is not hard to deduce that the Fenchel

conjugate of ∥x∥p is ∥x∥∗p = δ
B

(1)
q

(x) where B
(1)
q := {x|∥x∥q ≤ 1} and 1/p+ 1/q = 1.

Next, we summarize some well-known results in optimization literature, which play key
rules in the algorithmic construction. The following Lemma 2.1 reports some applications of
the Moreau’s identity (2.1) for some typical norm functions. We omit its proof here owing
to that the following results are known in many optimization literatures [22].

Lemma 2.1. For any x∗ ∈ Rn, it holds that

(a) Let f(x) := µ∥x∥1 with µ > 0, then f∗(x∗) = δ
B

(µ)
∞

(x∗) with B
(µ)
∞ := {x∗ | ∥x∗∥∞ ≤ µ}

and

Proxf (x
∗) = x∗ −Π

B
(µ)
∞

(x∗) with (Π
B

(µ)
∞

(x∗))i =

{
x∗
i , if |x∗

i | ≤ µ,
sign(x∗

i )µ, if |x∗
i | > µ,

where i = 1, . . . , n and sign(·) is a sign function of a vector.

(b) Let f(x) := µ∥x∥2 with µ > 0, then f∗(x∗) = δ
B

(µ)
2

(x∗) with B
(µ)
2 := {x∗ | ∥x∗∥2 ≤ µ}

and

Proxf (x
∗) = x∗ −Π

B
(µ)
2

(x∗) with Π
B

(µ)
2

(x∗) =

{
x∗, if ∥x∗∥2 ≤ µ,

µ x∗

∥x∗∥2
, if ∥x∗∥2 > µ.

(c) [16] Let f(x) := µ∥x∥∞ with µ > 0, then f∗(x∗) = δ
B

(µ)
1

(x∗) with B
(µ)
1 := {x∗ | ∥x∗∥1 ≤

µ} and

Proxf (x
∗) = x∗ −Π

B
(µ)
1

(x∗) with Π
B

(µ)
1

(x∗) =

{
x∗, if ∥x∗∥1 ≤ µ,
µPx∗Π∆n

(Px∗x∗/µ) , if ∥x∗∥1 > µ.

where Px∗ := Diag(sign(x∗)) and Π∆n
(·) denotes the projection onto the simplex ∆n := {x ∈

Rn | e⊤n x = 1, x ≥ 0}, in which Diag(·) denotes a diagonal matrix with elements of a given
vector on its diagonal positions.

We are now ready to illustrate how to turn model (1.1) to model (1.2) based on some
prior knowledge inspired by [17]. Focus on the following composite optimization model:

min
x

F (x) := f(x) + g(x), (2.2)

where both f, g: Rn → (−∞,∞] are extended-valued convex functions and g is possibly
nonsmooth. The latent feasible set of (2.2) can be formulated as the minimizers of another
optimization model:

min
x

Ψ(x) = h(Ax), (2.3)

where A is some given linear operator and function h is closed, proper, convex and admits
the properties that (i) h is continuously differentiable on dom h, assumed to be open, and
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(ii) h is local strongly convex on dom h. Therefore, the problem (2.2) amount to solving the
following convex bi-level optimization model:

min
x

F (x) subject to x ∈ argmin
x

Ψ(x). (2.4)

We are now ready to state the following theorem in [17] to investigate the feasibility of our
problem.

Theorem 2.2. ([17, Theorem 1]) Let S be the solution set of (2.3) (i.e., S := argminx Ψ(x)),
then A is invariant on S. That is, given any x ∈ S,S can be explicitly characterized as
S = {x|A(x) = A(x)}.

When choose y = A(x), the original bilevel model in (2.4) can be equivalently reformu-
lated as the following single-level constrained optimization problem:

min
x

f(x) + g(x), subject to A(x) = y.

Following Theorem 2.2, we define b = Ax̂ for any x̂ ∈ X in the model (1.1), then it can be
equivalently reformulated as a single-level constrained optimization problem

min
x

∥x∥1 +
β

2
∥x∥22 subject to Ax = b.

Therefore, we only need to solve the above single-level convex optimization problem by some
priori knowledge or information.

At the end of this part, we turn to briefly review the content of ADMM for the design
of subsequent algorithms. Let X, Y, Z be finite dimensional real Euclidian spaces. Consider
the convex optimization problem

min
y,z

f(y) + g(z)

s.t. A∗y + B∗z = c,
(2.5)

where f : Y → (−∞,+∞] and g : Z → (−∞,+∞] are closed proper convex functions,
A : X → Y and B : X → Z are given linear maps, and c ∈ X is given data. The augmented
Lagrangian function associated with (2.5) is

Lσ(y, z;x) = f(y) + g(z) + ⟨x,A∗y + B∗z − c⟩+ σ

2
∥A∗y + B∗z − c∥2,

where x ∈ X is a multiplier and σ > 0 is penalty parameter. Staring from (x0, y0, z0) ∈
X × (dom(f)) × (dom(g)), the semi-proximal ADMM of Fazel et al. [13] for solving (2.5)
takes the following form

yk+1 = argminy Lσ(y, z
k;xk) + 1

2∥y − yk∥2S ,

zk+1 = argminz Lσ(y
k+1, z;xk) + 1

2∥z − zk∥2T ,

xk+1 = xk + ξτ
(
A∗yk+1 + B∗zk+1 − c

)
,

(2.6)

where ξ ∈ (0, (1 +
√
5)/2) is a step length, and S and T are self-adjoint positive semi-

definite linear operators. The convergence result of the iterative scheme (2.6) under some
constraint qualifications can be found in Theorem B.1 of [13]. However, the direct exten-
sion of ADMM is not necessarily convergent to multi-block minimization problem where its
objective function is the sum of more than two separable convex functions [7, 14].
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3 Semi-proximal ADMM for Solving (1.4)

The popular first-order ADMM can be applied to solve (1.4). In this section, we introduce
the implementation details of the semi-proximal ADMM for the problem (1.4). We first
introduce an auxiliary variable y := Ax− b and reformulate (1.4) as follows

min
x,y

∥y∥p + λ(∥x∥1 + β
2 ∥x∥

2
2)

s.t. Ax− y = b.
(3.1)

Given σ > 0, the augmented Lagrangian function associated with problem (3.1) is given by

Lσ(x, y;u) = ∥y∥p + λ(∥x∥1 +
β

2
∥x∥22) + ⟨u,Ax− y − b⟩ +

σ

2
∥Ax− b− y∥22,

where u ∈ Rm is a multiplier associated with the constraint. Based on the above augmented
Lagrangian function, with the given (xk, yk;uk), the new iteration (xk+1, yk+1;uk+1) is
generated for solving (1.4) via the iterative scheme:

yk+1 = argminy∈Rm Lσ(x
k, y;uk),

xk+1 = argminx∈Rn

{
Lσ(x, y

k+1;uk) + σ
2 ∥x− xk∥2T

}
,

uk+1 = uk + τσ(Axk+1 − yk+1 − b),

(3.2)

where T := (ζIn−A⊤A) with ζ > 0 be a positive scalar such that T be positive semidefinite.
Observing that each step of the iterative scheme (3.2) involves solving a convex mini-

mization problem, we now illustrate that a simple closed-form solution is permitted for each
subproblem, which leads to the framework being easy to implement. Firstly, we can get for
every k = 0, 1, ... that

yk+1 = arg min
y∈Rm

Lσ(x
k, y;uk)

= arg min
y∈Rm

{
∥y∥p +

σ

2
∥Axk − b− y + σ−1uk∥22

}
= Proxσ−1∥·∥p

(Axk − b+ σ−1uk).

Secondly, let η := λβ + σζ, for every k = 0, 1, ..., we have

xk+1 = arg min
x∈Rn

{
Lσ(x, y

k+1;uk) +
σ

2
∥x− xk∥2T

}
= arg min

x∈Rn

{
λ∥x∥1 +

λβ

2
∥x∥22 +

σ

2
∥Ax− b− yk+1 + σ−1uk∥22 +

σ

2
∥x− xk∥2T

}
= Proxη−1λ∥·∥1

(xk − σA⊤(Axk − b− yk+1 + σ−1uk) + λβxk

η
).

In summary, we are ready to state the full steps of the semi-ADMM while it is used to solve
the problem (1.4) as follows:

Algorithm 1

Step 0. Choose starting point (x0, y0;u0). Choose positive constants ζ such that T is
positive semi-definite. Input data b, choose model parameters λ > 0, β > 0 and positive
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constants σ > 0, τ ∈ (0, (1+
√
5)/2). For k = 0, 1, . . ., do the following operations iteratively.

Step 1. Given xk and uk, compute

yk+1 = Proxσ−1∥·∥p
(Axk − b+ σ−1uk).

Step 2. Given yk+1 and uk, compute

xk+1 = Proxη−1λ∥·∥1
(xk − σA⊤(Axk − b− yk+1 + σ−1uk) + λβxk

η
).

Step 3. Given xk+1 and yk+1, compute

uk+1 = uk + τσ(Axk+1 − yk+1 − b).

Step 4. Set k := k + 1.

The convergence of semi-ADMM can be easily followed by using the known convergence
result of Fazel et al. [13] since ∥x∥22 is strongly convex and T is positive semi-definite. We
can see that the semi-ADMM algorithm is easy to implement. However, the improper value
of the parameter ζ will lead to an inaccurate solution of Step 2 in Algorithm 1. In the next
section, we will introduce two auxiliary variables and use direct extension of ADMM to solve
a 3-block problem evolved from model (1.4).

4 Direct Extension of ADMM for Solving (1.4)

The popular semi-ADMM can be applied to solve (1.4), but this algorithm needs to rely on
semi-proximal terms, which may cause an inaccurate solution. In this section, we introduce
the implementation details of the direct extended of ADMM for the problem (1.4). We first
introduce a pair of auxiliary variables y := Ax−b and z := x, then (1.4) can be reformulated
as follows

min
x,y,z

∥y∥p + λ(∥z∥1 + β
2 ∥x∥

2
2)

s.t. Ax− y = b,
x− z = 0.

(4.1)

Given σ > 0, the augmented Lagrangian function associated with problem (4.1) is given by

Lσ(x, y, z;u, v) = ∥y∥p+λ(∥z∥1+
β

2
∥x∥22)+⟨u,Ax−y−b⟩+σ

2
∥Ax−b−y∥22+⟨v, x−z⟩+σ

2
∥x−z∥22,

where u ∈ Rm, v ∈ Rn are multipliers associated with the constraints. Based on the
above augmented Lagrangian function, with the given (xk, yk, zk;uk, vk), the new iteration
(xk+1, yk+1, zk+1;uk+1, vk+1) is generated for solving (1.4) via the iterative scheme:

xk+1 = argminx∈Rn Lσ(x, y
k, zk;uk, vk),

yk+1 = argminy∈Rm Lσ(x
k+1, y, zk;uk, vk),

zk+1 = argminz∈Rn Lσ(x
k+1, yk+1, z;uk, vk),

uk+1 = uk + τσ(Axk+1 − yk+1 − b),

vk+1 = vk + τσ(xk+1 − zk+1).

(4.2)
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Actually, it is not difficult to see from the favorable structures of problem (4.1) that (4.2) is
equivalent to the following format:

xk+1 = argminx∈Rn Lσ(x, y
k, zk;uk, vk),(

yk+1

zk+1

)
= argminy∈Rm,z∈Rn Lσ(x

k+1, y, z;uk, vk),

uk+1 = uk + τσ(Axk+1 − yk+1 − b),

vk+1 = vk + τσ(xk+1 − zk+1),

which also falls into the framework of semi-ADMM with the semi-proximal operators being
0, and thus the convergence result is guaranteed in the literature. For the sake of simplicity,
we omit the statement of the convergence theorem here. In fact, the convergence result of
the direct extension of ADMM in (4.2) for solving (1.4) can also be obtained by [7, 14].

We now illustrate that a simple closed-form solution of (4.2) is permitted for each sub-
problem, which is also easy to implement. Firstly, let γ := λβ + σ, we can get for every
k = 0, 1, ... that

xk+1 = arg min
x∈Rn

Lσ(x, y
k, zk;uk, vk)

= arg min
x∈Rn

{λβ

2
∥x∥22 + ⟨A⊤uk + vk, x⟩ +

σ

2
∥Ax− b− yk∥22 +

σ

2
∥x− zk∥22

}
= (γIn + σA⊤A)−1(σzk − vk +A⊤(σ(b+ yk)− uk)).

Secondly, for every k = 0, 1, ..., we have

yk+1 = arg min
y∈Rm

Lσ(x
k+1, y, zk;uk, vk)

= arg min
y∈Rm

{
∥y∥p + ⟨uk,−y⟩ +

σ

2
∥Axk+1 − b− y∥22

}
= Proxσ−1∥·∥p

(Axk − b+ σ−1uk).

Thirdly, for every k = 0, 1, ..., we have

zk+1 = arg min
z∈Rn

Lσ(x
k+1, yk+1, z;uk, vk)

= arg min
z∈Rn

{
λ∥z∥1 + ⟨vk,−z⟩ +

σ

2
∥xk+1 − z∥22

}
= Proxσ−1λ∥·∥1

(xk+1 + σ−1vk).

In summary, we are ready to state the full steps of the direct extension of ADMM while it
is used to solve the problem (1.4) as follows:

Algorithm 2

Step 0. Choose starting point (x0, y0, z0;u0, v0). Input data b, choose model parameters
λ > 0, β > 0 and positive constants σ > 0, τ ∈ (0, (1 +

√
5)/2). For k = 0, 1, . . ., do the

following operations iteratively.
Step 1. Given yk, zk, and uk, compute

xk+1 = (γIn + σA⊤A)−1(σzk − vk +A⊤(σ(b+ yk)− uk)).
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Step 2. Given xk+1and uk, compute

(yk+1, zk+1) =
(
Proxσ−1∥·∥p

(Axk − b+ σ−1uk),Proxσ−1λ∥·∥1
(xk+1 + σ−1vk)

)
.

Step 3. Given xk+1, yk+1, and zk+1, compute

uk+1 = uk + τσ(Axk+1 − yk+1 − b),

vk+1 = vk + τσ(xk+1 − zk+1).

Step 4. Set k := k + 1.

We can see that the direct extension of ADMM is also easy to implement. However, this
algorithm includes the process of matrix inversion, which may consume a lot of time and
memory for large-scale problems. In the implementation of Step 1 of Algorithm 2, we first
compute the Cholesky decomposition of In + σγ−1A⊤A and then solve the linear system
of equations in each iteration by using the pre-computed Cholesky factor or by an iterative
solver such as the preconditioned conjugate gradient method. The above approach can
greatly reduce the calculation time of the algorithm when dealing with large-scale problems.

5 Numerical Experiments

In this section, we conduct some numerical experiments to demonstrate the superiority of
model (1.4) and the practical performance of the two algorithms. All the experiments are
performed with Microsoft Windows 10 and MATLAB R2018a, and run on a PC with an
Intel Core i7 CPU at 1.80 GHz and 8 GB of memory.

We conduct experiments on two types of sensing matrices. Define the test sensing matrix
as A = [a1, . . . , an] ∈ Rm×n. One type matrix is the random Gaussian (GAU) matrix defined
as

ai
i.i.d.∼ N (0, Im/m), i = 1, . . . , n,

and another is the random partial DCT (PDCT) matrix with the following expression

ai =
1√
m

cos(2iπξ), i = 1, . . . , n,

where ξ ∈ Rm ∼ U([0, 1]m), i.e., the components of ξ are uniformly and independently
sampled from [0, 1].

For comparison in a relatively fair way, we measure the quality of the reconstruction
solutions using the relative error defined as

RLNE :=
∥x̄− x∥2
∥x∥2

,

where x̄ and x are the reconstructed and ground truth signals, respectively. Besides, we also
define

RelErr :=
∥xk+1 − xk∥2
max{∥xk∥2, 1}

, and ResErr :=
∥Ax− b∥2

∥b∥2
.

In each tested algorithm, we stop the iterative process if RelErr≤ 1e − 4 or the iteration
number achieves 2000. For two algorithms, we set τ = 1.618 and ζ = 1.2 for Algorithm
1. Other parameters values will be determined adaptively at each experiment. We tried
different starting points for each algorithm and found that all of them are insensitive towards
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starting points. Therefore, we initialize the starting points as zero in all experiments of the
following.

In order to highlight the robustness and practicality of the model (1.4), we mainly test
three different types of noises in this part. The observation b is obtained by

b = A ∗ x+ α ∗ ns,

where α is the noise level, and “ns” is one of the following types of noise: log-normal noise,
Gaussian noise and uniform noise. Here, we recover a sparse signal of being polluted by
different kinds of noises via model (1.4) with different p values. In order to deal with log-
normal noise as well as heavy-tailed noise, we set p = 1; for handling Gaussian noise, p is
chosen as 2; and we set p = ∞ for uniformly distributed noise.

5.1 Comparison of the LASSO model under different noise

In this part, we consider the noise level α = 0.01. We compare our two algorithms on
model (1.4) and model with the Lasso model solved by ADMM. The compared model and
algorithms in [18] are as follows,

min
x,y

1
2∥Ay − b∥22 + λ∥x∥1

s.t. x− y = 0.
(5.1)

Given δ > 0, the augmented Lagrangian function associated with problem (5.1) is given by

Lδ(x, y;u) =
1

2
∥Ay − b∥22 + λ∥x∥1 + δ⟨u, x− y⟩ +

δ

2
∥x− y∥22,

and the corresponding ADMM iteration is:
xk+1 = argminx Lδ(x, y

k;uk) = argminx
{
λ∥x∥1 + δ

2∥x− yk + uk∥22
}
,

yk+1 = argminy Lδ(x
k+1, y;uk) = argminy

{
1
2∥Ay − b∥22 + δ

2∥x
k+1 − y + uk∥22

}
,

uk+1 = uk + xk+1 − yk+1.

The specific setting of the algorithm and details of parameters are shown in the literature
[18].

We set PDCT sensing matrix with 64× 128 size, sparsity k, i.e., the number of nonzero
elements of the original solution, is fixed 20. For Algorithm 1 and Algorithm 2, the model
parameter β is fixed as 0.01. Other parameter settings are the same for the three algorithms.

At the case of log-normal noise, we set p = 1, i.e., the data fidelity term is ∥Ax − b∥1.
Besides, the weighting parameter λ in (1.4) is chosen as λ = 0.01, and σ =

√
2∥AA⊤∥2. The

original signal and the reconstructed signals recovered by Algorithm 1, Algorithm 2, and
Lasso model solved by ADMM are listed respectively in Figure 1. In this figure, the original
signal is denoted by black stars “∗” and the recovered signals are denoted by “⃝” marked
in different colors. Comparing each plot in Figure 1 from left to right, we clearly see that
all the stars in (c) are circled exactly by the blue circles with a symbol “⊛” which indicates
that the use of ∥Ax − b∥1 is better. Moreover, we also see that the final relative error of
the solution derived by Algorithm 1 and Algorithm 2 are significantly smaller than the one
produced by Lasso model, which once again indicates that the advantage of ∥Ax− b∥1.

For the Gaussian noise, we set the parameter λ = 0.06, σ = 1 and p = 2 for the data
fidelity term, i.e., ∥Ax−b∥2. The results of each algorithm are listed in Figure 2. Intuitively
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Figure 1: Log-normal noise: the original signal (black stars) versus the recovery signals by
Lasso model solved by ADMM (green circles), Algorithm 1 (red circles), and by Algorithm 2
(blue circles).

at first glance, Algorithm 1 and 2 have better recovery effects, while Lasso model solved
by ADMM cannot recover signals well. Furthermore, we observe the RLNE values of three
algorithms and find that the values of Algorithm 1 and Algorithm 2 are less than the value
of Lasso solved by ADMM. The above shows that ∥Ax− b∥2 is better than the least squares
data fidelity term. Comparing the results on handling Gaussian noise of Algorithm 1 and
2, we find that the direct extension ADMM is slightly better than semi-ADMM.

Figure 2: Gaussian noise: the original signal (black stars) versus the recovery signals by
Lasso model solved by ADMM (green circles), Algorithm 1 (red circles), and by Algorithm
2(blue circles).

Finally, we turn to the problem of uniform noise, we set λ = 0.008, σ = 2 and choose the
the data fidelity term as ∥Ax− b∥∞, i.e., p = ∞. The numerical results of three algorithms
are shown in Figure 3. We found that the three algorithms seem to be able to deal with
uniform noise better, but we found that the RLNE values obtained by Algorithm 1 and 2
are much smaller than those obtained by Lasso model solved by ADMM. This shows that
∥Ax− b∥∞ is better than the lasso model when dealing with uniform noise. In addition, we
still find that the Algorithm 2 is still better than the Algorithm 1 indicating that the direct
extension ADMM is better than semi-ADMM.

From these figures, we can visibly see that the quality of the solutions derived by Al-
gorithm 1 and Algorithm 2 are better. From these limited numerical experiments, it can
be concluded that, as far as the three types of noise are concerned, our proposed model
(1.4) has the ability to get produce higher quality reconstruction results if the data fidelity
term is chosen adaptively. Moreover, we found that Algorithm 2 is the best one of the three
algorithms, indicating that the direct extension ADMM is more effective than semi-ADMM
of gaining lower RLNE values. Next, we will continue to only study the performance of
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Figure 3: Uniform noise: the original signal (black stars) versus the recovery signals by
Lasso model solved by ADMM (green circles), Algorithm 1 (red circles), and by Algorithm 1
(blue circles).

Algorithms 1 and Algorithms 2 on different parameters and sensing matrice owing to the
poor performance of Lasso.

5.2 Test the performance of the algorithms with various β

In this part, we mainly verify the performance of Algorithm 1 and Algorithm 2 with various
β under different noise types. In this test, we also set the noise level as α = 0.01 and
also choose PDCT sensing matrice with 64 × 128 size. The sparsity k is fixed 20. For the
three types of noise, all the parameter settings are the same as Section 5.1 except for β and
λ. The table contains the values of β and λ, the CPU time required in seconds (Time),
the objective function value of (1.4) (Obj), the smallest values RLNE and ResErr, and the
number of outer iterations (Iter). The results are listed in Table 1. From Table 1, we see
that the RLNE and ResErr values at the last two columns are always smaller, which once
again shows that our proposed model (1.4) and algorithms indeed benefit the quality of the
reconstruction solutions. Observing the results row-by-row, we find that, Algorithm 2 takes
more time than Algorithm 1, but the RLNE value is always less than Algorithm 1 in most
cases, which explains that both algorithms have their own advantages. In addition, we also
test different values of λ and observe that the two algorithms are not sensitive to changes
in the values of λ.

The following experiment is a more intuitive and detailed test of the influence of dif-
ferent parameter values on the algorithms. From the above experiments, we find that the
performance of Algorithm 1 and Algorithm 2 is very similar. Therefore, we mainly verify
the performance of Algorithm 1 with various β and λ under Gaussian noise in the following
test. In this test, we set the noise level as α = 0.001 and choose GUA sensing matrice with
400 × 800 size. The sparsity k is fixed starts from 30 and ends at 50 with an increment of
5. The experiment results are shown in Figure 4. Firstly, we pay attention to the picture
on the left, which shows the performance of Algorithm 1 under different β values when
λ = 0.01 is set. We find that with the increase of sparsity, in the case of β <= 1.5, Algo-
rithm 1 is effective, and the performance of Algorithm 1 is not much different when β <= 1.
Therefore, when β takes an appropriate value, the model and algorithm are feasible and
effective. Secondly, we turn to the figure on the right-hand side of Figure 4, which shows
the performance of Algorithm 1 with different parameters λ when the β is set to 0.05. We
can see from the RLNE value of the vertical axis that the performance of Algorithm 1 is
always excellent when λ <= 1.1. The algorithm is not very sensitive to λ. In addition, we
found from this test that the algorithm performs best when λ = 0.05.
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Table 1: The performance of the Algorithm 1 and Algorithm 2 with various β under different
noise.

Log-normal noise
Algorithm 1 Algorithm 2

β λ Time Obj RLNE ResErr Time Obj RLNE ResErr

0.01

0.02 0.0060 0.2655 2.59e-04 1.68e-04 0.0232 0.2646 3.12e-04 1.09e-04
0.03 0.0080 0.4662 6.94e-02 1.06e-04 0.0344 0.4664 6.83e-02 1.10e-04
0.05 0.0049 0.7326 3.81e-04 2.43e-04 0.0262 0.7296 1.46e-04 4.99e-05

0.05
0.01 0.0158 0.1614 8.09e-05 5.60e-05 0.0655 0.1614 1.55e-04 5.64e-05
0.03 0.0039 0.4715 2.40e-04 1.50e-04 0.0227 0.4699 2.00e-04 6.99e-05
0.05 0.0043 0.7003 1.47e-04 9.96e-05 0.0195 0.7005 2.54e-04 9.83e-05

0.1
0.01 0.0100 0.1098 1.46e-04 5.23e-05 0.0452 0.1104 1.80e-04 9.50e-05
0.03 0.0279 0.5530 2.11e-03 1.60e-06 0.1257 0.5530 7.03e-05 1.15e-06
0.06 0.0031 0.9671 1.18e-04 7.80e-05 0.0165 0.9669 1.79e-04 6.25e-05

0.5
0.01 0.0189 0.2054 8.74e-02 1.56e-05 0.1061 0.2055 8.56e-02 2.50e-05
0.03 0.0074 0.3630 2.99e-01 9.02e-05 0.0309 0.3629 2.99e-01 8.18e-05
0.06 0.0037 1.1955 1.06e-04 7.84e-05 0.0198 1.1963 3.07e-04 1.08e-04

1
0.01 0.0155 0.2543 4.00e-01 5.83e-06 0.0689 0.2544 3.98e-01 8.07e-06
0.03 0.0080 0.5370 8.59e-02 2.07e-05 0.0396 0.5374 8.45e-02 4.51e-05
0.06 0.0058 0.7865 2.16e-02 2.13e-04 0.0372 0.7851 1.68e-02 9.88e-05

1.5
0.01 0.0141 0.2360 3.43e-01 1.04e-06 0.0555 0.2361 3.42e-01 6.82e-06
0.03 0.0053 0.4529 2.28e-01 4.12e-05 0.0314 0.4535 2.28e-01 8.27e-05
0.06 0.0036 1.3684 4.97e-01 1.57e-05 0.0157 1.3684 4.97e-01 1.97e-05

Gaussian noise

0.01
0.01 0.0120 0.1265 4.35e-02 3.48e-05 0.0734 0.1267 4.19e-02 4.64e-05
0.03 0.0118 0.4412 8.55e-02 7.26e-05 0.0451 0.4413 8.54e-02 7.29e-05
0.08 0.0080 1.1809 2.43e-02 1.11Ee-04 0.0382 1.1803 2.22e-02 7.54e-05

0.05
0.03 0.0114 0.4516 5.66e-02 8.06e-05 0.0716 0.4514 5.56e-02 6.81e-05
0.1 0.0073 1.4585 5.63e-02 1.53e-04 0.0459 1.4585 3.99e-02 1.54e-04

0.1
0.02 0.0102 0.2497 8.96e-02 9.35e-05 0.0472 0.2495 8.81e-02 7.82e-05
0.05 0.0081 0.6856 4.36e-02 1.84e-04 0.0400 0.6838 4.25e-02 7.61e-05
0.1 0.0088 1.5762 1.25e-01 1.55e-04 0.0376 1.5756 1.19e-01 1.11e-04

0.5
0.03 0.0121 0.6187 2.40e-01 5.13e-06 0.0540 0.6189 2.39e-01 1.69e-05
0.06 0.0064 1.2998 6.74e-02 1.36e-04 0.0301 1.2993 7.03e-02 1.07e-04
0.1 0.0070 1.9544 4.06e-01 3.86e-05 0.0305 1.9548 4.05e-01 6.23e-05

1
0.02 0.0088 0.4128 3.53e-01 2.03e-05 0.0484 0.4131 3.53e-01 3.20e-05
0.07 0.0053 1.4178 3.77e-01 2.94e-05 0.0220 1.4183 3.76e-01 5.91e-05
0.1 0.0044 1.5681 2.53e-01 9.82e-05 0.0224 1.5673 2.51e-01 3.76e-05

1.5
0.02 0.0094 0.4494 4.20e-01 7.24e-06 0.0545 0.4494 4.19e-01 5.87e-06
0.06 0.0048 1.4385 3.80e-01 6.69e-05 0.0244 1.4382 3.80e-01 4.73e-05
0.1 0.0030 1.9498 3.00e-01 6.56e-05 0.0171 1.9497 3.00e-01 5.51e-05

Uniform noise

0.01
0.008 0.0775 0.1283 1.86e-02 1.14e-04 0.1093 0.1282 1.82e-02 6.61e-05
0.01 0.1290 0.1407 2.17e-02 1.10e-04 0.1553 0.1407 2.13e-02 6.15e-05
0.03 0.5199 0.4978 2.74e-02 1.76e-02 0.6322 0.4979 2.71e-02 1.71e-02

0.05
0.005 0.0724 0.0754 2.42e-02 9.70e-05 0.0840 0.0754 2.44e-02 7.78e-05
0.01 0.1146 0.1167 2.19e-02 1.19e-04 0.1864 0.1166 2.13e-02 7.14e-05
0.03 1.8493 0.4276 1.24e-01 7.45e-02 2.0027 0.4276 1.26e-01 6.97e-02

0.1
0.005 0.0576 0.1003 2.02e-02 1.13e-04 0.0644 0.1003 2.07e-02 1.08e-04
0.01 0.1385 0.1363 3.70e-02 1.05e-04 0.2094 0.1363 3.45e-02 3.96e-05
0.03 1.4328 0.6187 1.61e-01 6.25e-02 1.5150 0.6188 1.62e-01 6.06e-02

0.5
0.005 0.2033 0.1294 1.27e-02 2.64e-05 0.3482 0.1294 1.34e-02 1.19e-05
0.01 0.8395 0.1827 5.76e-02 9.42e-06 0.6924 0.1827 5.95e-02 1.40e-05
0.03 1.8507 0.5630 1.13e-01 7.01e-02 1.9221 0.5630 1.16e-01 6.79e-02

1
0.005 0.5779 0.1188 3.54e-02 1.18e-05 0.5520 0.1187 3.61e-02 1.09e-05
0.01 0.6213 0.2583 2.56e-02 8.77e-06 0.5086 0.2583 2.80e-02 8.41e-06

1.5
0.001 1.3861 0.0255 1.82e-02 5.08e-08 1.4076 0.0255 1.81e-02 5.25e-08
0.003 0.9506 0.0744 1.66e-02 7.80e-06 0.8195 0.0744 1.67e-02 9.00e-06
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In summary, we have found through a series of experiments that our model and algo-
rithms are effective and insensitive to the choice of parameters. Therefore, it shows that the
algorithms are universal and simple, and easy to operate.

Figure 4: The performance of Algorithm 1 under different parameter values

5.3 Test on two dimensional MRI reconstruction

In this section, we apply the proposed model (1.4) and algorithms to the two-dimensional
phantom image reconstruction problem. The phantom image with size 64× 64 is compress-
ible under a Haar wavelet basis. Therefore, the observation data can be chosen as the wavelet
coefficients sampled by the product of a partial FFT matrix and inverse Haar wavelet trans-
form. In view of the fact that the experimental results of Algorithm 1 and Algorithm 2 are
very similar, we mainly test the performance of Algorithm 1 in this experiment. we choose
model parameters λ = 0.05, β = 0.01 and σ =

√
2, τ = 1.618. In addition, we consider the

noise level α = 1e − 3. At the cases of log-normal noise and Gaussian noise, we set p = 1
and p = 2, respectively.

Figure 5: The performance of Algorithm 1 on rebuilding phantom image corrupted by log-
normal noise (b) and Gaussian noise (c)

The sampling matrix for two dimensional MRI is the compound of a partial FFT and an
inverse wavelet transform with size 2133 × 4096. The image under wavelet transformation
has 792 nonzero entries. The numerical results derived by Algorithm 1 are listed in Figure 5.
From left to right in Figure 5 is the original phantom image, the reconstructed image under
log-normal noise, and the reconstructed image under Gaussian noise respectively. At first
glance, we see that Algorithm 1 works on different types of noise successfully to produce
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acceptable reconstructions. More accurately, the RLNE values obtained on log-normal noise
and Gaussian noise are 2.48e − 4 and 9.00e − 3, respectively. From this simple test, we
conclude that our proposed model and Algorithm 1 are really effective and practical in
rebuilding phantom images corrupted by log-normal noise or Gaussian noise.

6 Conclusions

In this paper, we focus on solving a ℓ1-ℓ2 special convex bi-level programming problem.
Motivated by [17], the challenging bi-level optimization problem can be transformed into a
single-level constrained optimization task based on the prior knowledge. The Lasso model
is a special penalized form of the single-level ℓ1-ℓ2 constrained problem, which can handle
sparse optimization problems well under certain conditions. However, it also has certain
limitations in variable selection. Compared to the Lasso, the elastic net simultaneously
makes automatic variable selection and continuous shrinkage, and it can select groups of
correlated variables. But the elastic net model is only applicable to Gaussian noise in most
cases, and the least square loss term relies on the knowing of the standard deviation of
the noise. In this paper, we propose a more general model, namely, ℓp ℓ1-ℓ2 model. The
∥Ax − b∥p data fidelity term makes it can deal with different types of noise if p is chosen
adaptively, e.g., p = 1 for log-normal noise and heavy-tailed noise, p = 2 for Gaussian noise
, and p = ∞ for uniformly distributed noise. In addition, ℓ1-ℓ2-term same as the penalty of
elastic net measures the sparsity, which also can select groups of correlated variables. We
use the ADMMs to solve this model, which are simple and easy to operate and have good
convergence properties. The first algorithm is the semi-ADMM by introducing a variable.
Another algorithm is to use the direct extension of ADMM for 3-block convex minimization
problem on the introduction of a pair of variables, which is also equivalent to semi-ADMM
with the semi-proximal operators being zero. We show that each subproblem involved in both
algorithms is easily performed. In addition, some numerical experiments in one dimensional
signal reconstruction and two dimensional MRI reconstruction demonstrate that both of our
proposed model and algorithms perform well. From this point of view, the proposed model
and algorithms have the potential for the signal reconstruction problem.
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Mathématique de France. 93 (1965) 273–299.



ADAPTIVE MODEL FOR SPARSE SIGNAL RECONSTRUCTION 711

[22] R.T. Rockafellar, Convex Analysis, Princeton University Press, 2015.

[23] S.J. Teipel, M.J. Grothe, C.D. Metzger, G. Timo, S. Christian, E. Michael, et al, Ro-
bust detection of impaired resting state functional connectivity networks in Alzheimers
disease using elastic net regularized regression, Front. Aging Neurosci. 8 (2017): 318.

[24] S. Sabach, and S. Shtern, A first order method for solving convex bilevel optimization
problems, SIAM J. Optim. 27 (2017), 640–660.

[25] M. Solodov, An explicit descent method for bilevel convex optimization, J. Convex
Anal. 14 (2007) 227–237.

[26] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Series
B Stat. Methodol. 58 (1996) 267–288.

[27] L. Wang, L1 penalized LAD estimator for high dimensional linear regression, J. Multi-
var. Anal. 120 (2013) 135–151.

[28] S.Y. Wang, Y.H. Xiao, Z.F. Jin, An efficient algorithm for batch images alignment with
adaptive rank correction term, J. Comput. 346 (2019) 171–183.

[29] Y.H. Xiao, P.L. Li and S. Lu, Sparse estimation of high-dimensional inverse covariance
matrices with explicit eigenvalue constraints, J. Oper. Res. Soc. China 9 (2021) 543–
568.

[30] X.C. Xiu, L.C. Kong, Y. Li and H.D. Qi, Iterative reweighted methods for ℓ1 − ℓp
minimization, Comput. Optim. Appl. 70 (2018) 201–219.

[31] Y.H. Xue, Y.F. Feng, and C.L. Wu, An efficient and globally convergent algorithm for
ℓp,q-ℓr model in group sparse optimization, Commun. Math. Sci. 18 (2020) 227–258.

[32] J.F. Yang and Y. Zhang, Local linear convergence of an ADMM-Type splitting frame-
work for equality constrained optimization, J. Oper. Res. Soc. China 9 (2021) 307–319.

[33] W.T. Yin, Analysis and generalizations of the linearized Bregman method, SIAM
J.Imag. Sci. 3 (2010) 856–877.

[34] K. Yosida, Functional Analysis, Springer Berlin, 1964.

[35] Z. Zhang and W. Y. Wei, Primal-Dual approach for uniform noise removal, in: ISET
2015. Atlantis Press, pp. 103–106.

[36] H. Zuo and T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc. Series B Stat. Methodol. 67 (2005) 301–320.

Manuscript received 30 September 2021
revised 19 January 2022, 21 April 2022
accepted for publication 21 April 2022



712 Y. DING, Z. YUE AND H. ZHANG

Yanyun Ding
Department of Operations Research and Information Engineering
Beijing University of Technology, Beijing 100124, P.R. China
E-mail address: dingyanyunhenu@163.com

Zhixiao Yue
Department of mathematics
Southern University of Science and Technology
Shenzhen 518055, P.R. China
E-mail address: 12032011@mail.sustech.edu.cn

Haibin Zhang
Department of Operations Research and Information Engineering
Beijing University of Technology, Beijing 100124, P.R. China
E-mail address: zhanghaibin@bjut.edu.cn


