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The decomposition above (1.2) is often called a CANDECOMP/PARAFAC or canonical
polyadic decomposition.

A tensor A ∈ Fn1×···×nm is called a square tensor, if n1 = · · · = nm = n. Let Tm(Fn) be
the set of all mth order n-dimensional square tensors in the field F. A tensor A ∈ Tm(Fn)
is symmetric if Ai1,...,im is invariant for all permutations of (i1, . . . , im). Let Sm(Fn) be the
set of all symmetric tensors in Tm(Fn). For a vector w ∈ Fn, rank-1 symmetric tensors are
multiples of w⊗m := w⊗ · · · ⊗w (repeated m times). Similarly, the smallest number r such
that A =

∑r
i=1 λiu

⊗m
i , with each ui ∈ Cn and λi ∈ C, is called the symmetric rank of A.

We refer to [4, 5, 13, 23, 24] for theories, methods and applications of tensor decompositions.
Let Rn

+ be the nonnegative orthant. A symmetric tensor A ∈ Sm(Rn) is completely
positive (CP ), if there exist nonnegative vectors w1, . . . , wr ∈ Rn

+ such that

A =

r∑
i=1

(wi)⊗m, (1.3)

where r is called the length of the decomposition (1.3) (cf. [30]). The smallest r in the above
is called the CP-rank of A. If A is completely positive, (1.3) is called a completely positive
(CP) decomposition of A. For B ∈ Sm(Rn), we define

Bxm :=
∑

1≤i1,...,im≤n

Bi1...imxi1 · · ·xim .

We call B ∈ Sm(Rn) a copositive (resp., positive semidefinite) tensor, if Bxm ≥ 0 for all
x ∈ Rn

+ (resp., for all x ∈ Rn). The CP (resp., copositive) tensors are natural generalizations
of the CP (resp., copositive) matrices. It is clear that both symmetric nonnegative tensors
and positive semidefinite tensors are copositive tensors. Denote

CPm,n = {A ∈ Sm(Rn) : A is completely positive},
COPm,n = {B ∈ Sm(Rn) : B is copositive}.

Both CPm,n and COPm,n are proper cones, i.e., closed, convex, pointed and full-dimensional.
Moreover, they are dual to each other [29]. As we know, checking a completely positive ma-
trix is NP-hard [8]. Thus, it is more complicated to check completely positive tensors.
Completely positive tensors and decompositions have wide applications [1, 3, 26]. We re-
fer the reader to [9, 14, 35] for numerical methods for CP tensor decompositions and CP
optimization problems.

Recently, Zhou et al. [37] introduced the complex completely positive tensor which has
a symmetric complex decomposition with all real and imaginary parts of the decomposition
vectors being nonnegative. Let Cn

+ be the set of complex vectors in Cn with nonnegative
real and imaginary parts. A symmetric tensor A ∈ Sm(Cn) is complex completely positive
(CCP), if there exist vectors w1, . . . , wr ∈ Cn

+ such that

A =

r∑
i=1

(wi)⊗m, (1.4)

where w = u+
√
−1v ∈ Cn with u, v ∈ Rn

+, and r is called the length of the decomposition
(1.4). The smallest r in the above is called the CCP-rank of A. If A is complex completely
positive, (1.4) is called a complex completely positive (CCP) decomposition of A. Clearly, if
a real symmetric tensor is completely positive, it must be complex completely positive, and
its CP decompositions must be CCP decompositions.



HERMITIAN COMPLETELY POSITIVE TENSORS 523

Hermitian tensor is a generalization of Hermitian matrix. A 2mth order tensor H ∈
Cn1×···×nm×n1×···×nm is called a Hermitian tensor [19], if

Hi1...imj1...,jm = Hj1...jmi1...im

for each ik, jk ∈ [nk] and k ∈ [m]. If the entries of a Hermitian tensor are all real, it is
called a real Hermitian tensor [25]. For a 2mth order real tensor A ∈ Rn1×···×nm×n1×···×nm

is called a real skew-symmetric tensor, if

Ai1...imj1...jm = −Aj1...jmi1...im

for each ik, jk ∈ [nk] and k ∈ [m]. Denote by C[n1,...,nm] (resp., R[n1,...,nm], R[n1,...,nm]
skew ) the set

of all Hermitian (resp., real Hermitian, real skew-symmetric) tensors in Cn1×···×nm×n1×···×nm .
It is easy to check that, for a Hermitian tensor H ∈ C[n1,...,nm], its real part Hre is a real
Hermitian tensor and its imaginary part Him is a real skew-symmetric tensor.

For vectors wi ∈ Cni , i ∈ [m], denote the tensor product of conjugate pairs

[w1, . . . , wm]⊗h := w1 ⊗ · · · ⊗ wm ⊗ w1 ⊗ · · · ⊗ wm. (1.5)

Clearly, the above tensor product is always a Hermitian tensor. In fact, every rank-1 Her-
mitian tensor must be in the form of λ · [w1, . . . , wm]⊗h with a real scalar λ ∈ R. As a
generalization of Hermitian matrices, Hermitian tensors inherit some nice results from Her-
mitian matrices, although they have very different properties. Ni in [19] showed that every
Hermitian tensor H ∈ C[n1,...,nm] always has a Hermitian decomposition, i.e., there exist
vectors ui

j ∈ Cnj and real scalars λi ∈ R, for i ∈ [r], j ∈ [m], such that

H =

r∑
i=1

λi[u
i
1, . . . , u

i
m]⊗h, (1.6)

where r is called the length of the decomposition (1.6). The smallest r in (1.6) is called the
Hermitian rank of H, which is denoted as hrank(H). However, it was shown in [25] that not
all real Hermitian tensors are R-Hermitian decomposable, i.e., there exist vectors vij ∈ Rnj

and real scalars λi ∈ R, for all i ∈ [r], j ∈ [m], such that

H =

r∑
i=1

λi[v
i
1, . . . , v

i
m]⊗h. (1.7)

In fact, a tensor H ∈ R[n1,...,nm] is R-Hermitian decomposable if and only if it is partial-wise
symmetric, i.e., Hi1...imj1...jm = Hk1...kml1...lm for all labels such that {is, js} = {ks, ls}, s =
1, . . . ,m. The subspace of R-Hermitian decomposable tensors in R[n1,...,nm] is denoted as
R[n1,...,nm]

D . Note that the dimension of R[n1,...,nm]
D is

∏m
k=1

(
nk+1

2

)
, and the dimension of

R[n1,...,nm] is
(
N+1
2

)
with N := n1 · · ·nm. Thus, for m > 1 and ni > 1, R[n1,...,nm]

D is a proper
subspace of R[n1,...,nm] (cf. [25]).

The set C[n1,...,nm] is a vector space over R. For Hermitian tensors A,B ∈ C[n1,...,nm],
by the definition of inner product (1.1), it always holds that ⟨A,B⟩ is real. Hermitian
decompositions (1.6) can be equivalently expressed by conjugate polynomials. For complex
variables xk ∈ Cnk , k ∈ [m], denote x := (x1, . . . , xm). Given a Hermitian tensor H ∈
C[n1,...,nm], we denote by

H(x,x) := ⟨H, [x1, . . . , xm]⊗h⟩, (1.8)



524 A. ZHOU, Y. WU AND J. FAN

which is a conjugate symmertric polynomial in x, i.e., H(x,x) = H(x,x). The Hermitian
decomposition (1.6) implies that

H(x,x) =
r∑

i=1

λi|(ui
1)

∗x1|2 · · · |(ui
m)∗xm|2. (1.9)

Hermitian tensors play an essential role in quantum physics. A Hermitian tensor can
represent a mixed state, and the separability discrimination problem of mixed states can be
regarded as the positive Hermitian decomposition problem of Hermitian tensors. Recently,
Nie and Yang [25] studied some basic properties for Hermitian tensors, such as Hermitian
decompositions and Hermitian ranks. For more results on Hermitian tensor and its applica-
tions, we refer the reader to [18, 19, 25] and the references therein.

In this paper, motivated by the important applications for CP tensor and Hermitian
tensor, we introduce the (real) Hermitian completely positive tensors. They are different ex-
tensions of the even order CP tensors in the complex field. And it is important to study the
properties of (real) Hermitian completely positive tensors both in academic and physics ap-
plications such as quantum entanglement problem. Throughout the paper, a complex vector
is written as w = u+

√
−1v, where u and v are its real and imaginary parts, respectively.

Definition 1.1. A Hermitian tensor H ∈ C[n1,...,nm] is called Hermitian completely positive
(HCP) if there exist vectors wi

j ∈ Cnj

+ for all i ∈ [r], j ∈ [m], such that

H =

r∑
i=1

[wi
1, . . . , w

i
m]⊗h, (1.10)

where r is called the length of the decomposition (1.10). The smallest r in the above is
called the HCP-rank of H, which we denote as hcprank(H). If H is Hermitian completely
positive, (1.10) is called a Hermitian completely positive (HCP) decomposition of H.

Similarly, we can give the following definitions of real Hermitian completely positive
tensors and (real) Hermitian copositive tensors.

Definition 1.2. A Hermitian tensor H ∈ R[n1,...,nm] is called real Hermitian completely
positive (RHCP) if there exist nonnegative vectors ui

j ∈ Rnj

+ for all i ∈ [r], j ∈ [m], such that

H =

r∑
i=1

[ui
1, . . . , u

i
m]⊗h, (1.11)

where r is called the length of the decomposition (1.11). The smallest r in the above is
called the RHCP-rank of H, denoted as hcprankR(H). If H is real Hermitian completely
positive, (1.11) is called a real Hermitian completely positive (RHCP) decomposition of H.

Definition 1.3. A Hermitian tensor H ∈ C[n1,...,nm] (resp., H ∈ R[n1,...,nm]) is called Her-
mitian copositive (HCOP) (resp., real Hermitian copositive (RHCOP)) if H(x,x) ≥ 0 for all
x := (x1, . . . , xm) with xk ∈ Cnk

+ (resp., with xk ∈ Rnk
+ ), k ∈ [m].

We denote by

HCP[n1,...,nm] = {H ∈ C[n1,...,nm] : H is Hermitian completely positive},
HCOP[n1,...,nm] = {H ∈ C[n1,...,nm] : H is Hermitian copositive},
RHCP[n1,...,nm] = {H ∈ R[n1,...,nm] : H is real Hermitian completely positive},
RHCOP[n1,...,nm] = {H ∈ R[n1,...,nm] : H is real Hermitian copositive}.
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For the case of m = 1, the HCP and HCOP tensors are reduced to the HCP and HCOP
matrices, respectively. These concepts are introduced and studied by Zhou et al.[38]. For
m = 2, the RHCP tensors are reduced to the completely positive separable matrices intro-
duced by Zhou and Fan [36]. It is easy to check that RHCP[n1,...,nm] ⊆ RHCOP[n1,...,nm]

and HCP[n1,...,nm] ⊆ HCOP[n1,...,nm].
Contributions. In this paper, we study (real) Hermitian completely positive tensors and

(real) Hermitian copositive tensors. Some properties of (real) Hermitian completely positive
tensors cones and their dual cones are presented. We prove that the cone of Hermitian
completely positive tensors is dual to the cone of Hermitian copositive tensors, and both
of them are proper cones. For a Hermitian completely positive tensor, its conjugate tensor
and real part tensor are both Hermitian completely positive. For a Hermitian copositive
tensor, its real part must be real Hermitian copositive. However, the cone of real Hermitian
completely positive tensors and its dual cone are not proper, generally. For a R-Hermitian
decomposable tensor, we show that it is Hermitian completely positive (resp., Hermitian
copositive) if and only if it is real Hermitian completely positive (resp., real Hermitian
copositive).

We prove that the Hermitian copositive tensor checking problem is equivalent to a con-
jugate symmertric polynomial optimization problem, which can be solved by a linear conic
programming problem with the cone of Hermitian completely positive tensors. Hermitian
completely positive tensors can be characterized in terms of truncated moment sequences. A
semidefinite algorithm is also proposed for checking whether a Hermitian tensor is Hermitian
completely positive or not. If it is, an HCP decomposition can be further obtained.

The paper is organized as follows. Section 2 studies the properties of (real) Hermitian
completely positive tensors and (real) Hermitian copositive tensors. In Section 3, we study
the certificate and decompositions for Hermitian completely positive tensors and Hermitian
copositive tensors. A semidefinite algorithm is proposed for checking Hermitian completely
positive tensors. Convergence properties of the algorithm are also discussed. Some numerical
examples are illustrated in Section 4. Finally, we conclude the paper in Section 5.

Notation. The symbol N denotes the set of nonnegative integers. Let Rn
+ and Cn

+ be
the nonnegative orthant and the set of complex vectors whose real and imaginary parts are
both nonnegative, respectively. For all k ∈ [m], xk denotes the complex vector in Cnk . The
tuple of all such complex vectors is denoted as x := (x1, . . . , xm). Let I ∈ C[n1,...,nm] be
the identity tensor, i.e., I(x,x) = (x∗

1x1) · · · (x∗
mxm). For a vector u in Fn, ∥u∥ denotes

its standard Euclidean norm. For x̃ := (x̃1, . . . , x̃n) ∈ Rn and α = (α1, . . . , αn) ∈ Nn,
denote the monomial power x̃α := x̃α1

1 · · · x̃αn
n . Let R[x̃] := R[x̃1, . . . , x̃n] be the ring of real

polynomials in x̃ with coefficients in R, and R[x̃]d be the set of polynomials in R[x̃] with
degrees at most d. The deg(p) denotes the degree of a polynomial p. For α = (α1, . . . , αn) ∈
Nn, denote |α| := α1 + . . . + αn and Nn

d := {α ∈ Nn | |α| ≤ d}. Let RNn
d be the set of real

vectors indexed by α ∈ Nn
d . For t ∈ R, ⌈t⌉ denotes the smallest integer not smaller than t.

For a symmetric matrix X, X ⪰ 0 means that X is positive semidefinite. The symbol ⊗
denotes the tensor product, while ⊙ denotes the classical Kronecker product.

2 Properties of HCP and RHCP Tensors

In this section, we study properties of the cones of HCP tensors and RHCP tensors in
the Hermitian tensor space C[n1,...,nm] over real field R. Throughout the paper, we denote
by N :=

∏m
i=1 ni and n :=

∑m
i=1 ni on the space C[n1,...,nm]. We define the linear map
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M : C[n1,...,nm] → MN such that for all wi ∈ Cni , i ∈ [m],

M([w1, . . . , wm]⊗h) = (w1w
∗
1)⊙ (w2w

∗
2)⊙ · · · ⊙ (wmw∗

m), (2.1)

where ⊙ denotes the classical Kronecker product. The map M is a bijection between
C[n1,...,nm] and MN ∼= Mn1 ⊙ · · · ⊙ Mnm . Then, the Hermitian decomposition H =
r∑

i=1

λi[w
1
i , . . . , w

m
i ]⊗h is equivalent to

M(H) =
r∑

i=1

λi(w
1
i (w

1
i )

∗)⊙ · · · ⊙ (wm
i (wm

i )∗)

=
r∑

i=1

λi(w
1
i ⊙ · · · ⊙ wm

i )(w1
i ⊙ · · · ⊙ wm

i )∗.
(2.2)

The matrix M(H) is called the Hermitian flattening matrix of H (cf. [25]).

2.1 Properties of HCP and HCOP tensors

Recall that a cone is said to be solid if it has a nonempty interior; it is said to be pointed if
it does not contain any line through the origin; a cone is called proper if it is closed, convex,
pointed and solid. Then, we have the following properties for the cones of HCP and HCOP
tensors.

Proposition 2.1. In the space C[n1,...,nm] over real field R, the cones HCP[n1,...,nm] and
HCOP[n1,...,nm] are dual to each other, i.e.,

HCOP[n1,...,nm] = HCP∗
[n1,...,nm], HCP[n1,...,nm] = HCOP∗

[n1,...,nm]. (2.3)

Furthermore, they are both proper cones.

Proof. By the definition, it is easy to verify that HCOP[n1,...,nm] is closed and convex. Note
that HCP[n1,...,nm] equals the conic hull of the compact set

W :=
{
[w1, . . . , wm]⊗h : wi ∈ Cni

+ , ∥wi∥ = 1, ∀i ∈ [m]
}
. (2.4)

So it is also a closed convex cone [2].
Next, we show that the dual relationship (2.3) holds. A tensor X ∈ C[n1,...,nm] belongs to

the dual cone of HCP[n1,...,nm] if and only if ⟨X ,Y⟩ ≥ 0 for all Y ∈ W , which is equivalent
to the fact that X is Hermitian copositive. Therefore, the dual cone of HCP[n1,...,nm] is
HCOP[n1,...,nm]. Since both HCP[n1,...,nm] and HCOP[n1,...,nm] are closed convex cones,
the dual cone of HCOP[n1,...,nm] is equal to HCP[n1,...,nm] by the biduality theorem [2].
Hence, HCOP[n1,...,nm] and HCP[n1,...,nm] are dual to each other.

To show HCOP[n1,...,nm] is solid, we need to prove that it has nonempty interior. Let
I ∈ C[n1,...,nm] be the identity tensor. Clearly, the conjugate polynomial I(x,x) is one for all
xk ∈ Cnk

+ , ∥xk∥ = 1. Thus, I ∈ HCOP[n1,...,nm] is an interior point, and HCOP[n1,...,nm] is
solid. By duality, we also know that HCP[n1,...,nm] is pointed.

Now, we prove HCP[n1,...,nm] is solid, i.e., full-dimensional. By [38, Proposition 2.4],
for each HCP matrix cone HCP[ni], i ∈ [m], its dimension dimHCP[ni] = n2

i . Note that
Hermitian flattening M is a bijection between the cones HCP[n1,...,nm] and HCP[n1] ⊙
· · · ⊙HCP[nm]. Thus, these two cones have the same dimension. In other words, we have
dimHCP[n1,...,nm] =

∏m
i=1 n

2
i , which is equal to the dimension of the Hermitian tensor space
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C[n1,...,nm] over real field R. This implies that HCP[n1,...,nm] is full-dimensional. By duality,
we also have HCOP[n1,...,nm] is pointed.

Therefore, the cones HCP[n1,...,nm] and HCOP[n1,...,nm] are both proper and dual to
each other. This completes the proof.

From the definition of HCP tensor, we have the following results on its conjugate tensor
and real part tensor.

Proposition 2.2. For a Hermitian completely positive tensor H ∈ C[n1,...,nm], its conjugate
H is also Hermitian completely positive. Furthermore, its real part Hre is also Hermitian
completely positive.

Proof. Since H is Hermitian completely positive, there exist wi
j = ui

j +
√
−1vij ∈ Cnj

+ with
ui
j , v

i
j ∈ Rnj

+ for all i ∈ [r], j ∈ [m], such that

H =

r∑
i=1

[wi
1, . . . , w

i
m]⊗h.

Then we have

H =
r∑

i=1

[wi
1, . . . , w

i
m]⊗h

=
r∑

i=1

[ui
1 −

√
−1vi1, . . . , u

i
m −

√
−1vim]⊗h

=
r∑

i=1

(−
√
−1)m(

√
−1)m(vi1 +

√
−1ui

1)⊗ · · · ⊗ (vim +
√
−1ui

m)

⊗(vi1 −
√
−1ui

1)⊗ · · · ⊗ (vim −
√
−1ui

m)

=
r∑

i=1

(−
√
−1)m(

√
−1)m[vi1 +

√
−1ui

1, . . . , v
i
m +

√
−1ui

m]⊗h

=
r∑

i=1

[vi1 +
√
−1ui

1, . . . , v
i
m +

√
−1ui

m]⊗h.

Thus, H is Hermitian completely positive. Note that the real part of H can be expressed as

Hre =
H+H

2
.

This implies that Hre has the following HCP decomposition:

Hre =
1

2

r∑
i=1

(
[wi

1, . . . , w
i
m]⊗h + [vi1 +

√
−1ui

1, . . . , v
i
m +

√
−1ui

m]⊗h

)
. (2.5)

Therefore, Hre is also Hermitian completely positive. This completes the proof.

Remark 2.3. Assume a Hermitian tensor H is HCP and has the HCP decomposition

H =

r∑
i=1

[wi
1, . . . , w

i
m]⊗h,

where wi
j = ui

j +
√
−1vij ∈ Cnj

+ for all i ∈ [r], j ∈ [m]. From the proof of Proposition 2.2,
it is clear that, for any vectors ui

j and vij in the HCP decomposition above changed to −ui
j

or −vij , the new tensor obtained is also HCP. This result is also verified by Example 4.7 in
Section 4.
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Recall that for a Hermitian tensor H ∈ C[n1,...,nm], its real part Hre is real Hermitian
and its imaginary part Him is real skew-symmetric. Then we have the following results for
HCOP tensors.

Proposition 2.4. For a Hermitian copositive tensor H ∈ C[n1,...,nm] with real part Hre ∈
R[n1,...,nm] and imaginary part Him ∈ R[n1,...,nm]

skew , Hre is real Hermitian copositive.

Proof. Since H is Hermitian copositive, then it holds that

⟨H, [x1, . . . , xm]⊗h⟩ = ⟨Hre +
√
−1Him, [x1, . . . , xm]⊗h⟩

= ⟨Hre, [x1, . . . , xm]⊗h⟩+ ⟨
√
−1Him, [x1, . . . , xm]⊗h⟩ ≥ 0,

for all xk ∈ Rnk
+ , k ∈ [m]. Note that H is Hermitian, then

√
−1Him is also Hermitian and

the inner product ⟨
√
−1Him, [x1, . . . , xm]⊗h⟩ must be real. Thus,

⟨
√
−1Him, [x1, . . . , xm]⊗h⟩ = ⟨

√
−1Him, [x1, . . . , xm]⊗h⟩

= ⟨−
√
−1Him, [x1, . . . , xm]⊗h⟩

= −⟨
√
−1Him, [x1, . . . , xm]⊗h⟩.

This implies that ⟨
√
−1Him, [x1, . . . , xm]⊗h⟩ = 0. So we have

⟨H, [x1, . . . , xm]⊗h⟩ = ⟨Hre, [x1, . . . , xm]⊗h⟩ ≥ 0,

for all xk ∈ Rnk
+ , k ∈ [m]. Thus, Hre is real Hermitian copositive.

Remark 2.5. Proposition 2.4 is an extension for Hermitian copositive tensors of Proposition
2.5 in [38]. As it was shown in [38, Proposition 2.1], if a matrix A is HCP, then its real
part must be a CP matrix. However, this result does not hold in the case of HCP[n1,...,nm]

for m > 1. In other words, for a tensor H ∈ HCP[n1,...,nm] with m > 1, its real part Hre

may not be real Hermitian completely positive. For instance, consider the following tensor
in HCP[2,2]

H =

[(
1 +

√
−1

0 +
√
−1

)
,

( 1
2 +

√
−1

1 +
√
−1
2

)]
⊗h

.

Its real part Hre is given as following:

Hre(:, :, 1, 1) = 1
4

(
10 8
5 7

)
, Hre(:, :, 2, 1) = 1

4

(
5 1
5 4

)
,

Hre(:, :, 1, 2) = 1
4

(
8 10
1 5

)
, Hre(:, :, 2, 2) = 1

4

(
7 5
4 5

)
.

It is clear that Hre is not R-Hermitian decomposable, because Hre
1122 = 7/4 ̸= 1/4 = Hre

2112.
This implies that Hre is not RHCP. However, as shown in Proposition 2.2, we know Hre

must be HCP and it has the following HCP decomposition:

Hre =
15

4

[( 1+
√
−1√
3
1√
3

)
,

(
1√
2

4+3
√
−1

5
√
2

)]
⊗h

+

[(
1+

√
−1√
3√
−1√
3

)
,

(
4+3

√
−1

5
√
2

1√
2

)]
⊗h

 .

This example also illustrates that there exists a real Hermitian tensor A ∈ R[n1,...,nm] \
R[n1,...,nm]

D such that A is HCP.
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For a Hermitian tensor H ∈ C[n1,...,nm], let k be an integer with 0 ≤ k < m. Given
indices rj ∈ [nj ] for all j ∈ [m] \ [k], we define the partial tensor Hrk+1,...,rm

[k] ∈ C[n1,...,nk]

whose elements are given as following:

(Hrk+1,...,rm
[k] )i1...ikj1...jk = Hi1...ikrk+1...rmj1...jkrk+1...rm , ∀il ∈ [nl], l ∈ [k].

Then, we have Hr1,...,rm
[0] = Hr1...rmr1...rm . It is clear that if H is Hermitian, so is the partial

tensor Hrk+1,...,rm
[k] . In fact, this property also holds for the Hermitian completely positive

tensors.

Proposition 2.6. For a Hermitian tensor H ∈ C[n1,...,nm], let k be an integer with 0 ≤
k < m. For any fixed indices rj ∈ [nj ] for all j ∈ [m] \ [k], if H is Hermitian completely
positive,so is the partial tensor Hrk+1,...,rm

[k] .

Proof. Since H is Hermitian completely positive, then there exist nonnegative vectors wi
j ∈

Cnj

+ for i ∈ [r], j ∈ [m], such that

H =

r∑
i=1

[wi
1, . . . , w

i
m]⊗h.

By the definition of the partial tensor Hrk+1,...,rm
[k] , we have

Hrk+1,...,rm
[k] =

r∑
i=1

wi
1 ⊗ · · · ⊗ wi

k ⊗ (wi
k+1)rk+1

⊗ · · · ⊗ (wi
m)rm

⊗wi
1 ⊗ · · · ⊗ wi

k ⊗ (wi
k+1)rk+1

⊗ · · · ⊗ (wi
m)rm

=
r∑

i=1

(
∏m

j=k+1 |(wi
j)rj |2)wi

1 ⊗ · · · ⊗ wi
k ⊗ wi

1 ⊗ · · · ⊗ wi
k

=
r∑

i=1

(
∏m

j=k+1 |(wi
j)rj |2)[wi

1, . . . , w
i
k]⊗h.

Note that
∏m

j=k+1 |(wi
j)rj |2 ≥ 0 for i = 1, . . . , r. This implies that the partial tensor

Hrk+1,...,rm
[k] is also an HCP tensor.

2.2 Properties of RHCP and RHCOP tensors

Now, we show some properties on the cones of RHCP and RHCOP tensors.

Proposition 2.7. For m > 1 and n1, . . . , nm > 1, in the space R[n1,...,nm] over the real field
R, the cones RHCP[n1,...,nm] and RHCOP[n1,...,nm] are both closed and convex, and they
are dual to each other, i.e.,(

RHCP[n1,...,nm]

)∗
= RHCOP[n1,...,nm],(

RHCOP[n1,...,nm]

)∗
= RHCP[n1,...,nm].

Moreover, RHCP[n1,...,nm] is pointed but not solid, while RHCOP[n1,...,nm] is solid but not
pointed.

Proof. For the first part, it can be similarly deduced from Proposition 2.1 that the cones
RHCP[n1,...,nm] and RHCOP[n1,...,nm] are both closed and convex, and they are dual to
each other. It is also easy to check that the identity tensor I is an interior point of the cone
RHCOP[n1,...,nm]. Thus, RHCOP[n1,...,nm] is solid.
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For m > 1 and n1, . . . , nm > 1, it is clear that R[n1,...,nm]
D is a proper subspace of

R[n1,...,nm]. Note that the set RHCP[n1,...,nm] ⊆ R[n1,...,nm]
D . So there exist 0 ̸= Y ∈

R[n1,...,nm] that is orthogonal to the subspace R[n1,...,nm]
D . Then for all X ∈ RHCP[n1,...,nm]

and λ ∈ R, we have ⟨λY,X⟩ = 0. This implies that λY ∈ RHCOP[n1,...,nm], i.e.,
RHCOP[n1,...,nm] contains a line through the origin. Therefore, it is not pointed.

By the duality, RHCP[n1,...,nm] is pointed but not solid [2]. The proof is completed.

Proposition 2.8. For H ∈ R[n1,...,nm]
D ,H is RHCOP if and only if H is HCOP.

Proof. The “if" direction is clear. Now, we prove the “only if" direction. For wj ∈ Rnj and
vj ∈ Cnj

+ , write vj = xj +
√
−1yj with xj , yj ∈ Rnj

+ . Then, we have

⟨[w1, . . . , wm]⊗h, [v1, . . . , vm]⊗h⟩ =
m∏
j=1

(wj)
T vj(wj)

T vj =

m∏
j=1

|(wj)
T vj |2

=

m∏
j=1

|(wj)
Txj |2 + |(wj)

T yj |2 =
∑

zj∈{xj ,yj}

⟨[w1, . . . , wm]⊗h, [z1, . . . , zm]⊗h⟩.

Note that H ∈ R[n1,...,nm]
D , it is a sum of real multiples of rank-1 real Hermitian tensors.

Thus,
⟨H, [v1, . . . , vm]⊗h⟩ =

∑
zj∈{xj ,yj}

⟨H, [z1, . . . , zm]⊗h⟩.

If H is RHCOP, then we have

⟨H, [v1, . . . , vm]⊗h⟩ =
∑

zj∈{xj ,yj}

⟨H, [z1, . . . , zm]⊗h⟩ ≥ 0

for all vj = xj +
√
−1yj ∈ Cnj

+ , with xj , yj ∈ Rnj

+ , j ∈ [m]. Thus, H is HCOP.

Remark 2.9. Note that if H ∈ R[n1,...,nm] \ R[n1,...,nm]
D , then H may be RHCOP but not

HCOP. Consider H ∈ R[2,2] such that

H1111 = H1122 = H2211 = 1,H1221 = H2112 = −1,

and all other entries are zeros. It was shown in [25] that ⟨H, [v1, v2]⊗h⟩ ≥ 0 for all vectors
v1, v2 ∈ R2. So, H is RHCOP. However, H is not HCOP, because for w1 = w2 = (

√
−1, 1)T ∈

C2
+, ⟨H, [w1, w2]⊗h⟩ = −3 < 0. Thus, it holds that

RHCOP[n1,...,nm] ⊇ R[n1,...,nm] ∩ HCOP[n1,...,nm]

⊇ R[n1,...,nm]
D ∩ HCOP[n1,...,nm]

= R[n1,...,nm]
D ∩ RHCOP[n1,...,nm].

The relationships among the sets RHCOP[n1,...,nm],HCOP[n1,...,nm], R[n1,...,nm] and R[n1,...,nm]
D

are shown in Figure 1. For convenience, we use RHCOP,HCOP,R and RD to represent
the sets RHCOP[n1,...,nm], HCOP[n1,...,nm], R[n1,...,nm] and R[n1,...,nm]

D , respectively.

Proposition 2.10. For H ∈ R[n1,...,nm]
D , H is RHCP if and only if H is HCP.
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RD

R RHCOP
HCOP

Figure 1: The relationships among the sets RHCOP[n1,...,nm],HCOP[n1,...,nm],R[n1,...,nm] and
R[n1,...,nm]

D .

Proof. The “only if" direction is obvious. Now, we prove the “if" direction. Assume that
H is HCP. Then (1.10) holds for some complex vectors wi

j = ui
j +

√
−1vij ∈ Cnj

+ with
ui
j , v

i
j ∈ Rnj

+ for all i ∈ [r], j ∈ [m]. For all real vectors xj ∈ Rnj , the inner product
⟨[wi

1, . . . , w
i
m]⊗h, [x1, . . . , xm]⊗h⟩ =

∏m
j=1 |(wi

j)
∗xj |2, which can be expanded as

m∏
j=1

|(ui
j)

Txj |2 + |(vij)Txj |2 =
∑

zi
j∈{ui

j ,v
i
j}

⟨[zi1, . . . , zim]⊗h, [x1, . . . , xm]⊗h⟩.

Then (1.10) implies that for all real vectors xj ∈ Rnj ,

⟨H, [x1, . . . , xm]⊗h⟩ =
r∑

i=1

∑
zi
j∈{ui

j ,v
i
j}

⟨[zi1, . . . , zim]⊗h, [x1, . . . , xm]⊗h⟩.

Since H ∈ R[n1,...,nm]
D , we have

∥H −
r∑

i=1

∑
zi
j∈{ui

j ,v
i
j}

[zi1, . . . , z
i
m]⊗h∥ = 0,

i.e., H =
∑r

i=1

∑
zi
j∈{ui

j ,v
i
j}
[zi1, . . . , z

i
m]⊗h with ui

j , v
i
j ∈ Rnj

+ for i ∈ [r], j ∈ [m]. Thus, H is also

RHCP.

Remark 2.11. Note that if H ∈ R[n1,...,nm] \ R[n1,...,nm]
D , then H must not be RHCP.

Furthermore, as shown in Remark 2.5, it holds that

RHCP[n1,...,nm] = R[n1,...,nm]
D ∩ HCP[n1,...,nm]

⊆ R[n1,...,nm] ∩ HCP[n1,...,nm].

Combining with
RHCP[n1,...,nm] ⊆ RHCOP[n1,...,nm],
HCP[n1,...,nm] ⊆ HCOP[n1,...,nm],

we further have

RHCP[n1,...,nm] = R[n1,...,nm]
D ∩ HCP[n1,...,nm]

⊆ R[n1,...,nm] ∩ HCP[n1,...,nm](or R[n1,...,nm]
D ∩ HCOP[n1,...,nm])

⊆ R[n1,...,nm] ∩ HCOP[n1,...,nm]

⊆ RHCOP[n1,...,nm].
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The relationships among the sets HCOP[n1,...,nm], HCP[n1,...,nm], RHCP[n1,...,nm],
RHCOP[n1,...,nm], R

[n1,...,nm]
D and R[n1,...,nm] are shown in Figure 2. For convenience, we

use HCOP,HCP,RHCP, RHCOP, RD and R to represent the sets HCOP[n1,...,nm],
HCP[n1,...,nm], RHCP[n1,...,nm], RHCOP[n1,...,nm], R

[n1,...,nm]
D and R[n1,...,nm], respectively.

Figure 2: The relationships among the sets HCOP[n1,...,nm], HCP[n1,...,nm],RHCP[n1,...,nm],
RHCOP[n1,...,nm], R[n1,...,nm]

D and R[n1,...,nm].

3 Certificate and Decomposition for HCP and HCOP Tensors

In this section, we show how to check whether a Hermitian tensor is Hermitian completely
positive or Hermitian copositive.

3.1 Certificate for HCOP tensors

Given a Hermitian tensor H ∈ C[n1,...,nm], a natural question is how to certify it is Hermitian
copositive or not? Consider the conjugate symmertric polynomial optimization problem{

p∗1 = min H(x,x) := ⟨H, [x1, . . . , xm]⊗h⟩
s.t. ∥xj∥ = 1, xj ∈ Cnj

+ , j = 1, . . . ,m,
(3.1)

where H(x,x) is conjugate quadratic in each xj . It has wide applications in signal processing
and wireless communications [27, 31, 33, 34]. By the definition of HCOP tensors, it is clear
that H ∈ C[n1,...,nm] is HCOP if and only if the optimal value p∗1 ≥ 0 for the optimization
problem (3.1). In fact, we can also consider the linear conic optimization{

p∗2 = min ⟨H,X⟩
s.t. ⟨I,X⟩ = 1,X ∈ HCP[n1,...,nm],

(3.2)

where I denotes the identity tensor in C[n1,...,nm]. We call (3.2) the standard Hermitian
completely positive programming. By the duality of the cones of HCP and HCOP tensors,
we know that H ∈ C[n1,...,nm] is HCOP if and only if the optimal value p∗2 ≥ 0 for (3.2). The
following theorem shows that the problems (3.1) and (3.2) are equivalent.

Theorem 3.1. Given a Hermitian tensor H ∈ C[n1,...,nm], the problems (3.1) and (3.2) are
equivalent, so p∗1 = p∗2.
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Proof. Since I is the identity tensor in C[n1,...,nm], we have I(x,x) = (x∗
1x1) · · · (x∗

mxm).
Then, the problem (3.1) is equivalent to p̃∗ = min ⟨H, [x1, . . . , xm]⊗h⟩

s.t. ⟨I, [x1, . . . , xm]⊗h⟩ = 1,
∥xj∥ = 1, xj ∈ Cnj

+ , j = 1, . . . ,m.
(3.3)

Note that the problem (3.2) is a relaxation for the problem (3.3). So, p∗1 = p̃∗ ≥ p∗2.
Suppose X ∗ is an optimizer of (3.2). There exist ρi > 0 and wi

j ∈ Cnj

+ with ∥wi
j∥ = 1 for

all j ∈ [m], i ∈ [r] such that

X ∗ =

r∑
i=1

ρi[w
i
1, . . . , w

i
m]⊗h. (3.4)

We order such that for all 1 ≤ i ≤ r − 1,

⟨H, [wi
1, . . . , w

i
m]⊗h⟩ ≤ ⟨H, [wi+1

1 , . . . , wi+1
m ]⊗h⟩.

Note that for each wi
j ∈ Cnj

+ and ∥wi
j∥ = 1, we have

1 = ⟨I,X ∗⟩ = ⟨I,
r∑

i=1

ρi[w
i
1, . . . , w

i
m]⊗h⟩ =

r∑
i=1

ρi.

Thus,

⟨H,X ∗⟩ =⟨H,

r∑
i=1

ρi[w
i
1, . . . , w

i
m]⊗h⟩

≥
r∑

i=1

ρi⟨H, [w1
1, . . . , w

1
m]⊗h⟩

=⟨H, [w1
1, . . . , w

1
m]⊗h⟩.

This implies that there exist xj = w1
j ∈ Cnj

+ for all j ∈ [m], such that ∥xj∥ = 1 and
⟨H,X ∗⟩ ≥ ⟨H, [x1, . . . , xm]⊗h⟩, i.e., p∗1 = p̃∗ ≤ p∗2.

Therefore, p∗1 = p̃∗ = p∗2. So, (3.3) is equivalent to the linear conic optimization problem
(3.2). The proof is completed.

To solve the problem (3.2), a natural question is how to check whether a tensor X ∈
HCP[n1,...,nm] or not? This is NP-hard for the general case. Another problem is that if we
obtain a minimizer X ∗ of the problem (3.2), how can we obtain a minimizer (x∗

1, . . . , x
∗
m) of

the problem (3.1) from X ∗? By the proof of Theorem 3.1, we know it is related to how to
obtain an HCP decomposition of X ∗.

3.2 Certificate and decomposition for HCP tensors

In this subsection, we show how to check a Hermitian tensor H ∈ C[n1,...,nm] is HCP or not.
If not, how to give a certificate; if it is, how to obtain an HCP decomposition. The method
is mainly based on the polynomial optimization and truncated moment problem. In the
following, we first introduce some basic concepts on polynomial optimization, moment and
localizing matrices.
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3.2.1 Polynomial optimization, moment and localizing matrices.

An ideal I in R[x̃] is a subset of R[x̃] such that I ·R[x̃] ⊆ I and I + I ⊆ I. For a polynomial
tuple h = (h1, . . . , ht) in R[x̃], denote the ideal

I(h) := h1 · R[x̃] + · · ·+ ht · R[x̃].

Denote the k-th truncation of the ideal I(h) as

Ik(h) := h1 · R[x̃]k−deg(h1) + · · ·+ ht · R[x̃]k−deg(ht). (3.5)

Clearly, I(h) = ∪k∈NIk(h).
A polynomial p is said to be a sum of squares (SOS) if p = q21 + · · · + q2l for some real

polynomials q1, . . . , ql. The set of all SOS polynomials in x̃ is denoted as Σ[x̃]. For a degree
d, denote the truncation

Σ[x̃]d := Σ[x̃] ∩ R[x̃]d.
For a polynomial tuple g = (g1, . . . , gs), its quadratic module is the set

Q(g) := Σ[x̃] + g1 · Σ[x̃] + · · ·+ gs · Σ[x̃].

The k-th truncation of Q(g) is denoted as

Qk(g) := Σ[x̃]2k + g1 · Σ[x̃]d1 + · · ·+ gs · Σ[x̃]ds , (3.6)

where each di = 2k − deg(gi). Obviously, Q(g) = ∪k∈NQk(g).
For the polynomial tuples h, g as above, denote

K(h, g) := {x̃ ∈ Rn | h(x̃) = 0, g(x̃) ≥ 0}. (3.7)

It is clear that if f ∈ I(h) + Q(g), then f ≥ 0 on the set S(h, g). The set I(h) + Q(g) is
said to be archimedean if there exists N > 0 such that N − ∥x̃∥2 ∈ I(h) +Q(g). Clearly, if
I(h) +Q(g) is archimedean, then the set K(h, g) is compact. On the other hand, if K(h, g)
is compact, then I(h) + Q(g) can be forced to be archimedean by adding the polynomial
N −∥x̃∥2 to the tuple g, for sufficiently large N . When I(h)+Q(g) is archimedean, if f > 0
on K(h, g), then f ∈ I(h)+Q(g). This is called Putinar’s Positivstellensatz in the literature
(cf. [28]). Moreover, if f ≥ 0 on K(h, g), then f ∈ I(h)+Q(g) under some general optimality
conditions (cf. [22]). We refer to [15, 16, 17] for more details in polynomial optimization.

A vector in RNn
d is called a truncated multi-sequence (tms) of degree d. For p ∈ R[x̃]d

and y ∈ RNn
d , define the scalar product〈 ∑

α∈Nn
d

pαx̃
α, y
〉
:=

∑
α∈Nn

d

pαyα, (3.8)

where each pα is a coefficient of the polynomial p. We say that y admits a K(h, g)-
representing measure if there exists a Borel measure µ such that its support, denoted as
supp(µ), is contained in the set K(h, g) and

yα =

∫
x̃αdµ, ∀α ∈ Nn

d .

For a polynomial q ∈ R[x̃]2k, the k-th localizing matrix of q, generated by a tms y ∈ RNn
2k ,

is the symmetric matrix

L(k)
q (y) = (

∑
α

qαyα+β+γ)β,γ∈Nn
k−⌈deg(q)/2⌉

.
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When q = 1 (the constant one polynomial), L(k)
q (y) becomes a moment matrix and is denoted

as
Mk(y) = (yβ+γ)β,γ∈Nn

k
.

For convenience, when q = (q1, . . . , qs) is a tuple of s polynomials, we denote

L(k)
q (y) := diag

(
L(k)
q1 (y), . . . , L(k)

qs (y)
)
. (3.9)

In the above, diag(X1, . . . , Xs) denotes the block diagonal matrix whose diagonal blocks are
X1, . . . , Xs. We refer to [6, 21] for localizing and moment matrices.

3.2.2 Reformulations and Algorithm

In this subsection, we formulate the HCP tensors checking problem as a truncated moment
problem, then propose a semidefinite algorithm for it.

For a Hermitian tensor H ∈ C[n1,...,nm], define the semialgebraic set

K :=
{
(x1, . . . , xm) ∈ Cn1

+ × · · · × Cnm
+ : ∥xi∥2 = 1, ∀i ∈ [m]

}
. (3.10)

It is clear that a Hermitian tensor H ∈ C[n1,...,nm] is HCP if and only if there exist positive
scalars λi > 0 and vectors (wi

1, . . . , w
i
m) ∈ K for all i ∈ [r], such that

H =

r∑
i=1

λi[w
i
1, . . . , w

i
m]⊗h. (3.11)

Let µ :=
∑r

i=1 λiδ(wi
1,...,w

i
m) be the weighted sum of Dirac measures. Then (3.11) is equiva-

lent to
H =

∫
[x1, . . . , xm]⊗hdµ, (3.12)

where the support supp(µ) of the measure µ is contained in K. As shown in the proof of
Theorem 5.9 of [17], if there is a nonnegative Borel measure µ supported in K, then there
must exist λi > 0 and vectors (wi

1, . . . , w
i
m) ∈ K satisfying (3.12). Therefore, if we denote

by B(K) the set of nonnegative Borel measures supported on K, then a Hermitian tensor
H ∈ C[n1,...,nm] is HCP if and only if there exists a Borel measure µ ∈ B(K) such that (3.12)
holds. The task of checking existence of the above µ is a truncated moment problem.

Interestingly, Hermitian completely positive tensors can also be characterized by the
Hermitian flattening map M. As in (2.2), the decomposition (3.11) is equivalent to

M(H) =

r∑
i=1

λi(w
1
i (w

1
i )

∗)⊙ · · · ⊙ (wm
i (wm

i )∗), (3.13)

for positive scalars λi > 0 and vectors (wi
1, . . . , w

i
m) ∈ K. We call such a matrix M(H)

Hermitian completely positive separable, if it has a decomposition as in (3.13). Furthermore,
we can easily obtain the following property.

Proposition 3.2. A Hermitian tensor H ∈ C[n1,...,nm] is Hermitian completely positive if
and only if there exist Hermitian completely positive matrices Aij ∈ HCP[ni] for all i ∈ [s]
and j ∈ [m] such that

M(H) =

s∑
i=1

Ai1 ⊙ · · · ⊙ Aim. (3.14)
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Recently, for the RHCP tensors with m = 2, the real completely positive separable
matrices have been studied in [36]. In the following, we pay more attention to the HCP
tensors in the space C[n1,...,nm] as well as their HCP decompositions.

For a Hermitian tensor H ∈ C[n1,...,nm], it can be labeled as I = (i1, . . . , im) and J =
(j1, . . . , jm) such that

HIJ = Hi1···imj1···jm . (3.15)

For convenience, denote

S :=
{
(i1, . . . , im) : i1 ∈ [n1], . . . , im ∈ [nm]

}
.

The cardinality of the label set S is N :=
∏m

i=1 ni. For two labeling tuples I = (i1, . . . , im)
and J = (j1, . . . , jm) in S, define the ordering I < J if the first nonzero entry of I − J is
negative. Denote the index set

E := {(I, J) ∈ S × S : 1 ≤ I ≤ J ≤ n,n = (n1, . . . , nm)} , (3.16)

where 1 ∈ Nm is a row vector with all ones. The cardinality of the set E is Ñ :=
(
N+1
2

)
.

Then, each Hermitian tensor H ∈ C[n1,...,nm] can be identified by a vector pair hre,him ∈ RE

satisfying
hre
IJ +

√
−1him

IJ = HIJ , ∀ (I, J) ∈ E.

We call (hre,him) the identifying vector pair of H.
Denote x := (x1, . . . , xm) ∈ Cn1 × · · · × Cnm . Let xre := (xre

1 , . . . , xre
m) and xim :=

(xim
1 , . . . , xim

m ) in Rn1×· · ·×Rnm be the real part and imaginal part vectors of x, respectively.
Clearly, the complex vector x ∈ Cn1 × · · · × Cnm can be identified by real vector x̃ :=
(xre,xim) ∈ R2n with n :=

∑m
i=1 ni. Then the set K as in (3.10) can be rewritten as,

equivalently,

K :=
{
x̃ = (xre,xim) ∈ R2n

+ : ∥xre
i ∥2 + ∥xim

i ∥2 = 1, i ∈ [m]
}
. (3.17)

For convenience, we denote

g(x̃) := (1, x̃), h(x̃) := (h1(x̃), . . . , hm(x̃)), (3.18)

with each hi(x̃) = ∥xre
i ∥2 + ∥xim

i ∥2 − 1, i ∈ [m]. Then, the set K can also be expressed as

K :=
{
x̃ ∈ R2n : h(x̃) = 0, g(x̃) ≥ 0

}
. (3.19)

For each (I, J) ∈ E, we can expand

([x1, . . . , xm]⊗h)IJ = RIJ (x̃) +
√
−1TIJ (x̃), (3.20)

where RIJ (x̃), TIJ (x̃) ∈ R[x̃]. Then,∫
([x1, . . . , xm]⊗h)IJdµ =

∫
RIJ (x̃)dµ+

√
−1

∫
TIJ (x̃)dµ. (3.21)

Let d ≥ 2m be an even integer. Choose a generic SOS polynomial F ∈ Σ[x̃]d :

F (x) =
∑

α∈N2n
d

Fαx̃
α.
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Consider the optimization problem
min
µ

∫
F (x̃)dµ

s.t.
∫
RIJ (x̃)dµ = hre

IJ , (I, J) ∈ E,∫
TIJ (x̃)dµ = him

IJ , (I, J) ∈ E,
µ ∈ B(K).

(3.22)

We replace µ by the vector of its moments. Denote the moment cone

Rd :=

{
y ∈ RN2n

d | ∃µ ∈ B(K) such that yβ =

∫
x̃βdµ for β ∈ N2n

d

}
. (3.23)

So, (3.22) is equivalent to the linear optimization problem
min
y

⟨F, y⟩
s.t. ⟨RIJ , y⟩ = hre

IJ , (I, J) ∈ E,
⟨TIJ , y⟩ = him

IJ , (I, J) ∈ E,
y ∈ Rd.

(3.24)

Obviously, a Hermitian tensor H is HCP if and only if the feasible set of the problem (3.24)
is nonempty. The main difficulty to solve the problem (3.24) is how to deal with the moment
cone Rd. Fortunately, such moment cone Rd has some nice semidefinite relaxations.

As shown by Nie in [20], if z ∈ RN2n
2k admits a K-measure, then

L
(k)
h (z) = 0 and L(k)

g (z) ⪰ 0. (3.25)

If z also satisfies the rank condition

rankMk−1(z) = rankMk(z), (3.26)

then z admits a unique K-measure, which is rankMk(z)-atomic (cf. [6]). We say that z is
flat if both (3.25) and (3.26) are satisfied.

Given two tms’ y ∈ RN2n
t and z ∈ RN2n

e , we say z is an extension of y, if t ≤ e and
yα = zα for all α ∈ N2n

t . For convenience, we denote by z|t the subvector z|N2n
t

. If z is flat
and extends y, we say z is a flat extension of y. By [20], a tms y ∈ RN2n

d admits K-measure if
and only if it is extendable to a flat tms z ∈ RN2n

2k for some k. Therefore, checking whether a
Hermitian tensor H ∈ C[n1,...,nm] is HCP is equivalent to checking whether its corresponding
vector y, satisfying ⟨RIJ , y⟩ = hre

IJ and ⟨TIJ , y⟩ = him
IJ for all (I, J) ∈ E, has a flat extension.

Based on (3.25) and (3.26), the cone Rd can be approximated by semidefnite relaxations.
For h, g as in (3.18), denote the cones

Γk :=
{
z ∈ RN2n

2k | L(k)
h (z) = 0, L(k)

g (z) ⪰ 0
}

(3.27)

and
Γk
d :=

{
y ∈ RN2n

d | ∃ z ∈ Γk, y = z|d
}
. (3.28)

Clearly, Γk
d is a projection of Γk. For all k ≥ d/2, we have

Rd ⊆ Γk+1
d ⊆ Γk

d and Rd =
⋂

k≥d/2

Γk
d.
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This produces the hierarchy of semidefinite relaxations
min
z

⟨F, z⟩
s.t. ⟨RIJ , z⟩ = hre

IJ , (I, J) ∈ E,
⟨TIJ , z⟩ = him

IJ , (I, J) ∈ E,
z ∈ Γk,

(3.29)

for k = k0, k0 + 1, . . . (k0 = ⌈d/2⌉). Based on solving the hierarchy of (3.29), we propose a
semidefinite algorithm for checking whether a Hermitian tensor is HCP or not and giving
an HCP decomposition for it if it is.

Algorithm 3.3 (A semidefinite algorithm for checking HCP tensors).
Initialization. Input a Hermitian tensor H ∈ C[n1,...,nm] with identifying vector pair

(hre,him). Set d = 2m.
Step 0. Choose a generic F ∈ Σ[x̃]d, and let k := d/2.
Step 1. Solve (3.29). If (3.29) is infeasible, then A is not HCP, and stop. Otherwise,

compute a minimizer z∗,k. Let t := 1.
Step 2. Let ẑ := z∗,k|2t. If the rank condition (3.26) is satisfied, go to Step 4.
Step 3. If t < k, set t := t + 1 and go to Step 2; otherwise, set k := k + 1 and go to

Step 1.
Step 4. Compute λi > 0, (wi

1, . . . , w
i
m) ∈ K for each i ∈ [r], where r := rankMt(ẑ).

Output an HCP decomposition of H as

H =

r∑
i=1

λi[w
i
1, . . . , w

i
m]⊗h,

and stop.

Remark 3.4. Algorithm 3.3 can be implemented by the software GloptiPoly 3 [12], which
solves the generalized problem of moments. In Step 0, we choose F = [x̃]Td/2G

TG[x̃]d/2, where
[x̃]d := (x̃α)α∈N2n

d
and G is a random square matrix obeying Gaussian distribution. In Step 1,

we solve the semidefinite relaxation problem (3.29) by the semidefinite programming solver
SeDuMi [32]. In Step 2, we evaluate the rank of a matrix as the number of its singular values
that are not smaller than 10−6, which is a standard procedure in numerical linear algebra
(see [7, 10]). In Step 4, we use Henrion and Lasserre’s method [11] to compute the finitely
atomic K-measure µ admitted by ẑ, which then produces an HCP decomposition of H, if it
exists.

Note that the set K as in (3.19) is compact. Then, if a Hermitian tensor H is HCP,
Algorithm 3.3 is always well-defined and has the asymptotic convergence. This can be
deduced from Nie [20, Section 5]. For the sake of clarity, we omit the proof.

Theorem 3.5. Let H ∈ C[n1,...,nm] with the identifying vector pair (hre,him). If H is HCP,
then for a generically generated F ∈ Σ[x̃]d, Algorithm 3.3 has the following properties:

(1) for all k ≥ d/2, the relaxation (3.29) has an optimizer;

(2) for all t big enough, the sequence {z∗,k|2t} is bounded and each accumulation point is
a flat extension of y ∈ RN2n

d with ⟨RIJ , y⟩ = hre
IJ , ⟨TIJ , y⟩ = him

IJ , (I, J) ∈ E.
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Recall that the cardinality of the set E as in (3.16) is Ñ . Denote the real polynomial
vectors:

R(x̃) := (RIJ (x̃))(I,J)∈E, T (x̃) := (TIJ (x̃))(I,J)∈E,

where RIJ (x̃), TIJ (x̃) are given as in (3.20), with the length Ñ . It is clear that the vector
R(x̃) contains the elements RII(x̃) =

∏m
k=1(x

∗
ik
xik) for all I = (i1, . . . , im) ∈ S. Thus, there

exist vectors q1, q2 ∈ RÑ such that the polynomial qT1 R(x̃)+qT2 T (x̃) > 0 on K. So Algorithm
3.3 has the following properties by [20, Theorem 5.5].

Theorem 3.6. Let H ∈ C[n1,...,nm] with its identifying vector pair (hre,him). Then we
have:

(i) If (3.29) is infeasible for some k, then H is not HCP.

(ii) If H is not HCP, then (3.29) is infeasible for all k big enough.

Remark 3.7. From item (ii) of Theorem 3.6, if a Hermitian tensor H is not HCP, then
(3.29) is infeasible for some k, for any F (we don’t need F ∈ Σ[x̃]d). This implies that
our algorithm can always obtain a certificate for a Hermitian tensor H which is not HCP.
As shown in [20], under some almost necessary and sufficient conditions, Algorithm 3.3 has
finite convergence. In other words, it is very likely that Algorithm 3.3 has finite convergence.
Therefore, if the Hermitian tensor H is HCP, an HCP decomposition can be obtained by
Algorithm 3.3 in finite steps. Indeed, the finite convergence occurred in all our numerical
experiments.

Remark 3.8. As shown in Subsection 3.1, the Hermitian copositive tensor checking problem
is equivalent to solving a linear conic optimization problem (3.2) with the cone of HCP
tensors. The main difficulty to solve linear conic programming (3.2) is how to deal with
the cone of HCP tensors. Actually, it can be similarly solved by a hierarchy of semidefinite
relaxations like (3.29), and a semidefinite relaxation method similar to Algorithm 3.3 can
also be designed.

4 Numerical Experiments

In this section, we present some numerical experiments for checking whether a Hermitian
tensor is HCP or not by Algorithm 3.3. If it is, we can obtain an HCP decomposition; if not,
we will obtain a certificate for this. The computation is implemented on a Lenovo Laptop
with Intel Core i7-6600U CPU@2.60 GHz and RAM 16.0 GB, using MATLAB R2014a. We
use the software GloptiPoly 3 [12] and SeDuMi [32] to solve semidefinite relaxations (3.29).

Example 4.1. Consider the real Hermitian tensor H ∈ R[2,2] such that

Hijkl = i+ j + k + l

for all 1 ≤ i, j, k, l ≤ 2. As shown in [25, Example 3.3], it is R-Hermitian decomposable. We
apply Algorithm 3.3 and choose d = 4 and k = 2 in step 0. Algorithm 3.3 terminates at step
2 with k = 2, because (3.29) is infeasible. Thus, H is not HCP. It takes about 5 seconds.

Example 4.2. Consider the real Hermitian tensor H ∈ R[n1,n2] such that

Hijkl =
1

i+ j + k + l
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for all 1 ≤ i, k ≤ n1, 1 ≤ j, l ≤ n2. It is a Cauchy tensor and also R-Hermitian decomposable.
Case 1: n1 = n2 = 2. We apply Algorithm 3.3 and choose d = 4 and k = 2 in

step 0. Algorithm 3.3 terminates at step 3 with k = 2 and gives the HCP decomposition

H =
3∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2 +

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table 1.

Thus, H is HCP. It takes about 4 seconds.

i λi ui
1 vi1 ui

2 vi2
1 0.0052 0.1699 0.4835 0.4536 0.2384

0.2847 0.8102 0.7601 0.3994
2 0.0879 0.5230 0.7248 0.2406 0.8608

0.2624 0.3637 0.1207 0.4320
3 0.6153 0.3639 0.6545 0.2754 0.6965

0.3219 0.5792 0.2436 0.6163

Table 1: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Case 1 in Example 4.2.

Case 2: n1 = 3, n2 = 2. We apply Algorithm 3.3 and choose d = 4 and k = 2 in
step 0. Algorithm 3.3 terminates at step 3 with k = 2 and gives the HCP decomposition

H =
4∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2 +

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table 2.

Thus, H is HCP. It takes about 12 seconds.

i λi ui
1 vi1 ui

2 vi2
1 0.0146 0.5882 0.7386 0.0000 0.9492

0.1949 0.2447 0.0000 0.3145
0.0646 0.0811

2 0.2084 0.5358 0.5741 0.0000 0.8352
0.3528 0.3780 0.0000 0.5500
0.2323 0.2489

3 0.7008 0.0000 0.6242 0.4109 0.6103
0.0000 0.5747 0.3783 0.5619
0.0000 0.5292

4 0.0095 0.0000 0.4647 0.4021 0.4931
0.0000 0.5634 0.4875 0.5978
0.0000 0.6830

Table 2: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Case 2 in Example 4.2.

Example 4.3. Consider the real Hermitian tensor H ∈ R[2,2] such that

Hijkl = i ∗ j + k ∗ l

for all 1 ≤ i, j, k, l ≤ 2. Note that it is not partial-wise symmetric. So it is not R-Hermitian
decomposable. We apply Algorithm 3.3 and choose d = 4 and k = 2 in step 0. Algorithm
3.3 terminates at step 2 with k = 2, because (3.29) is infeasible. Thus, H is not an HCP
tensor. It takes about 3 seconds.

Example 4.4. Consider the real Hermitian tensor H ∈ R[n1,n2] such that

Hijkl = i ∗ k + j ∗ l
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for all 1 ≤ i, k ≤ n1, 1 ≤ j, l ≤ n2. Clearly, it is R-Hermitian decomposable.
Case 1: n1 = n2 = 2. We apply Algorithm 3.3 and choose d = 4 and k = 2 in

step 0. Algorithm 3.3 terminates at step 3 with k = 2 and gives the HCP decomposition

H =
2∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2 +

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table 3.

Thus, H is HCP. It takes about 4 seconds.

i λi ui
1 vi1 ui

2 vi2
1 10.0000 0.0000 0.7071 0.0000 0.4472

0.0000 0.7071 0.0000 0.8944
2 10.0000 0.0000 0.4472 0.1681 0.6868

0.0000 0.8944 0.1681 0.6868

Table 3: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Case 1 in Example 4.4.

Case 2: n1 = 2, n2 = 3. We apply Algorithm 3.3 and choose d = 4 and k = 2 in
step 0. Algorithm 3.3 terminates at step 3 with k = 2 and gives the HCP decomposition

H =
2∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2 +

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table 4.

Thus, H is HCP. It takes about 8 seconds.

i λi ui
1 vi1 ui

2 vi2
1 15.0000 0.4311 0.1189 0.0000 0.5774

0.8623 0.2377 0.0000 0.5774
0.0000 0.5774

2 28.0000 0.5462 0.4491 0.2673 0.0000
0.5462 0.4491 0.5345 0.0000

0.8018 0.0000

Table 4: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Case 2 in Example 4.4.

Example 4.5. Consider the random tensor H ∈ C[2,3] with a Hermitian decomposition

H =
2∑

i=1

[A(:, i), B(:, i)]⊗h, where

A =

[
1 +

√
−1 −1 +

√
−1

1−
√
−1 −1−

√
−1

]
, B =

 √
−1 0√
−1 2− 1

2

√
−1

1 +
√
−1 −

√
−1

 ,

and A(:, i) is the i-th column of A, B(:, i) is the i-th column of B. We apply Algorithm
3.3 and choose d = 4 and k = 2 in step 0. Algorithm 3.3 terminates at step 3 with k = 2

and gives the HCP decomposition H =
2∑

i=1

λi[(u
i
1+

√
−1vi1), (u

i
2+

√
−1vi2)]⊗h, where λi and

ui
1, v

i
1, u

i
2, v

i
2 are listed in Table 5. Thus, H is HCP. It takes about 8 seconds.

Example 4.6. Consider the random tensor H ∈ C[3,3] with an HCP decomposition H =
2∑

i=1

[A(:, i), B(:, i)]⊗h, where

A =

 1 +
√
−1 1

0
√
−1

1 0

 , B =

 √
−1 0

1
5

√
−1 3

5 +
√
−1

1 + 1
2

√
−1 1

2

√
−1

 .
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i λi ui
1 vi1 ui

2 vi2
1 21.0000 0.7071 0.0000 0.0000 0.0000

0.0000 0.7071 0.0000 0.8997
0.4234 0.1059

2 16.0000 0.0000 0.7071 0.3536 0.3536
0.7071 0.0000 0.3536 0.3536

0.7071 0.0500

Table 5: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Example 4.5.

Clearly, H is HCP. We apply Algorithm 3.3 and choose d = 4 and k = 2 in step 0. Algorithm

3.3 terminates at step 3 with k = 2 and gives the HCP decomposition H =
2∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2+

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table 6. Thus, H is HCP.

It takes about 27 seconds.

i λi ui
1 vi1 ui

2 vi2
1 3.2200 0.7071 0.0000 0.0000 0.0000

0.0000 0.7071 0.9191 0.0000
0.0000 0.0000 0.3379 0.2027

2 6.8700 0.0000 0.8165 0.2955 0.5911
0.0000 0.0000 0.0591 0.1182
0.4082 0.4082 0.7388 0.0000

Table 6: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Example 4.6.

Example 4.7. Consider the random tensor H ∈ C[3,3] with a Hermitian decomposition

H =
2∑

i=1

[A(:, i), B(:, i)]⊗h, where

A =

 −1 +
√
−1 −1

0 −
√
−1

−1 0

 , B =

 −
√
−1 0

− 1
5

√
−1 3

5 −
√
−1

1− 1
2

√
−1 − 1

2

√
−1

 .

Case 1. We apply Algorithm 3.3 to H and choose d = 4 and k = 2 in step 0. Algorithm

3.3 terminates at step 3 with k = 2 and gives the HCP decomposition H =
2∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2+

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table 7. Thus, H is HCP.

It takes about 25 seconds. This example also verifies the results in Remark 2.3.

i λi ui
1 vi1 ui

2 vi2
1 3.2200 0.7071 0.0000 0.0000 0.0000

0.0000 0.7071 0.0000 0.9191
0.0000 0.0000 0.2027 0.3379

2 6.8700 0.5774 0.5774 0.5911 0.2955
0.0000 0.0000 0.1182 0.0591
0.0000 0.5774 0.0000 0.7388

Table 7: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Case 1 in Example 4.7.

Case 2. We denote the real part of H by Hre. As shown in Proposition 2.2, we know
that Hre is also HCP. By the proof of Proposition 2.2, Hre has an HCP decomposition as
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in (2.5). We apply Algorithm 3.3 to the tensor Hre and choose d = 4 and k = 2 in step
0. Algorithm 3.3 terminates at step 3 with k = 2 and gives a different HCP decomposition

Hre =
4∑

i=1

λi[(u
i
1 +

√
−1vi1), (u

i
2 +

√
−1vi2)]⊗h, where λi and ui

1, v
i
1, u

i
2, v

i
2 are listed in Table

8. Thus, Hre is HCP. It takes about 32 seconds.

i λi ui
1 vi1 ui

2 vi2
1 3.4350 0.5774 0.5774 0.5911 0.2955

0.0000 0.0000 0.1182 0.0591
0.0000 0.5774 0.0000 0.7388

2 1.6100 0.7071 0.0000 0.0000 0.0000
0.0000 0.7071 0.4426 0.8055
0.0000 0.0000 0.3404 0.1985

3 1.6100 0.0000 0.7071 0.0000 0.0000
0.7071 0.0000 0.5686 0.7221
0.0000 0.0000 0.0497 0.3909

4 3.4350 0.0000 0.8165 0.0000 0.6608
0.0000 0.0000 0.0000 0.1322
0.4082 0.4082 0.6608 0.3304

Table 8: The values of λi and ui
1, v

i
1, u

i
2, v

i
2 for Case 2 in Example 4.7.

Example 4.8. Consider the random tensor H ∈ C[5,4] with a Hermitian decomposition

H =
2∑

i=1

[A(:, i), B(:, i)]⊗h, where

A =


1 +

√
−1 1

2 +
√
−1√

−1 1
2 −

√
−1

2 +
√
−1 1 + 2

√
−1

−
√
−1 −2

√
−1

1 +
√
−1 2

√
−1

 , B =


−1 + 2

√
−1 − 1

2

√
−1

−
√
−1 1

2 + 1
2

√
−1

1 + 2
√
−1 1

2 − 1
2

√
−1

−
√
−1 −2

√
−1

 .

We apply Algorithm 3.3 and choose d = 4 and k = 2 in Step 0. Algorithm 3.3 terminates
at step 2 with k = 2, because (3.29) is infeasible. Thus, H is not HCP. It takes about 480
seconds.

5 Conclusions

In this paper, we studied (real) Hermitian completely positive tensors, (real) Hermitian
completely positive decompositions and some related topics. We gave some basic properties
and relationships of (real) Hermitian completely positive cone and (real) Hermitian coposi-
tive cone in the Hermitian tensor space. We formulated the Hermitian completely positive
tensors checking and decomposition problems as a special truncated moment problem over
nonnegative multispheres. A semidefinite algorithm was also proposed. If a Hermitian tensor
is Hermitian completely positive, we can get a Hermitian completely positive decomposition;
if not, a certificate can be obtained.
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