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of the error bounds under data perturbations (c.f. [13, 32]). In 1994, Luo and Tseng
[13] studied perturbation analysis of error bounds for linear inequality systems. Recently,
Kruger, López and Théra [10] studied the perturbation of error bounds for real-valued convex
functions. In paticular, they used the radius of error bounds to study the stability of error
bounds. On the other hand, in many optimization problems, we need to deal with a family
(finite or infinite) of inequalities rather than a single inequality. For example, in semi-infinite
programming, there are infinitely many inequality constraints. Hence many authors studied
the error bounds for inequality systems such as the inequality/equality systems and the
semi-infinite constraint systems (see [9, 10, 11, 15, 16, 17, 26, 28, 33] and references therein
for details).

Throughout this paper, let X and Y are Banach spaces, K is a closed convex cone in Y
and ∞Y is the abstract infinity in Y which satisfies:

α · ∞Y = ∞Y , y +∞Y = ∞Y ,

0 · ∞Y = 0, y ≤K ∞Y , ∥∞∥ = +∞

for any α ∈ R+ and y ∈ Y . Let Y • := Y ∪ {∞Y } and F : X → Y • be a vector-valued
function. Very recently, Zheng and Ng [32] studied the stability of error bounds for the
following conic inequality

F (x) ≤K F (x̄) (CIE)

where Y is ordered by the cone K and x̄ ∈ dom(F ) := {x ∈ X | F (x) ∈ Y }. Recall that
(CIE) has a local error bound at x̄ if there exist τ, δ ∈ (0,+∞) such that

τd(x, S(F, x̄,K)) ≤ d(F (x)− F (x̄),−K) ∀x ∈ B(x̄, δ), (1.2)

where S(F, x̄,K) := {x ∈ X | F (x) ≤K F (x̄)} denotes the solution set of (CIE) and
d(∞Y ,−K) is understood as +∞. In the case when Y = R and K = R+, (1.2) reduces to
(1.1). It is worth noting that the conic inequality model (CIE) contains many constraint
systems in optimization. For example, when Y = Rn+m, K = Rn

+ × {0} ⊂ Y, F (x) =
(f1(x), · · · , fn+m(x)) and F (x̄) = 0, (CIE) reduces to

fi(x) ≤ 0 for i = 1, · · · , n and fi(x) = 0 for i = n+ 1, · · · , n+m.

When T is a compact metric space, Y = C(T,R) is the Banach space of continuous functions
h : X → R. and K = {h ∈ C(T,R) | h(t) ≥ 0 ∀t ∈ T}, (CIE) reduces to semi-infinite
constraint systems. The constraint systems in conic optimization problems can also be
viewed as examples of (CIE).

Let Er(F ) be the modulus of the error bound of the conic inequality (CIE):

Er(F ) := sup{τ > 0 | (1.2) holds for some δ > 0}

= lim inf
x→x̄

x∈dom(F )\S(F,x̄,K)

d(F (x)− F (x̄),−K)

d(x, S(F, x̄,K))
. (1.3)

Clearly, F has an error bound at x̄ if and only if Er(F ) > 0. Recall [32] that (CIE) has a
stable error bound at x̄ ∈ dom(F ), if there exist η, r ∈ (0,+∞) such that Er(F +H) ≥ η
for any H : X → Y with

∥H∥x̄ := lim sup
x→x̄

∥H(x)−H(x̄)∥
∥x− x̄∥

< r. (1.4)
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Let Y ∗ be the dual of Y and

K+ := {y∗ ∈ Y ∗ | ⟨y∗, x⟩ ≥ 0 ∀x ∈ K} and IK+ := {y∗ ∈ K+ : ∥y∗∥ = 1}. (1.5)

In order to study the stability of error bound for (CIE), Zheng and Ng [32] adopt the
following subdifferential for the vector-valued function F at x̄:

∂KF (x̄) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(epiK(F ), (x̄, F (x̄))) for some y∗ ∈ IK+}

where epiK(F ) := {(x, y) ∈ X × Y : F (x) ≤K y} and N(epiK(F ), (x̄, F (x̄))) is the Clarke
normal cone to epiK(F ) at (x̄, F (x̄)) (see also [31]). In [32], using this kind of subdifferential
for vector-valued functions, Zheng and Ng characterized the stability of error bounds for
conic inequalities. For a closed subset A of a Banach space X, we define the boundary
of A as bd(A) := cl(A) \ int(cl(A)). It is easy to see that 0 /∈ bd(∂KF (x̄)) if and only if
0 ∈ int(cl(∂KF (x̄))) or 0 /∈ cl(∂KF (x̄)). When 0 /∈ bd(∂KF (x̄)), we denote

D := d(0, bd(∂KF (x̄))). (1.6)

In the case when 0 ∈ int(cl(∂KF (x̄))), we have

D = sup{r > 0 | rBX∗ ⊂ cl(∂KF (x̄))} > 0.

In the case when 0 /∈ cl(∂KF (x̄)), we obtain

D = d(0, ∂KF (x̄)) > 0.

Two main theorems extracted from [32] can be stated as follows (see [32, Theorem 4.1 and
Theorem 4.4]):

Theorem 1.1. Let F ∈Γ. Suppose that F is w-quasi-subsmooth at x̄ and 0∈ int(cl(∂KF (x̄))).
Then for any H : X → Y with F + H ∈ Γ and ∥H∥x̄ < D, and any ε ∈ (0,+∞), there
exists δ > 0 such that

∥x− x̄∥ ≤ 1 + ε

D − ∥H∥x̄
d((F +H)(x)− (F +H)(x̄),−K) ∀ x ∈ B(x̄, δ),

where the definitions of the notation Γ and the notion ‘w-quasi-subsmooth’ are given in
section 3.

Theorem 1.2. Suppose that K has a nonempty interior. Let F ∈ Γ be such that 0 /∈
cl(∂KF (x̄)). Let H : X → Y be such that F +H ∈ Γ and ∥H∥x̄ < d(0, ∂KF (x̄)). Then the
following statements hold:

(i) If X,Y are Asplund spaces and F +H is w-quasi-subsmooth at x̄, then

Er(F +H) ≥ γK(d(0, ∂KF (x̄))− ∥H∥x̄),

where γK := sup
y∈K∩SY

{r > 0 | B(y, r) ⊂ K}.

(ii) If F +H is quasi-subsmooth at x̄ and continuous on some neighborhood of x̄, then

Er(F +H) ≥ γK(d(0, ∂KF (x̄))− ∥H∥x̄).

(iii) If epiK(F +H) is convex, then

Er(F +H) ≥ γK(d(0, ∂KF (x̄))− ∥H∥x̄).
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Under the assumption that int(K) ̸= ∅, Theorem 1.1 and Theorem 1.2 imply that 0 /∈
bd(∂KF (x̄)) is a sufficient condition for F to have a stable error bound at x̄. It is worth
mentioning that, under the assumption int(K) ̸= ∅ and some other mild assumptions, Zheng
and Ng proved that 0 /∈ bd(∂KF (x̄)) is also a necessary condition for F to have a stable
error bound at x̄. However, the assumption that int(K) ̸= ∅ is restrictive sometimes. For
example, when Y = Rn+m, K = Rn

+ × {0} ⊂ Y , it is easy to see that the interior of K is
empty. Hence it is necessary to consider the stability of error bounds for (CIE) in the case
when the interior of the ordering cone is not necessarily nonempty. On the other hand, in
order to relax the condition that the ordering cone has a nonempty interior, Zheng and Ng
[27] introduce the notion of the dually compact cone (see section 3 for definition). This is
a broad class of cones including every closed convex cone in finite dimensional spaces and
every closed convex cone with a nonempty interior in Banach spaces (see [27]). In this paper,
motivated by [10] and [32], we consider the stability of error bounds for conic inequalities
under the assumption that the ordering cone K is dually compact. Under this assumption,
we establish some sufficient conditions of the stability of error bound for conic inequality
(CIE), and provide the lower bound estimation for the radius of error bound. Our results
extend some results in [32] and [10].

2 Preliminaries

Let X∗ be the topological dual of X. Let BX be the closed unit ball of X, and SX be the
unit sphere of X. We use B(x, r) and B[x, r] to denote the open and closed balls with the
center x and radius r, respectively. For a set M ⊂ X, the support functional of M is defined
by

σM (x∗) := sup
x∈M

⟨x∗, x⟩ ∀ x∗ ∈ X∗.

For a closed subset A of X and a point x̄ ∈ A, the Clarke tangent cone to A at x̄ is defined
by

T (A, x̄) := {v ∈ X | ∀xn
A→ x̄ and ∀tn ↓ 0 ∃vn → v s.t. xn + tnvn ∈ A ∀n ∈ N},

and the Clarke normal cone to A at x̄ is defined by

N(A, x̄) := {x∗ ∈ X∗ | ⟨x∗, h⟩ ≤ 0 ∀h ∈ T (A, x̄)}.

For ε ≥ 0, we use N̂ε(A, x̄) to denote the set of Fréchet ε-normals to A at x̄, which is defined
by

N̂ε(A, x̄) :=

{
x∗ ∈ X∗ | lim sup

x
A→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ ε

}
.

When ε = 0, N̂ε(A, x̄) is a convex cone which is called the Fréchet normal cone to A at x̄.

In this case, N̂ε(A, x̄) is denoted by N̂(A, x̄). The Mordukhovich normal cone to A at x̄ is
defined by

N(A, x̄) := {x∗ ∈ X∗ | ∃xn
A→ x̄, εn ↓ 0 and x∗

n
w∗

→ x∗ s.t. x∗
n ∈ N̂εn(A, xn) ∀n ∈ N}.

For x̄ /∈ A, N(A, x̄), N̂ε(A, x̄), N̂(A, x̄) and N(A, x̄) are the empty sets. For a proper lower
semicontinuous function φ : X → R ∪ {+∞}, we use dom(φ) to denote the domain of φ,
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and use epi(φ) to denote the epigraph of φ. The Clarke subdifferential of φ at x ∈ dom(φ)
is defined by

∂φ(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N(epi(φ), (x, φ(x)))}.

The Fréchet subdifferential of φ at x ∈ dom(φ) is defined as

∂̂φ(x) :=

{
x∗ ∈ X∗ | lim inf

h→0

φ(x+ h)− φ(x)− ⟨x∗, h⟩
∥h∥

≥ 0

}
.

The limiting subdifferential of φ at x ∈ dom(φ) is defined as

∂φ(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N(epi(φ), (x, φ(x)))}.

When x /∈ dom(φ), ∂φ(x), ∂̂φ(x) and ∂φ(x) are the empty sets. It is well known that

∂̂φ(x) ⊂ ∂φ(x) ⊂ ∂φ(x),

∂̂φ(x) = {x∗ ∈ X∗ | (x∗,−1) ∈ N̂(epi(φ), (x, φ(x)))},

and that when f is convex,

∂̂φ(x) = ∂φ(x) = ∂φ(x) = {x∗ ∈ X∗ | ⟨x∗, u⟩ ≤ φ(x+ u)− φ(x) ∀ u ∈ X}

for all x ∈ dom(φ). Let’s recall that a Banach space X is an Asplund space if every
continuous convex function on X is Fréchet differentiable on a dense Gδ-set of X. The
following results on normal cones and subdifferentials are well known in variational analysis
and are useful for us (cf. [14]).

Lemma 2.1. Let A be a closed subset in X. Let φ1, φ2 : X → R ∪ {+∞} be proper lower
semicontinuous functions such that φ1 is locally Lipschitz at x̄ ∈ dom(φ1)∩ dom(φ2). Then
the following statements hold:

(i) ∂(φ1 + φ2)(x̄) ⊂ ∂φ1(x̄) + ∂φ2(x̄)

(ii) If X is an Asplund space, then for any x∗ ∈ ∂̂(φ1 + φ2)(x̄) and ε > 0, there exist

x1, x2 ∈ B(x̄, ε) such that |φi(xi)−φi(x̄)| < ε (i = 1, 2) and x∗ ∈ ∂̂φ1(x1)+ ∂̂φ2(x2)+
εBX∗ .

(iii) If X is an Asplund space, then N(A, a) = lim sup
v

A→a

N̂(A, v) for all a ∈ A, and N(A, a) =

c̄ow∗N(A, a).

We define the preorder ≤K in Y as: y1 ≤K y2 ⇔ y2 − y1 ∈ K. Let

K+ := {x∗ ∈ Y ∗ | ⟨x∗, y⟩ ≥ 0 ∀y ∈ K} and IK+ = {x∗ ∈ K+ | ∥x∗∥ = 1}. (2.1)

The epigraph of the vector-valued function F : X −→ Y • with respect to the ordering cone
K is defined by

epiK(F ) := {(x, y) ∈ X × Y | F (x) ≤K y}.

We say F isK-convex, if epiK(F ) is convex. For the epigraph epiK(F ), we have the following
results [32]:

Lemma 2.2. Let G : X → Y • be a function such that epiK(G) is closed. Then, for any
(x, y) ∈ epiK(G), the following statements hold:
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(i) N̂(epiK(G), (x, y)) ⊂ X∗ × (−K+).

(ii) If G is continuous at x, then

N(epiK(G), (x, y)) ⊂ N(epiK(G), (x,G(x))) ⊂ X∗ × (−K+).

Following [31] and [32], for x ∈ dom(F ), we adopt the following coderivative D∗
eF (x) :

Y ∗ ⇒ X∗ for F at x:

D∗
eF (x)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(epiK(F ), (x, F (x)))} ∀y∗ ∈ Y ∗,

and the following subdifferential for F at x:

∂KF (x) := D∗
eF (x)(IK+)

= {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(epiK(F ), (x, F (x))) for some y∗ ∈ IK+}.

where IK+ is defined as (2.1).
We adopt the following conventions. For ∅ ⊂ [0,+∞), inf ∅ is understood as +∞. For

a point z in a Banach space Z and the set ∅ in Z, d(x, ∅) is understood as +∞. For any
α ∈ (0,+∞], we set α

0 = +∞.

3 Main Results

As a useful extension of the convexity and smoothness, Aussel, Daniilidis and Thibault
introduced the notion of the subsmoothness of a closed set in [1]. Let A be a closed subset
in X. Recall that A is subsmooth at x̄ ∈ A if for any ε > 0 there exists δ > 0 such that

⟨x∗, u− v⟩ ≤ ε∥u− v∥ ∀u, v ∈ A ∩B(x̄, δ) and ∀x∗ ∈ N(A, v) ∩BX∗ . (3.1)

In [33], motivated by (3.1) and the primal-lower-nice property introduced by Poliquin (c.f.
[20]), Zheng and Wei introduced the quasi-subsmoothness for a proper lower semicontinuous
function φ : X → R ∪ {+∞}: φ is said to be quasi-subsmooth at x̄ ∈ dom(φ), if for any
ε, M ∈ (0,+∞) there exists δ > 0 such that

⟨x∗, u− v⟩ ≤ φ(u)− φ(v) + ε∥u− v∥ ∀u, v ∈ B(x̄, δ) and ∀x∗ ∈ ∂φ(v) ∩MBX∗ .

In [32], Zheng and Ng further extended the subsmoothness from the real-valued function to
the vector-valued function. Let F : X → Y • be a vector-valued function. Recall [32] that F
is said to be quasi-subsmooth at x̄ ∈ dom(F ) with respect to K if for any ε, M ∈ (0,+∞)
there exists δ > 0 such that

⟨x∗, u− v⟩ ≤ ⟨y∗, F (u)− F (v)⟩+ ε∥u− v∥

whenever u, v ∈ B(x̄, δ), y∗ ∈ IK+ and x∗ ∈ D∗
eF (v)(y∗) ∩MBX∗ (where ⟨y∗,∞Y ⟩ := ∞)

and that F is said to be w-quasi-subsmooth at x̄ ∈ dom(F ) with respect to K if for any
ε, M ∈ (0,+∞) there exists δ > 0 such that

⟨x∗, u− x̄⟩ ≤ ⟨y∗, F (u)− F (x̄)⟩+ ε∥u− x̄∥

whenever u ∈ B(x̄, δ), y∗ ∈ IK+ and x∗ ∈ D∗
eF (x̄)(y∗) ∩ MBX∗ . Having x̄ ∈ X a fixed

element, we adopt the following notations: Γ := {G : X → Y • | x̄ ∈ dom(G) and epiK(G)
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is closed} and

F1 := {G ∈ Γ | G is w-quasi-subsmooth at x̄}
F2 := {G ∈ Γ | G is quasi-subsmooth at x̄ and

G is continuous on some neighborhood of x̄}
F3 := {G ∈ Γ | G is K-convex}.

For H : X → Y , following [32], we use the following notation

∥H∥x̄ := lim sup
x→x̄

∥H(x)−H(x̄)∥
∥x− x̄∥

.

Having now a fixed F ∈ Γ and ε ∈ [0,+∞], following [10], we adopt the following notations:

Pi(ε) := {G ∈ Fi | ∃ H : X → Y s.t. ∥H∥x̄ ≤ ε and G = F +H} (i = 1, 2, 3).

Then for G ∈ Γ, Er(G) := sup{τ > 0 | (1.2) holds for G and some δ > 0}. Clearly, G
has an error bound at x̄ if and only if Er(G) > 0. For the special case that K = X,
we have Er(G) = +∞. Indeed, in this case, we have S(G, x̄,K) = dom(G). It follows that
d(x, S(G, x̄,K)) = 0 for every x ∈ dom(G). For x /∈ dom(G), we have d(G(x)−G(x̄),−K) =
+∞. Hence we have (1.2) holds for every τ > 0 and Er(G) = +∞. Following [10], we denote

Eri(ε) := inf{Er(G) | G ∈ Pi(ε)} (i = 1, 2, 3).

and define the radius of error bound of F at x̄ with respect to the function classes Fi as
follows:

Ri := inf{ε > 0 | Eri(ε) = 0} (i = 1, 2, 3).

When Ri > 0 (i = 1, 2, 3), for any H : X → Y with ∥H∥x̄ < Ri and F + H ∈ Fi, we
have Er(F +H) > 0, and hence F +H has a local error bound at x̄. However, in practical
applications, it is not enough only to know the existence of error bound for G, and we need
to know the value of τ such that (1.2) holds. For this purpose, we consider the following
radius of error bound of F at x̄. For any positive real number κ > 0, we define the radius
of error bound of F at x̄ with κ by

Ri(κ) := inf{ε > 0 | Eri(ε) < κ} (i = 1, 2, 3).

When Ri(κ) > 0 (i = 1, 2, 3), for any H : X → Y with ∥H∥x̄ < Ri and F + H ∈ Fi, we
have Er(F +H) ≥ κ. This provides us not only with the existence of error bound of F +H
at x̄, but also with the value of τ such that (1.2) holds. Recall [32] that F has a stable error
bound at x̄ with respect to the function class Fi (i = 1, 2, 3), if there exist κ, δ ∈ (0,+∞)
such that

Er(G) ≥ κ (3.2)

for any G ∈ Pi(δ) holds. It is easy to see that F has a stable error bound at x̄ with respect
to the function class Fi if and only if there exists κ > 0 such that Ri(κ) > 0 holds. In [32],
Zheng and Ng established their stability results on error bounds for conic inequalities (CIE)
under the assumption that the closed convex ordering cone K has a nonempty interior. Note
that K has a nonempty interior if and only if there exists y0 ∈ Y such that

K+ ⊂ {y∗ | ∥y∗∥ ≤ ⟨y∗, y0⟩}. (3.3)
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In [27], in order to relax the condition that the ordering cone has a nonempty interior, Zheng
and Ng introduced the notion of dually compact cone. Let K be a closed convex cone in a
Banach space Y . Recall that K is said to be dually compact if there exists a compact subset
C in Y such that

K+ ⊂ {y∗ | ∥y∗∥ ≤ σC(y
∗)}. (3.4)

When Y is a finite dimensional space, for every closed convex cone K ⊂ Y , we can take C
as the unit sphere in Y which is a compact subset that satisfies (3.4). When Y is a general
Banach space and K is a closed convex cone with a nonempty interior in Y , there exists
y0 ∈ Y such that (3.3) holds. For this case, we can take C as {y0}. Hence every closed
convex cone in finite dimensional spaces and every closed convex cone with a nonempty
interior in Banach spaces are dually compact. The rest of this article is devoted to the
sufficient condition of stability of error bounds for conic inequalities under the assumption
that the ordering cone is dually compact. To achieve this, we need the following lemmas
established in [32, Lemma 4.3 and Proposition 3.9].

Lemma 3.1. Let G ∈ Γ. Then for any t > Er(G), there exists {(x̄n, c̄n, ηn)} ⊂ X ×K ×
(0,+∞) such that

G(x̄n) + c̄n ̸= G(x̄) ∀n ∈ N, (3.5)

(x̄n, G(x̄n) + c̄n, ηn) → (x̄, G(x̄), 0) (3.6)

and

(0, 0) ∈ ∂̂(g + δepiKG + t∥ · −(x̄n, G(x̄n) + c̄n)∥n)(x̄n, G(x̄n) + c̄n) ∀n ∈ N, (3.7)

where

g(x, y) := ∥y −G(x̄)∥ and ∥(x, y)∥n := ∥x∥+ ηn∥y∥ ∀(x, y) ∈ X × Y. (3.8)

Lemma 3.2. Let H : X → Y be such that ∥H∥x̄ < +∞ and F +H ∈ Γ. Then

∂K(F +H)(x̄) ⊂ ∂KF (x̄) + ∥H∥x̄BX∗ .

With the help of Lemma 3.1 and Lemma 3.2, we will establish our main results below.
Noting that K = Y is a dually compact closed convex cone, Er(G) = +∞ holds for all
G ∈ Γ in this special case. Hence, Ri = Ri(κ) = +∞ (i = 1, 2, 3) for any κ > 0. Therefore,
we only need to consider the case when K ̸= Y .

Theorem 3.3. Let X and Y be Asplund spaces, K be dually compact and K ̸= Y . Suppose
that F is w-quasi-subsmooth at x̄ and 0 /∈ bd(∂KF (x̄)). Then

(i)

R1 ≥ D, (3.9)

where D is defined by (1.6).

(ii)

R1(κ) ≥ D − κM, ∀ κ <
D

M
, (3.10)

where M is a positive constant depending only on K and D is defined by (1.6). Con-
sequently, F has a stable error bound at x̄ with respect to the function class F1.
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Proof. Since K is a dually compact closed convex cone, there exists a compact subset C ⊂ Y
such that (3.4) holds. We will prove (3.10) holds for M := max

h∈C
∥h∥. Let κ < D

M . For any

G := F +H ∈ P1(D − κM), we claim that

Er(G) ≥ κ. (3.11)

Assume that (3.11) holds. By the definitions of Er1(D− κM) and R1(κ), we have Er1(D−
κM) ≥ κ and R1(κ) ≥ D − κM . It remains to prove (3.11). Since K ̸= Y , we have
K+ ̸= {0} and M := max

h∈C
∥h∥ ≥ 1 (by (3.4)). By the assumption that 0 /∈ bd(∂KF (x̄)),

we have 0 /∈ cl(∂KF (x̄)) or 0 ∈ int(cl(∂KF (x̄))) hold. For the first case, we have that
D = d(0, ∂KF (x̄)). Since G ∈ P1(D−κM), we have G = F +H ∈ F1 and ∥H∥x̄ ≤ D−κM .
For any t > Er(G), by Lemma 3.1, there exists {(x̄n, c̄n, ηn)} ⊂ X ×K × (0,+∞) such that
(3.5), (3.6) and (3.7) hold. Combining this with Lemma 2.1 (ii), there exist (xn, yn) and
(x̂n, ŷn) converging to (x̄, G(x̄)) such that ŷn ̸= G(x̄) and

(0, 0) ∈ ∂̂g(x̂n, ŷn)+ ∂̂δepiK(G)(xn, yn)+ t∂̂∥ ·−(x̄n, G(x̄n)+ c̄n)∥n(x̂n, ŷn)+
1

n
(BX∗ ×BY ∗),

where g(x, y) := ∥y −G(x̄)∥ and ∥(x, y)∥n := ∥x∥+ ηn∥y∥ for all (x, y) ∈ X × Y . It follows
from the fact ŷn ̸= G(x̄) that

(0, 0) ∈ 0× SY ∗ + N̂(epiK(G), (xn, yn)) + t(BX∗ × ηnBY ∗) +
1

n
(BX∗ ×BY ∗)

= 0× SY ∗ + N̂(epiK(G), (xn, yn)) + (t+
1

n
)BX∗ × (tηn +

1

n
)BY ∗ .

Thus there exist x∗
n ∈ (t+ 1

n )BX∗ , y∗n ∈ SY ∗ and z∗n ∈ (tηn + 1
n )BY ∗ such that

(x∗
n,−y∗n − z∗n) ∈ N̂(epiK(G), (xn, yn)). (3.12)

It follows from Lemma 2.2 (i) that y∗n + z∗n ∈ K+. By (3.4), we have that

σC(y
∗
n + z∗n) ≥ ∥y∗n + z∗n∥ ≥ 1− tηn − 1

n
.

Noting that C is compact, thus there exists hn ∈ C such that

⟨y∗n + z∗n, hn⟩ ≥ 1− tηn − 1

n
. (3.13)

Since {x∗
n}, {y∗n} and {z∗n} are bounded, we can assume that x∗

n
w∗

→ x∗ for some x∗ ∈ tBX∗

and that y∗n + z∗n
w∗

→ y∗ for some y∗ ∈ K+ (taking a subsequence if necessary). Thanks to
the compactness of C, we can assume that hn → h for some h ∈ C (taking a subsequence if
necessary). Let n → ∞ in (3.13), we have 1 ≤ ⟨y∗, h⟩ ≤ M∥y∗∥ and ∥y∗∥ ≥ 1

M . It follows
from (3.12) and Lemma 2.1 (iii) that

(x∗,−y∗) ∈ N(epiK(G), (x̄, G(x̄))) ⊂ N(epiK(G), (x̄, G(x̄))),

and hence x∗

∥y∗∥ ∈ D∗
eG(x̄)( y∗

∥y∗∥ ) ⊂ ∂KG(x̄). Since G ∈ F1, Lemma 3.2 tells us that

∂KG(x̄) = ∂K(F + H)(x̄) ⊂ ∂KF (x̄) + ∥H∥x̄BX∗ . Thus we have that x∗

∥y∗∥ ∈ ∂KF (x̄) +

∥H∥x̄BX∗ . It follows from the facts ∥H∥x̄ ≤ D − κM , ∥x∗∥ ≤ t and ∥y∗∥ ≥ 1
M that

d(0, ∂KF (x̄)) ≤ ∥x∗∥
∥y∗∥

+ ∥H∥x̄ ≤ tM +D − κM,
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and so κ ≤ t (noting that D = d(0, ∂KF (x̄))). Let t → Er(G), we have Er(G) ≥ κ. For the
second case when 0 ∈ int(cl(∂KF (x̄))), by Theorem ZN1, we have that

Er(G) = Er(F +H) ≥ D − ∥H∥x̄
1 + ε

≥ κM

1 + ε
≥ κ

1 + ε

for every ε ∈ (0,+∞). Letting ε → 0, we have Er(G) ≥ κ. Hence (3.11) holds. We complete
the proof of (ii). For (i), noting that R1 ≥ R1(κ) for all κ < D

M and letting κ → 0 in (3.10),
we have R1 ≥ D.

Remark 3.4. In Theorem 3.3, M can be taken as max
h∈C

∥h∥.

Note that, in Theorem 3.3, we assume that X and Y are Asplund spaces. We don’t know
whether or not Theorem 3.3 holds if the Asplund space assumption on X and Y is dropped.
However, with F2 or F3 replacing F1, we have the following theorems.

Theorem 3.5. Let X and Y be Banach spaces, K be dually compact and K ̸= Y . If F is
w-quasi-subsmooth at x̄ and 0 /∈ bd(∂KF (x̄)), then

(i)

R2 ≥ D, (3.14)

where D is defined by (1.6).

(ii)

R2(κ) ≥ D − κM, ∀ κ <
D

M
, (3.15)

where M is a positive constant depending only on K and D is defined by (1.6). Con-
sequently, F has a stable error bound at x̄ with respect to the function class F2.

Proof. Since (i) can be obtained by letting κ → 0 in (ii), we only prove (ii). Take M as in
Theorem 3.3. Similarly to the discussion in the proof of Theorem 3.3, we only need to prove
that (3.11) holds for all κ < D

M and all G := F +H ∈ P2(D − κM), and we only need to
prove (3.11) holds for the case when 0 /∈ cl(∂KF (x̄)) (the case when 0 ∈ int(cl(∂KF (x̄))) is
same as that of Theorem 3.3). Now, suppose that 0 /∈ cl(∂KF (x̄)). Since G ∈ P2(D− κM),
we have G = F +H ∈ F2 and ∥H∥x̄ ≤ D − κM . For any t > Er(G), by Lemma 3.1, there
exists {(x̄n, c̄n, ηn)} ⊂ X ×K × (0,+∞) such that (3.5), (3.6) and (3.7) hold. Combining
this with Lemma 2.1 (i), we have that

(0, 0) ∈∂g(x̄n, G(x̄n) + c̄n) + ∂δepiK(G)(x̄n, G(x̄n) + c̄n)

+ t∂∥ · −(x̄n, G(x̄n) + c̄n)∥n(x̄n, G(x̄n) + c̄n)

⊂0× SY ∗ +N(epiKG, (x̄n, G(x̄n) + c̄n)) + t(BX∗ × ηnBY ∗)

where g and ∥·∥n are defined by (3.8), and the last inclusion follows from the fact G(x̄n)+c̄n ̸=
G(x̄). Thus there exist x∗

n ∈ tBX∗ , y∗n ∈ SY ∗ and z∗n ∈ tηnBY ∗ such that (x∗
n,−y∗n −

z∗n) ∈ N(epiK(G), (x̄n, G(x̄n) + c̄n)). Noting that G ∈ F2, from Lemma 2.2 (ii) and
the fact G is continuous on some neighborhood of x̄, it follows that (x∗

n,−y∗n − z∗n) ∈
N(epiK(G), (x̄n, G(x̄n))) and y∗n + z∗n ∈ K+ for all sufficiently large n. Hence we have
y∗
n+z∗

n

∥y∗
n+z∗

n∥
∈ IK+ and

x∗
n

∥y∗
n+z∗

n∥
∈ D∗

eG(x̄n)
(

y∗
n+z∗

n

∥y∗
n+z∗

n∥

)
(noting that ∥y∗n + z∗n∥ ≥ 1− tηn). Since
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G is quasi-subsmooth at x̄ (noting that G ∈ F2), x̄n → x̄ and
{

x∗
n

∥y∗
n+z∗

n∥

}
is bounded, thus

for any ε > 0 there exists δ > 0 such that〈
x∗
n

∥y∗n + z∗n∥
, x− x̄n

〉
≤

〈
y∗n + z∗n
∥y∗n + z∗n∥

, G(x)−G(x̄n)

〉
+ ε∥x− x̄n∥ (3.16)

for all x ∈ B(x̄, δ) and sufficiently large n. Since ∥ x∗
n

∥y∗
n+z∗

n∥
∥ ≤ t × 1

1−tηn
= t

1−tηn
→ t

and ∥ y∗
n+z∗

n

∥y∗
n+z∗

n∥
∥ = 1, by taking a subnet if necessary we can assume that

x∗
n

∥y∗
n+z∗

n∥
w∗

→ x∗

for some x∗ ∈ tBX∗ and that
y∗
n+z∗

n

∥y∗
n+z∗

n∥
w∗

→ y∗ for some y∗ ∈ K+. It follows from the fact

y∗
n+z∗

n

∥y∗
n+z∗

n∥
∈ K+ ⊂ {c∗ | ∥c∗∥ ≤ σC(c

∗)} that σC

(
y∗
n+z∗

n

∥y∗
n+z∗

n∥

)
≥ ∥ y∗

n+z∗
n

∥y∗
n+z∗

n∥
∥ = 1. Thus there

exists hn ∈ C such that 〈
y∗n + z∗n
∥y∗n + z∗n∥

, hn

〉
≥ 1. (3.17)

Since C is compact, we can assume that hn → h for some h ∈ C (taking a subnet if
necessary). It follows from (3.17) that 1 ≤ ⟨y∗, h⟩ ≤ M∥y∗∥ and ∥y∗∥ ≥ 1

M . By (3.16) and
(3.6), we have ⟨x∗, x− x̄⟩ ≤ ⟨y∗, G(x)−G(x̄)⟩+ ε∥x− x̄∥ for all x ∈ B(x̄, δ), and so

⟨x∗, x− x̄⟩ − ⟨y∗, y −G(x̄)⟩ ≤ ⟨x∗, x− x̄⟩ − ⟨y∗, G(x)−G(x̄)⟩
≤ ε∥x− x̄∥
≤ ε∥x− x̄∥+ ε∥y −G(x̄)∥

for all (x, y) ∈ B((x̄, G(x̄)), δ) ∩ epiK(G). Hence (x∗,−y∗) ∈ N̂(epiK(G), (x̄, G(x̄))) ⊂
N(epiK(G), (x̄, G(x̄))) and x∗

∥y∗∥ ∈ D∗
eG(x̄)( y∗

∥y∗∥ ) ⊂ ∂KG(x̄). Then, by Lemma 3.2, we have

that x∗

∥y∗∥ ∈ ∂KG(x̄) = ∂K(F + H)(x̄) ⊂ ∂KF (x̄) + ∥H∥x̄BX∗ . From the facts ∥H∥x̄ ≤
D − κM , ∥x∗∥ ≤ t and ∥y∗∥ ≥ 1

M , it follows that

d(0, ∂KF (x̄)) ≤ ∥x∗∥
∥y∗∥

+ ∥H∥x̄ ≤ tM +D − κM,

so κ ≤ t (noting that D = d(0, ∂KF (x̄))). Let t → Er(G), we have Er(G) ≥ κ. The proof is
complete.

Theorem 3.6. Let X and Y be Banach spaces, K be dually compact and K ̸= Y . If F is
w-quasi-subsmooth at x̄ and 0 /∈ bd(∂KF (x̄)), then

(i)

R3 ≥ D, (3.18)

where D is defined by (1.6).

(ii)

R3(κ) ≥ D − κM, ∀ κ <
D

M
, (3.19)

where M is a positive constant depending only on K and D is defined by (1.6). Con-
sequently, F has a stable error bound at x̄ with respect to the function class F3.
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Proof. Take M as in Theorem 3.3. We only need to prove that (3.11) holds for all G :=
F +H ∈ P3(D − κM) in the case when 0 /∈ cl(∂KF (x̄)). Since G ∈ P3(D − κM), we have
G = F + H ∈ F3 and ∥H∥x̄ ≤ D − κM . For any t > Er(G), by Lemma 3.1, there exists
{(x̄n, c̄n, ηn)} ⊂ X×K× (0,+∞) such that (3.5), (3.6) and (3.7) hold. Combining this with
Lemma 2.1 (i), we have that

(0, 0) ∈∂g(x̄n, G(x̄n) + c̄n) + ∂δepiK(G)(x̄n, G(x̄n) + c̄n)

+ t∂∥ · −(x̄n, G(x̄n) + c̄n)∥n(x̄n, G(x̄n) + c̄n)

⊂0× SY ∗ +N(epiK(G), (x̄n, G(x̄n) + c̄n)) + t(BX∗ × ηnBY ∗)

where g and ∥·∥n are defined by (3.8), and the last inclusion follows from the fact G(x̄n)+c̄n ̸=
G(x̄). Thus there exist x∗

n ∈ tBX∗ , y∗n ∈ SY ∗ and z∗n ∈ tηnBY ∗ such that (x∗
n,−y∗n − z∗n) ∈

N(epiK(G), (x̄n, G(x̄n) + c̄n)). Since G ∈ F3, we have epiK(G) is convex, y∗n + z∗n ∈ K+(by
Lemma 2.2 (i)) and

⟨x∗
n, x− x̄n⟩ − ⟨y∗n + z∗n, y −G(x̄n)− c̄n⟩ ≤ 0 ∀(x, y) ∈ epiK(G). (3.20)

Since {x∗
n}, {y∗n} and {z∗n} are bounded, by taking a subnet if necessary we can assume that

x∗
n

w∗

→ x∗ for some x∗ ∈ tBX∗ and that y∗n+z∗n
w∗

→ y∗ for some y∗ ∈ K+. By (3.20) and (3.6),
we have

⟨x∗, x− x̄⟩ − ⟨y∗, y −G(x̄)⟩ ≤ 0 ∀(x, y) ∈ epiK(G),

and hence (x∗,−y∗) ∈ N(epiK(G), (x̄, G(x̄))). Then, by Lemma 3.2, we have that

x∗

∥y∗∥
∈ D∗

eG(x̄)

(
y∗

∥y∗∥

)
⊂ ∂KG(x̄) = ∂K(F +H)(x̄) ⊂ ∂KF (x̄) + ∥H∥x̄BX∗ .

It follows from the fact ∥x∗∥ ≤ t that

d(0, ∂KF (x̄)) ≤ ∥x∗∥
∥y∗∥

+ ∥H∥x̄ ≤ t

∥y∗∥
+ ∥H∥x̄. (3.21)

On the other hand, by the fact y∗n + z∗n ∈ K+ ⊂ {c∗ | ∥c∗∥ ≤ σC(c
∗)}, we have that

σC (y∗n + z∗n) ≥ ∥y∗n + z∗n∥ ≥ 1− tηn. Thus there exists hn ∈ C such that

⟨y∗n + z∗n, hn⟩ ≥ 1− tηn. (3.22)

Since C is compact, we can assume that hn → h for some h ∈ C (taking a subnet if
necessary). If follows from (3.22) that 1 ≤ ⟨y∗, h⟩ ≤ M∥y∗∥ and ∥y∗∥ ≥ 1

M . Hence, by
(3.21) and the fact that ∥H∥x̄ ≤ D − κM , we have that

d(0, ∂KF (x̄)) ≤ tM +D − κM,

which implies that t ≥ κ. Let t → Er(G), we have Er(G) ≥ κ. we complete the proof.

Remark 3.7. Our Theorem 3.3, Theorem 3.5 and Theorem 3.6 proved that 0 /∈ bd(∂KF (x̄))
is a sufficient condition for F to have a stable error bound at x̄ under the assumption that
the ordering cone K is dually compact. Zheng and Ng [32] proved the same conclusion
under the assumption that the ordering cone K has a nonempty interior (see Theorem 1.1
and Theorem 1.2 in section1). Our results extend some results in [32] from the case that
the ordering cone K has a nonempty interior to the case that the ordering cone K is dually
compact. It is worth mentioning that, under the assumption int(K) ̸= ∅ and some other
mild assumptions, Zheng and Ng proved that 0 /∈ bd(∂KF (x̄)) is also a necessary condition
for F to have a stable error bound at x̄.
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Remark 3.8. In the real-valued and convex setting, for a proper convex lower semi-
continuous function f : X → R ∪ {+∞}, Kruger, López and Théra [10] proved that
R3 = D. This implies that: if a lower semicontinuous function h : X → R satisfies that
∥h∥x̄ < d(0, bd(∂f(x̄))) and that f + h is convex, then f + h has a local error bound at x̄.
For the conic inequality setting (not necessarily convex), our Theorem 3.3 (i), Theorem 3.5
(i), Theorem 3.6 (i) show that the radius Ri (i = 1, 2, 3) of error bound for (CIE) with re-
spect to the function classes Fi (i = 1, 2, 3) are no less than D. Furthermore, we considered
another kind of radius of error bound for (CIE): Ri(κ) (i = 1, 2, 3). We proved that Ri(κ)
(i = 1, 2, 3) are no less than D − κM . This means that Er(F +H) ≥ κ when H : X → Y
satisfies ∥H∥x̄ < D − κM and F +H ∈ Fi.
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