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set-valued map and obtained Kuhn-Tucker conditions in the sense of weak efficiency. Fol-
lowing the line of Li [10], some scholars [4, 21–23] explored some (approximate) efficiency
of set-valued optimization problems in ordered linear spaces. Especially, Gutiérrez et al. [7]
studied the nonconvex separation functional in ordered linear spaces with applications to
vector equilibria. However, to the best of our knowledge, there are only a few scholars to
study approximate properly efficient solutions of set-valued optimization problems in ordered
linear spaces. Hence, investigating approximate proper efficiency of set-valued optimization
problems in ordered linear spaces is interesting. Motivated by references [4,7,10,21–23], we
will research ϵ-strong efficiency of set-valued optimization problems in ordered linear spaces
in this paper.

This paper is organized as follows. In Section 2, we give some preliminaries including
basic concepts and lemmas. In Section 3, we investigate some properties and existence condi-
tions of ϵ-strongly efficient points of the set. In Section 4, we establish scalarization theorems
of an unconstrained set-valued optimization problem in the sense of ϵ-strong efficiency.

2 Preliminaries

In this paper, we suppose that X and Y are two real linear spaces. 0 stands for the zero
element of every space. Let C be a nonempty subset in Y. The generated cone of C is
denoted by cone(C) := {λc|c ∈ C, λ ≥ 0}. C is called a convex cone iff C + C ⊆ C and
λC ⊆ C for any λ ≥ 0. A cone C is said to be pointed iff C ∩ (−C) = {0}. C is said to be
nontrivial iff C ̸= {0} and C ̸= Y. The ordering of Y associated with a convex cone C is the
relation defined by:

x ⪯ y ⇔ y − x ∈ C.

From now on, we suppose that Y is a real ordered linear spaces with nontrivial, pointed
and convex cone C. The algebraic dual of Y is denoted by Y ∗. The algebraic dual cone C+

of C is defined as C+ := {y∗ ∈ Y ∗|⟨y, y∗⟩ ⩾ 0,∀y ∈ C}, where ⟨y, y∗⟩ denotes the value of
the linear functional y∗ at the point y. Let a, b ∈ Y with a ⪯ b. The set [a, b] := {y ∈ Y |a ⪯
y ⪯ b} = {y ∈ Y |y − a ∈ C and b − y ∈ C} is called an order-interval with respect to C.
The ordered algebraic dual space Y bd of Y is defined as

Y bd := {y∗ ∈ Y ∗|y∗ is bounded on any order-interval [a, b] ⊆ Y }.
If Y := R2 and C := {x1, x2) ∈ R2|x1 ≥ 0 and x2 ≥ 0}. It is easy to verify that (1, 1) ∈ Y bd.

Definition 2.1 ([8]). Let K ⊆ Y . K is called ordering-bounded iff there exist a, b ∈ Y with
b− a ∈ C such that K ⊆ [a, b].

Definition 2.2 ([17]). Let K be a nonempty subset in Y . The algebaic interior of K is the
set

cor(K) := {k ∈ K|∀k′ ∈ Y, ∃λ′ > 0,∀λ ∈ [0, λ′], k + λk′ ∈ K}.

Definition 2.3 ([1]). Let K be a nonempty subset in Y . The vector closure of K is the set

vcl(K) := {k ∈ Y |∃k′ ∈ Y, ∀λ′ > 0,∃λ ∈]0, λ′], k + λk′ ∈ K}.

Remark 2.4. It is easy to show that, if K1 and K2 are two nonempty subsets in Y , then
vcl(K1 ∩K2) = vcl(K1) ∩ vcl(K2).

Definition 2.5 ([15]). Let K be a nonempty subset in Y . K is called balanced iff, ∀k ∈
K, ∀λ ∈ [−1, 1], λk ∈ K. K is called absorbent iff 0 ∈ cor(K).
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Definition 2.6 ( [23]). Let B be a nonempty convex subset in Y . B is a base of C iff
C = cone(B) and there exists a balanced, absorbent and convex set V such that 0 /∈ B + V
in Y .

Let B be a base of C. Write Bst := {y∗ ∈ Y ∗|there exists t > 0 such that ⟨b, y∗⟩ ≥
t, ∀b ∈ B} and Bbd := {y∗ ∈ Y bd|there exists t > 0 such that ⟨b, y∗⟩ ≥ t, ∀b ∈ B}.

Remark 2.7. Let y∗ ∈ Y ∗ \ {0}. Then, y∗ ∈ Bst iff there exists a balanced, absorbent and
convex set V such that ⟨y, y∗⟩ < 0 for any y ∈ V −B.

Remark 2.8. By the definitions of C+ and Bst, it is easy to verify that Bst + C+ = Bst.

Let K ⊆ Y be a nonempty set. Write ⟨K, y∗⟩ := {⟨k, y∗⟩|k ∈ K}.

Lemma 2.9 ( [8]). Let C1 and C2 be two convex cones in Y and y∗ ∈ Y ∗. Then, the
following two statements are equivalent:

(1) y∗ ∈ C+
1 − C+

2 ;

(2) There exist a balanced, absorbent and convex set U ⊆ Y and a real number α > 0 such
that ⟨y, y∗⟩ ≥ −α for any y ∈ C1 ∩ (U − C2).

Lemma 2.10 ([2]). Let K be a nonempty subset in Y . Then K+ = (vcl(K))+.

Remark 2.11. Let K ⊆ Y . It follows from Lemma 2.10 that y∗ ∈ Y ∗ \ {0} is bounded on
K iff y∗ is bounded on vcl(K).

Lemma 2.12 ([15]). Let {pi}i∈I be a family of seminorms on the linear space Y , where I is
an index set. Then, there exists a most coarse topology defined on Y , which coincides with
the linear structure and makes every pi be continuous on the Y . For the above topology, Y
is locally convex and the sets with the form {y ∈ Y | max

1⩽k⩽n
pik(y) < δ} formulate an open

neighborhood basis of 0, where δ > 0, n ∈ N, ik ∈ I(k = 1, 2, ..., n).

3 ϵ-Strongly Efficient Point

In [3], Cheng and Fu investigated strong efficiency in a locally convex space. Now, we
introduce a new notion of ϵ-strongly efficient point of a set in the ordered linear space.

From now on, we suppose that B is a basis of C unless otherwise specified.

Definition 3.1. LetK ⊆ Y and ϵ ∈ C. y ∈ K is called an ϵ-strongly efficient point ofK with
respect to B (denoted by y ∈ ϵ-GE(K,B)) iff, for any y∗ ∈ Y bd, there exist two balanced,
absorbent and convex sets U and V such that ⟨vcl(cone(K+ ϵ−y))∩ (U − cone(V +B)), y∗⟩
is bounded.

Remark 3.2. By Remarks 2.4 and 2.11, y ∈ ϵ-GE(K,B) iff , for any y∗ ∈ Y bd, there exist
two balanced, absorbent and convex sets U and V such that ⟨cone(K+ϵ−y)∩(U−cone(V +
B)), y∗⟩ is bounded.

Definition 3.3 ([23]). Let K ⊆ Y and ϵ ∈ C. y ∈ K is called an ϵ-weakly efficient point of
K (denoted by y ∈ ϵ-WE(K,C)) iff (K + ϵ− y) ∩ (−corC) = ∅.

Remark 3.4. It is easy to verify that ϵ-GE(K,B) ⊆ ϵ-WE(K,C). However, the following
example shows that the inclusion relation ϵ-WE(K,C) ⊆ ϵ-GE(K,B) does not hold.
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Example 3.5. Let K := {(y1, y2)|y1 ≤ 2, y2 ≥ 0}, ϵ = (1, 0), y = (2, 0), C := {(y1, y2)|y1 ≥
0, y2 ≥ 0} and B := {(y1, y2)|y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0}. It is easy to check that y ∈ ϵ-
WE(K,C). However, there exists y∗ = (−1, 1) ∈ Y bd such that ⟨vcl(cone(K + ϵ − y)) ∩
(U − cone(V +B)), y∗⟩ is unbounded for any balanced, absorbent and convex sets U and V .
Hence, y /∈ ϵ-GE(K,B). Thus, the inclusion relation ϵ-WE(K,C) ⊆ ϵ-GE(K,B) does not
hold.

The following proposition will be used to derive the scalarization theorem of the set-
valued optimization problem in Section 4.

Proposition 3.6. Let ϵ ∈ C, y ∈ ϵ-GE(K,B) and y∗ ∈ Bbd. Then, there exist two balanced,
absorbent and convex sets U and V such that ⟨vcl(cone(K+C+ϵ−y))∩(U−cone(V +B)), y∗⟩
is bounded.

Proof. We suppose that, for any balanced, absorbent and convex sets U and V , ⟨vcl(cone(K+
C + ϵ− y)) ∩ (U − cone(V +B)), y∗⟩ is unbounded. According to Remarks 2.4 and 2.11,

⟨cone(K + C + ϵ− y) ∩ (U − cone(V +B)), y∗⟩ (3.1)

is unbounded for any balanced, absorbent and convex sets U and V . Let V = U in (3.1).
Then, ⟨cone(K + C + ϵ − y) ∩ (U − cone(U + B)), y∗⟩ is unbounded for any balanced,
absorbent and convex set U . Since y ∈ ϵ-GE(K,B), there exist two balanced, absorbent
and convex sets U ′ and V ′ such that ⟨cone(K+ ϵ−y)∩ (U ′− cone(V ′+B)), y∗⟩ is bounded.
Write W := U ′ ∩ V ′. Clearly, ⟨cone(K + ϵ − y) ∩ (W − cone(W + B)), y∗⟩ is bounded.
Let p(y) := |⟨y, y∗⟩| for any y ∈ Y . It is easy to check that p is a seminorm on Y . By
Lemma 2.12, there exists a topology τ induced by the seminorm p such that (τ, Y ) is locally
convex and {y ∈ Y |⟨y, y∗⟩ ∈ δU ′′}δ>0 formulates an open neighborhood basis of 0, where
U ′′ = (−1, 1). Write Un := {y ∈ Y |⟨y, y∗⟩ ∈ 1

nU
′′} for any n ∈ N. Therefore,

⟨cone(K + C + ϵ− y) ∩ (Un − cone(Un +B)), y∗⟩

is unbounded for any n ∈ N. Thus, for any n ∈ N, there exists rn ∈ ⟨cone(K +C + ϵ− y) ∩
(Un − cone(Un +B)), y∗⟩ such that |rn| > n. Hence, there exists

yn ∈ cone(K + C + ϵ− y) ∩ (Un − cone(Un +B)) (3.2)

such that |⟨yn, y∗⟩| = |rn| > n. Thus, we have

lim
n→∞

|⟨yn, y∗⟩| = +∞. (3.3)

By (3.2), there exist λn ≥ 0, kn ∈ K, cn ∈ C, un ∈ Un, βn ≥ 0, vn ∈ Un and bn ∈ B such that

yn = λn(kn + cn + ϵ− y) = un − βn(vn + bn),∀n ∈ N. (3.4)

It follows from (3.4) that

⟨yn, y∗⟩ = ⟨un, y
∗⟩ − βn(⟨vn, y∗⟩+ ⟨bn, y∗⟩),∀n ∈ N. (3.5)

Clearly,
lim
n→∞

⟨un, y
∗⟩ = lim

n→∞
⟨vn, y∗⟩ = 0. (3.6)

Since y∗ ∈ Bbd and B is an ordering-bounded basis of C, it follows from (3.3),(3.5) and (3.6)
that the sequence {βn} is unbounded.
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Because cn ∈ C, there exist ρn ≥ 0 and b′n ∈ B such that cn = ρnb
′
n. Thus, it follows

from (3.4) that

λn(kn + ϵ− y) = un − βn(vn + bn)− λnρnb
′
n,∀n ∈ N. (3.7)

Case one. If some βn = 0, it follows from (3.7) that

λn(kn + ϵ− y) ∈ Un − C = Un − cone(B) ⊆ Un − cone(Un +B).

Case two. If some βn ̸= 0, we write αn := βn+λnρn

βn
≥ 1. Since B is a convex set and

1
αn

+ λnρn

αnβn
= 1, it follows from (3.7) that

λn(kn + ϵ− y) = un − βnαn

[ 1

αn
vn +

( 1

αn
bn +

λnρn
αnβn

b′n

)]
∈ Un−βnαn(Un+B) ⊆ Un−cone(Un+B). (3.8)

Cases one and two show that

λn(kn + ϵ− y) ∈ Un − cone(Un +B),∀n ∈ N. (3.9)

Clearly,
λn(kn + ϵ− y) ∈ cone(K + ϵ− y),∀n ∈ N. (3.10)

According to (3.9) and (3.10), we have

λn(kn + ϵ− y) ∈ cone(K + ϵ− y) ∩ (Un − cone(Un +B)),∀n ∈ N. (3.11)

On the other hand, there exists N ∈ N such that

Un ⊆ W,∀n > N. (3.12)

Since ⟨cone(K + ϵ − y) ∩ (W − cone(W + B)), y∗⟩ is bounded, it follows from (3.11) and
(3.12) that the sequence {⟨λn(kn + ϵ− y), y∗⟩} is bounded.

As the sequence {βn} is unbounded, there exists N ′ ∈ N such that

βn > 0,∀n > N ′.

Therefore, there exists b′′n ∈ B such that

b′′n =
1

αn
bn +

λnρn
αnβn

b′n,∀n > N ′. (3.13)

By (3.8) and (3.13), we have

λn(kn + ϵ− y) = un − βnαn

( 1

αn
vn + b′′n

)
,∀n > N ′. (3.14)

Since y∗ ∈ Bbd and the sequence {βn} is unbounded, it follows from (3.6) and (3.14) that

lim
n→∞

⟨λn(kn + ϵ− y), y∗⟩ = lim
n→∞

⟨
un − βnαn

( 1

αn
vn + b′′n

)
, y∗

⟩
= ∞,

which contradicts that the sequence {⟨λn(kn+ϵ−y), y∗⟩} is bounded. Hence, ⟨vcl(cone(K+
C + ϵ− y)) ∩ (U − cone(V +B)), y∗⟩ is bounded.
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Remark 3.7. Though ⟨vcl(cone(K + C + ϵ − y)) ∩ (U − cone(V + B)), y∗⟩ is bounded in
Proposition 3.6, we cannot assert that y ∈ ϵ-GE(K + C,B). The following two examples
shows that both ϵ-GE(K,B) ⊆ ϵ-GE(K +C,B) and ϵ-GE(K +C,B) ⊆ ϵ-GE(K,B) do not
hold.

Example 3.8. Let K := [1, 2] × [1, 2], C := {(y1, y2)|y1 ∈ R, y2 > 0} ∪ {(0, 0)} and B :=
{(y1, y2)|y1 ∈ R, y2 = 1}. Take ϵ = (0, 1) and y = (1, 1). For any y∗ ∈ Y bd, there exist
balanced, absorbent and convex sets U := {(y1, y2)|y21 + y22 = 0.01} and V = U such that
⟨vcl(cone(K + ϵ − y)) ∩ (U − cone(V + B)), y∗⟩ is bounded. Hence, y ∈ ϵ-GE(K,B). On
the other hand, there exists y∗ = (−1, 0) ∈ Y bd \Bbd such that ⟨vcl(cone(K +C + ϵ− y))∩
(U − cone(V +B)), y∗⟩ is unbounded for any balanced, absorbent and convex sets U and V .
Therefore, y /∈ ϵ-GE(K+C,B). Thus, the inclusion relation ϵ-GE(K,B) ⊆ ϵ-GE(K+C,B)
does not hold.

Example 3.9. Let K := {(1, 1)}, ϵ = (1, 1), y = (2, 2), C := {(y1, y2)|y1 ≥ 0, y2 ≥ 0} and
B := {(y1, y2)|y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0}. It is easy to check that y ∈ ϵ-GE(K + C,B).
However, y /∈ ϵ-GE(K,B). Hence, the inclusion relation ϵ-GE(K + C,B) ⊆ ϵ-GE(K,B)
does not hold.

Theorem 3.10. Let ϵ ∈ C and K be a nonempty convex set in Y . Let y ∈ ϵ-GE(K,B).
Then, for any y∗ ∈ Y bd \ (vcl(cone(K + ϵ− y)))+, there exist y∗1 ∈ (vcl(cone(K + ϵ− y)))+

and y∗2 ∈ Bst such that y∗ = y∗1 − y∗2 .

Proof. Since y ∈ ϵ-GE(K,B) and y∗ ∈ Y bd, there exist two balanced, absorbent and convex
sets U and V such that ⟨vcl(cone(K+ ϵ−y))∩ (U − cone(V +B)), y∗⟩ is bounded. It follows
from Lemma 2.9 that there exist y∗1 ∈ (vcl(cone(K + ϵ − y)))+ and y∗2 ∈ (cone(V + B))+

such that
y∗ = y∗1 − y∗2 . (3.15)

Now, we will show that y∗2 ∈ Bst. According to y∗2 ∈ (cone(V +B))+, we have

⟨b+ v, y∗2⟩ ≥ 0,∀b ∈ B, ∀v ∈ V. (3.16)

Since V is balanced, it follows from (3.16) that

⟨b, y∗2⟩ ≥ ⟨v, y∗2⟩,∀b ∈ B, ∀v ∈ V. (3.17)

As y∗ ∈ Y bd \ (vcl(cone(K + ϵ − y)))+, it follows from (3.15) that y∗2 ̸= 0. Since V is
absorbent, there exists v′ ∈ V such that

⟨v′, y∗2⟩ > 0. (3.18)

Using (3.17) and (3.18), we obtain

⟨b, y∗2⟩ ≥ sup
v∈V

{⟨v, y∗2⟩} ≥ ⟨v′, y∗2⟩ > 0,∀b ∈ B,

which implies y∗2 ∈ Bst.

Let K ⊆ Y, ϵ ∈ C and y∗ ∈ Y +. Write ϵ-Min(K, y∗) := {y ∈ K|⟨y, y∗⟩ ≤ ⟨y, y∗⟩ +
⟨ϵ, y∗⟩,∀y ∈ K}.

Theorem 3.11. Let ϵ ∈ C and K be a nonempty convex set in Y . Let y ∈ ϵ-GE(K,B).
Then, for any y∗ ∈ Y bd \ (vcl(cone(K + ϵ− y)))+, there exists y∗1 ∈ (vcl(cone(K + ϵ− y)))+

such that y∗1 ∈ y∗ +Bst and y ∈ ϵ-Min(K, y∗1)
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Proof. Since y ∈ ϵ-GE(K,B) and y∗ ∈ Y bd, it follows from Theorem 3.10 that, for any
y∗ ∈ Y bd \ (vcl(cone(K + ϵ − y)))+, there exist y∗1 ∈ (vcl(cone(K + ϵ − y)))+ and y∗2 ∈ Bst

such that (3.15) holds. Hence, y∗1 ∈ y∗ + Bst and ⟨vcl(cone(K + ϵ − y)), y∗1⟩ ≥ 0. Clearly,
⟨K + ϵ− y, y∗1⟩ ≥ 0, i.e.,

⟨y, y∗1⟩ ≤ ⟨y, y∗1⟩+ ⟨ϵ, y∗1⟩,∀y ∈ K,

which implies y ∈ ϵ-Min(K, y∗1).

Theorem 3.12. Let ϵ ∈ C, y ∈ Y and K be a nonempty convex set in Y . For any y∗ ∈ Y bd,
there exist y∗1 ∈ (vcl(cone(K + ϵ− y)))+ and y∗2 ∈ Bst such that y∗ = y∗1 − y∗2 . Then, y ∈ ϵ-
GE(K,B).

Proof. Since y∗2 ∈ Bst, it follows from Remark 2.7 that there exists a balanced, absorbent
and convex set V1 such that

⟨y, y∗2⟩ ≤ 0,∀y ∈ V1 −B. (3.19)

As V1 is balanced, it follows from (3.19) that

⟨y, y∗2⟩ ≥ 0,∀y ∈ V1 +B,

i.e., y∗2 ∈ (V1+B)+ ⊆ (cone(V1+B))+. Hence, y∗ ∈ (vcl(cone(K+ϵ−y)))+−(cone(V1+B))+.
By Lemma 2.9, there exist a balanced, absorbent and convex set U1 and a real number α > 0
such that

⟨y, y∗⟩ ≥ −α, ∀y ∈ (vcl(cone(K + ϵ− y))) ∩ (U1 − cone(V1 +B)). (3.20)

On the other hand, −y∗ ∈ Y bd. Therefore, there exist two balanced, absorbent and
convex set U2 and V2 and a real number β > 0 such that

⟨y,−y∗⟩ ≥ −β, ∀y ∈ (vcl(cone(K + ϵ− y))) ∩ (U2 − cone(V2 +B)). (3.21)

Write U := U1 ∩ U2 and V := V1 ∩ V2. Using (3.20) and (3.21), we obtain

−α ≤ ⟨y, y∗⟩ ≤ β, ∀y ∈ (vcl(cone(K + ϵ− y))) ∩ (U − cone(V +B)).

Hence, y ∈ ϵ-GE(K,B).

Theorem 3.13. Let ϵ ∈ C and K be a nonempty convex set in Y . For any y∗ ∈ Y bd, there
exists y∗1 ∈ Y ∗ such that y∗1 ∈ y∗ +Bst and y ∈ ϵ-Min(K, y∗1). Then, y ∈ ϵ-GE(K,B).

Proof. By y ∈ ϵ-Min(K, y∗1), we have

⟨y + ϵ− y, y∗1⟩ ≥ 0,∀y ∈ K,

which implies that
⟨λ(y + ϵ− y), y∗1⟩ ≥ 0,∀λ ≥ 0, y ∈ K. (3.22)

It follows from (3.22) that
y∗1 ∈ (cone(K + ϵ− y))+. (3.23)

According to (3.23) and Lemma 2.10, y∗1 ∈ (vcl(cone(K + ϵ− y)))+. On the other hand,

y∗1 ∈ y∗ +Bst. (3.24)

By (3.24), there exists y∗2 ∈ Bst such that y∗ = y∗1 − y∗2 . Thus, the conditions of Theorem
3.12 are satisfied. Therefore, y ∈ ϵ-GE(K,B).
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Theorem 3.14. Let ϵ ∈ C, y ∈ Y and K be a nonempty convex set in Y . Let B be an
ordering-bounded basis of C. If (vcl(cone(K + ϵ− y)))+ ∩Bst ̸= ∅, then y ∈ ϵ-GE(K,B).

Proof. Since (vcl(cone(K+ϵ−y)))+∩Bst ̸= ∅, there exists y∗1 ∈ (vcl(cone(K+ϵ−y)))+∩Bst.
By y∗1 ∈ (vcl(cone(K + ϵ− y)))+, it is easy to verify that

y ∈ ϵ-Min(K, y∗1). (3.25)
According to y∗1 ∈ Bst, we assert that, for any y∗ ∈ Y bd, there exists N ∈ N such that

y∗1 − 1

N
y∗ ∈ C+. (3.26)

Otherwise, there exists y∗2 ∈ Y bd, for any n ∈ N, we have y∗1 − 1
ny

∗
2 /∈ C+. Thus, there exists

yn ∈ C such that ⟨
yn, y

∗
1 − 1

n
y∗2

⟩
< 0,∀n ∈ N. (3.27)

Since yn ∈ C, there exist λn > 0 and bn ∈ B such that yn = λnbn. It follows from (3.27)
that ⟨

λnbn, y
∗
1 − 1

n
y∗2

⟩
< 0,∀n ∈ N.

Clearly, ⟨
bn, y

∗
1 − 1

n
y∗2

⟩
< 0,∀n ∈ N. (3.28)

Because y∗2 ∈ Y bd and B is an ordering-bounded basis of C,

lim
n→∞

⟨
bn,

1

n
y∗2

⟩
= lim

n→∞

1

n
⟨bn, y∗2⟩ = 0. (3.29)

It follows from y∗1 ∈ Bst that there exists t > 0 such that

⟨b, y∗1⟩ > t, ∀b ∈ B. (3.30)

For the above t, it follows from (3.29) that there exists N1 ∈ N such that⟨
bn,

1

n
y∗2

⟩
< t, ∀n > N1. (3.31)

According to (3.28) and (3.31), we obtain

⟨bn, y∗1⟩ <
⟨
bn,

1

n
y∗2

⟩
< t, ∀n > N1,

which contradicts (3.30). Therefore, our assertion is correct. By (3.26) and Remark 2.8, we
have

(N + 1)y∗1 − y∗ = (Ny∗1 − y∗) + y∗1 ∈ C+ +Bst = Bst,

i.e.,

(N + 1)y∗1 ∈ y∗ +Bst. (3.32)

By (3.25), we have

y ∈ ϵ−Min(K, (N + 1)y∗1). (3.33)

By (3.32) and (3.33), the conditions of Theorem 3.13 are satisfied. Hence, y ∈ ϵ-GE(K,B).
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Remark 3.15. The following example shows that Theorem 3.14 does not hold when the
conditions that B is an ordering-bounded basis of C is deleted.

Example 3.16. Let K := {(y1, y2)|y1 ≤ 2, y2 ≥ 0}, ϵ = (1, 1), y = (2, 1), C := {(y1, y2)|y1 ≥
0, y2 > 0} ∪ {(0, 0)} and B := {(y1, y2)|y1 ≥ 0, y2 = 2}. Clearly, ϵ ∈ C and K is a
nonempty convex set in Y . Moreover, (0, 2) ∈ (vcl(cone(K + ϵ− y)))+ ∩Bst. Obviously, B
is not an ordering-bounded basis of C. However, there exists y∗ = (−1, 0) ∈ Y bd such that
⟨vcl(cone(K + ϵ − y)) ∩ (U − cone(V + B)), y∗⟩ is unbounded for any balanced, absorbent
and convex sets U and V . Hence, y /∈ ϵ-GE(K,B).

4 Scalarization

In this section, we will establish the scalarization theorems of an unconstrainted set-valued
optimization problem in the sense of ϵ-strong efficiency.

From now on, let A be a nonempty set in X. Let F : A ⇒ Y be a set-valued map on A.
Write ⟨F (x), y∗⟩ := {⟨y, y∗⟩|y ∈ F (x)}, F (A) :=

∪
x∈A

F (x) and ⟨F (A), y∗⟩ :=
∪

x∈A

⟨F (x), y∗⟩.

Definition 4.1 ([5]). A set-valued map F : A ⇒ Y is called generalized C-subconvexlike
on A iff cone(F (A)) + cor(C) is a convex set in Y .

Remark 4.2. When cor(C) ̸= ∅, the set-valued map F is generalized C-subconvexlike on
A iff vcl(cone(F (A) + C)) is a convex set in Y (see Proposition 3.1 in [21]).

Let F : A ⇒ Y a set-valued map from A to Y . we consider the following set-valued
optimization problem:

(VP) Min F (x) subject to x ∈ A.

Definition 4.3. Let ϵ ∈ C. x ∈ A is called an ϵ-strongly efficient solution of (VP) iff there
exists y ∈ F (x) such that y ∈ ϵ-GE(F (A), B). The pair (x, y) is called an ϵ-strongly efficient
element of (VP).

The scalar minimization problem of (VP) is defined as follows:
(VP)y∗ Min ⟨F (x), y∗⟩ subject to x ∈ A,

where y∗ ∈ Y ∗ \ {0}.

Definition 4.4 ([13]). Let ϵ ∈ C. x ∈ A is called an ϵ-optimal solution of (VP)y∗ iff there
exists y ∈ F (x) such that

⟨y, y∗⟩ ≤ ⟨y, y∗⟩+ ⟨ϵ, y∗⟩,∀x ∈ A,∀y ∈ F (x).

The pair (x, y) is called an ϵ-optimal element of (VP)y∗ .

Theorem 4.5. Let ϵ ∈ C, x ∈ A, y ∈ F (x) and Bbd ̸= ∅. The set-valued map F + ϵ − y is
generalied C-subconvexlike on A. If (x, y) is an ϵ-strongly efficient element of (VP), then
there exists y∗ ∈ Bst such that (x, y) is an ϵ-optimal element of (VP)y∗ .

Proof. Since (x, y) is an ϵ-strongly efficient element of (VP), y ∈ ϵ-GE(F (A), B). Let y∗1 ∈
Bbd. According to Proposition 3.6, there exist two balanced, absorbent and convex sets
U1 and V1 such that ⟨vcl(cone(F (A) + C + ϵ − y)) ∩ (U1 − cone(V1 + B)), y∗1⟩ is bounded.
Thus, it follows from Lemma 2.9 that there exist y∗2 ∈ (vcl(cone(F (A) + C + ϵ− y)))+ and
y∗3 ∈ (cone(V1 +B))+ such that y∗2 = y∗1 + y∗3 . Now, we prove that y∗2 ∈ Bst. It follows from
the absorption of V1 that

B ⊆ cone(V1 +B). (4.1)
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(4.1) and y∗3 ∈ (cone(V1 +B))+ imply that

⟨b, y∗3⟩ ≥ 0,∀b ∈ B,

which means that

⟨b, y∗2⟩ = ⟨b, y∗1⟩+ ⟨b, y∗3⟩ ≥ ⟨b, y∗1⟩,∀b ∈ B. (4.2)

Since y∗1 ∈ Bbd, it follows from (4.2) that y∗2 ∈ Bst. According to Remark 2.7, there exists
a balanced, absorbent and convex set U2 such that

⟨y, y∗2⟩ < 0,∀y ∈ U2 −B. (4.3)

Because y∗2 ∈ (vcl(cone(F (A) + C + ϵ− y)))+, it follows from (4.3) that

vcl(cone(F (A) + C + ϵ− y)) ∩ (U2 −B) = ∅.

Clearly,

vcl(cone(F (A) + C + ϵ− y)) ∩ cor(U2 −B) = ∅.

Since U2 is absorbent and convex, U2 − B is a convex set with cor(U2 − B) ̸= ∅ according
to Lemma 2.1 in [6]. On the other hand, as the set-valued map F + ϵ − y is generalied
C-subconvexlike on A, it follows from Remark 4.2 that vcl(cone(F (A) + C + ϵ − y)) is a
convex set in Y . Thus, the conditions of the separation theorem of the convex sets are
satisfied. Therefore, there exists y∗ ∈ Y ∗ \ {0} such that

⟨y1, y∗⟩ ≥ ⟨y2, y∗⟩,∀y1 ∈ vcl(cone(F (A) + C + ϵ− y)),∀y2 ∈ U2 −B. (4.4)

As vcl(cone(K + C + ϵ− y)) is a cone in Y , it follows from (4.4) that

⟨y1, y∗⟩ ≥ 0,∀y1 ∈ vcl(cone(F (A) + C + ϵ− y)). (4.5)

Since 0 ∈ C, it follows from (4.5) that

⟨y, y∗⟩ ≤ ⟨y, y∗⟩+ ⟨ϵ, y∗⟩,∀x ∈ A,∀y ∈ F (x). (4.6)

By (4.4), we obtain

⟨y2, y∗⟩ ≤ 0,∀y2 ∈ U2 −B. (4.7)

Since U2 is absorbent and y∗ ∈ Y ∗ \ {0}, there exists u′ ∈ U2 such that ⟨u′, y∗⟩ > 0.
According to (4.7), we have

⟨b, y∗⟩ ≥ sup
u∈U2

⟨u, y∗⟩ ≥ ⟨u′, y∗⟩ > 0,∀b ∈ B,

which means y∗ ∈ Bst. (4.6) shows that (x, y) is an ϵ-optimal element of (VP)y∗ .

The following example is used to illustrate Theorem 4.5.

Example 4.6. Let Y := R2, A := [0, 2]× {0} ⊆ R2 and C := {(y1, y2)|y1 ≥ 0, y2 ≥ 0} ⊆ Y .
The set-valued map F : A ⇒ Y is defined as follows:

F (x1, x2) =

{
{(y1, y2)|y1 = x1, 1 ≤ y2 ≤ 2− x1} if (x1, x2) ∈ [0, 1[×{0},
{(y1, y2)|y1 = x1, 0 ≤ y2 ≤ 2− x1} if (x1, x2) ∈ [1, 2]× {0}.



ϵ-STRONG EFFICIENCY OF A SET AND ITS APPLICATIONS 577

Let ϵ = (1, 0), x = (1, 0) and y = (1, 0) ∈ F (x). Clearly, the set-valued map F + ϵ − y
is generalied C-subconvexlike on A. Now, let B := {(y1, y2)|y1 + y2 = 2, y1 ≥ 0, y2 ≥ 0}.
Obviously, (1, 1) ∈ Bbd ̸= ∅. For any y∗ ∈ Y bd, there exist two balanced, absorbent and
convex sets U = V =: {(y1, y2)|y21 + y22 ≤ 0.01} such that ⟨vcl(cone(K + ϵ − y)) ∩ (U −
cone(V + B)), y∗⟩ is bounded. So, (x, y) is an ϵ-strongly efficient element of (VP). Thus,
all conditions of Theorem 4.5 are satisfied. Hence, there exists y∗ = (1, 2) ∈ Bst such that
(x, y) is an ϵ-optimal element of (VP)y∗ .

Theorem 4.7. Let ϵ ∈ C, x ∈ A, y ∈ F (x). Let B be an ordering-bounded basis of C. The
set-valued map F + ϵ − y is generalied C-subconvexlike on A. If there exists y∗ ∈ Bst such
that (x, y) is an ϵ-optimal element of (VP)y∗ , then (x, y) is an ϵ-strongly efficient element
of (VP).

Proof. Since (x, y) is an ϵ-optimal element of (VP)y∗ , we have

⟨y, y∗⟩ ≤ ⟨y, y∗⟩+ ⟨ϵ, y∗⟩,∀x ∈ A,∀y ∈ F (x). (4.8)

By y∗ ∈ Bst, we obtain
⟨c, y∗⟩ ≥ 0,∀c ∈ C. (4.9)

According to (4.8) and (4.9), we have

⟨y, y∗⟩ ≥ 0,∀y ∈ cone(F (A) + C + ϵ− y),

i.e.,
y∗ ∈ (cone(F (A) + C + ϵ− y))+. (4.10)

It follows from (4.10) and Lemma 2.10 that

y∗ ∈ (vcl(cone(F (A) + C + ϵ− y)))+. (4.11)

Since y∗ ∈ Bst, it follows from the proof of Theorem 3.14 that, for any y∗1 ∈ Y bd, there
exists N ∈ N such that y∗ − 1

N y∗1 ∈ C+. Clearly, Ny∗ − y∗1 ∈ C+. By Remark 2.8,

y∗2 := (N + 1)y∗ − y∗1 ∈ Bst. (4.12)

According to Remark 2.4, there exists a balanced, absorbent and convex set V1 such that

⟨y, y∗2⟩ < 0,∀y ∈ V1 −B. (4.13)

Since V1 is balanced, it follows from (4.13) that

y∗2 ∈ (cone(V1 +B))+. (4.14)

(4.11) implies that

(N + 1)y∗ ∈ (vcl(cone(F (A) + C + ϵ− y)))+. (4.15)

Using (4.12),(4.14) and (4.15), we obtain

y∗1 ∈ (vcl(cone(F (A) + C + ϵ− y)))+ − (cone(V1 +B))+. (4.16)

Since the set-valued map F + ϵ − y is generalied C-subconvexlike on A, it follows from
Remark 4.2 that vcl(cone(F (A) + C + ϵ− y)) is a convex cone in Y . It follows from (4.16)
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and Lemma 2.9 that there exist a balanced, absorbent and convex set U1 ⊆ Y and a real
number α > 0 such that

⟨y, y∗1⟩ ≥ −α, ∀y ∈ vcl(cone(F (A) + C + ϵ− y)) ∩ (U1 − cone(V1 +B)). (4.17)

Clearly, −y∗1 ∈ Y bd. Therefore, there exist two balanced, absorbent and convex sets U2 ⊆
Y, V2 ⊆ Y and a real number β > 0 such that

⟨y,−y∗1⟩ ≥ −β, ∀y ∈ vcl(cone(F (A) + C + ϵ− y)) ∩ (U2 − cone(V2 +B)). (4.18)

Let U := U1 ∩ U2 and V := V1 ∩ V2. It follows from (4.17) and (4.18) that

−α ≤ ⟨y, y∗1⟩ ≤ β, ∀y ∈ vcl(cone(F (A) + C + ϵ− y)) ∩ (U − cone(V +B)),

which means that (x, y) is an ϵ-strongly efficient element of (VP).

5 Conclusions

In this paper, we extend ϵ-strongly efficient point of the set from topological spaces to or-
dered linear spaces. Some properties and existence conditions of strongly efficient points are
investigated. Under the generalized cone subconvexlikeness of set-valued maps, we establish
the relationship between the ϵ-strongly efficient element of an unconstrainted set-valued op-
timization problem and the ϵ-optimal solution of the scalarization problem. Note that we
only establish linear scalarization theorems of the ϵ-strongly efficient element of an uncon-
strainted set-valued optimization problem. Following the line of [7], whether the nonlinear
scalarization theorems of the ϵ-strongly efficient element can be obtained is interesting.
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