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(see [11, 15, 31, 41]). However, in practice, probability distributions may not be available or
may be difficult to estimate exactly from limited data points, e.g. when deciding upon
prices, the decision-makers only has some vague ideas about the levels of demand associ-
ated with each feasible price. Under this scenario, fuzzy set theory, which was introduced
by Zadeh in 1965, is considered an appropriate modeling tool when uncertain parameters
cannot be adequately described in distributions. Uncertainty parameters are able to be
estimated approximately using the managers’ judgments, intuition and experience, and can
be characterized as fuzzy variables [58].

We consider the following problem. Monopoly firms have many factories which produce
multiple products with a varying demand. These products are sent to multiple sub-markets
through distribution centers. However, as the different sub-markets have different fuzzy
demands, the product prices are different in these sub-markets and can be represented as
fuzzy functions of the demands. At the same time, the different products have different fuzzy
transportation costs. How many products to be produced in the factories, how to price in the
sub-markets, how to allocate these products efficiently and how to transport these products
to each sub-market are problems that decision-makers have to solve to guarantee maximum
profit, which is the primary focus of this paper.

There exist researches on production planning, transportation and pricing decision prob-
lems have typically focused on considering individually production/pricing problems [6, 9,
14, 33, 55], or on considering individually transportation problems. Very few researches
have jointly considered the production decisions, the transportation strategies and pric-
ing decisions in one optimization model. In terms of the production and pricing problem
for multi-product multi-market in a deterministic or random environment, extensive re-
searches have been conducted on third-degree price discrimination and its social welfare ef-
fects (see [18,23,25]). In a fuzzy environment, a novel two-stage fuzzy optimization method
for solving the multi-product multi-period production planning problem was proposed by
Yuan [56]. Vasant [52] presented new methods for solving fuzzy production planning prob-
lems with vagueness parameters alpha and fuzzy objective coefficients. Sun [51] proposed a
bilevel model to describe the pricing and production decisions with fuzzy demand and fuzzy
cost parameters. The upper level is to determine the optimal price and production quantity
with capacity constraints. The lower level problem tries to structure a distribution pattern
of customers or markets that will satisfy his demand at minimum cost. Zhao et al [57]
analyzed the pricing problems of substitutable products in a fuzzy supply chain using game
theory. An optimal pricing decision problem for a fuzzy closed-loop supply chain with retail
competition was considered by Wei and Zhao [53]. In Ref. [1], the optimal decision prob-
lem is analyzed based on a fuzzy price and sales effort-dependent demand to evaluate how
members decide wholesale price, collection rate, retail price, and sales effort under different
decision-making structures. Six game theory models are established and optimal solutions
are extracted and compared by applying game and fuzzy theories. Ghomi-Avili et al [19]
presents a fuzzy bi-objective bi-level model with a price-dependent demand for the network
design of a closed-loop supply chain in the presences of random disruptions at suppliers.

There have been significant researches on transportation problem, such as [10,12,36,48,
49]. However, most of these considered a transportation equilibrium model under known
conditions of supply and demand between each origin-destination pair under deterministic
or random cost. In a fuzzy environment, Basirzadeh [2] proposed a systematic procedure for
solving all types of fuzzy transportation problem whether maximize or minimize objective
function. Chakraborty et al [7] proposed a new approach for solving a fully fuzzy transporta-
tion problem, which is an extension of popular approach of solving transportation problem
(i.e., North West corner method, least cost method, Vogel’s approximation method, modi-
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fied distribution method). Maity and Roy [32] explored the study of fuzzy transportation
problem (FTP) using multi-choice goal-programming approach. Kundu et al [27] presented
type-2 fuzzy variables for solving fixed charge transportation problem where total trans-
portation cost is minimized. Sinha et al [50] proposed a fuzzy transportation problem with
two objective functions, one is to maximize the profit while the other is to minimize the
transportation time. Baykasoglu et al [3] presented a novel method based on the constrained
fuzzy arithmetic concept to solve fully fuzzy balanced/unbalanced transportation problems
in which all of the parameters (source capacities, demands of destinations, transportation
costs etc.) as well as the decision variables (transportation quantities) are considered as
fuzzy numbers.

About integrated production and transportation problem, there also exist significant re-
searches. Under certain condition, Philippe et al [39] proposed an extension of the integrated
production and transportation scheduling problem by considering multiple vehicles for opti-
misation of supply chains. Jalil et al [24] proposed a de-centralized bi-level multi-objective
model for integrated production and transportation problems in closed-loop supply chain
network with positive and reverse product flow. Under fuzzy condition, Sakawa et al [45]
consider a production and transportation fuzzy planning under the assumption that the
manufacturer makes multiple products at factories in multiple regions and the products are
in demand in each of the regions. A fuzzy linear programming to describe production and
transportation plan that minimize the total sum of the production cost and the transporta-
tion cost was presented by Rommelfanger in [43]]. Liang [29] presented a novel fuzzy muti-
objective linear programming model to solve integrated production-transportation planing
decision problems in supply chains in a fuzzy environment.

In this paper, we jointly consider above three problems: production planning, trans-
portation strategy and pricing decision for multi-product multi-market in a fuzzy environ-
ment. For this complex problem, extensive research has been conducted and has produced
many different fuzzy production-pricing models and fuzzy transportation strategies, or fuzzy
production-transportation models and fuzzy pricing strategies. But very few have jointly
considered the production planning, the transportation strategy and pricing decision for
multi-product multi-market in one fuzzy optimization model. Note that most fuzzy produc-
tion planning, transportation and pricing for multi-product multi-market (FPTPMM for
short) problem cannot be obtained through a mere addition of a single fuzzy production-
pricing strategy and single fuzzy transportation strategy, as the different sub-markets have
different demands, and the different transportation paths have different transportation costs
associated with the production quantities. The optimal production quantity determined in
fuzzy production-pricing strategy has limited the traffic flow in fuzzy transportation plan-
ning, which means that the total profit is not necessarily maximized. Instead, it should
be considered as a system which has three influence factors, namely, fuzzy market demand,
fuzzy production cost and fuzzy transportation cost. It’s necessary to propose an integrated
FPTPMM model. Xu et al [54] have simultaneously considered a production, transportation
and pricing optimization problem for multi-product multi-market in one optimization under
the certain conditions. In this paper, we consider the FPTPMM problem as a complicated
transportation network refer to Xu et al [54], where the supply and demand are fuzzy deci-
sion variables, and transportation is also fuzzy decision variables. The objective is to pursuit
the maximum profit of the whole network, and an integrated FPTPMM model would be
proposed. In order to solve the FPTPMM model, we will discuss the relationship between
the integrated FPTPMM model and vector variational inequality.

The remainder of this paper is organized as follows. Section 2 gives the key problem
description and some notations which will be used in the sequel. Section 3 establishes the
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integrated FPTPMM model based on transportation network graph. In Section 4, according
to giving some preliminaries and the analysis for generalized concavity property, such as the
incave and preincave, equivalence relationships between the integrated FPTPMM model and
a fuzzy variational-like inequality problem are developed. We also propose a specific solution
method for the integrated FPTPMM model in this section. Section 5 proposes a numerical
example and its compare results with traditional model in which the production planning,
transportation and pricing problems are solved separately under fuzzy environment. Section
6 presents some conclusions and offers ideas for further research.

2 Key Problem Statement

A monopolistic firm has n1 factories which produce homogeneous products. These products
are sent to n3 sub-markets through n2 distribution centers. Different factories have different
production costs, different transportation arcs have different transportation costs and differ-
ent sub-markets have different demands and product prices. For each pair of factories and
sub-markets, there may be many connecting paths. We consider a production and transport
network in which m products traverse the network, with a typical product denoted by j.
Consider a general network G = (N,A) where N denotes the set of nodes representing n1

factories (O1, O2, · · · , On1) and n2 distribution centers (M1,M2, · · · ,Mn2), as well as n3

sub-markets (D1, D2, · · · , Dn3), i.e. |N | = n1 + n2 + n3, as depicted in Fig. 1(a). For each
pair of factories (named the origin) and sub-markets (named the destination), there may
be many possible paths (see Fig. 1(b), left). Price of each product at each sub-market is
not an constant and dependent on its demand quantity. Because different sub-markets have
different demand functions and different arcs have different transportation costs, to obtain
maximum profits the decision makers need to choose production outputs for every factory
and transportation flows and paths from the point of origin to the point of destination.
That is to say, for each product, a monopolistic firm must decide how many products need
to be produced in each factory, the most efficient way to transport these products from
the factories to the sub-markets, and the ideal price for each product in each sub-market.
Decision-makers need to decide the production output of each factory, the transportation
flow for each arc and the price in each sub-market. The decision variable in our model is
the network production flow matrix q. If we know the production flow matrix q, then we
also know the factory production quantities, the price of each product in the sub-markets,
and the transport methods for these products.

Motivation for employing fuzzy functions for PTPMM problem are given as follows.
In real production, transportation and pricing problem, the available data are not always
exact or precise. Various types of uncertainties appear in those data due to various reason
such as insufficient information, lack of evidence, linguistic information, imperfect statistical
analysis, etc. In order to describe and extract the useful information hidden in uncertain
data and to use this data properly in practical problems, many researchers have proposed a
number of improved theories such as fuzzy set, random set, rough set etc. When some of or all
the system parameters associated with a decision making problem are not exact or precisely
defined, moreover those are represented by fuzzy, random or rough sets(/variables), etc.,
then it is called that the problem is defined in those uncertain environment respectively. As
different people have different feelings for uncertain demand and cost caused by the uncertain
environment and there is no clear definition of this change. So in this situation, it can be
characterized by uncertainty of fuzziness, and stochastic models may not be the best choice.
Fuzzy set theory may provide an alternative approach for dealing with these uncertainty.
It can be used to represents the uncertain production cost, unreliable transportation cost,
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Figure 1: The network structure and path graph of FPTPMM
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and the fluctuated customers demand. Therefore, fuzzy variables that can take into account
fuzziness are favored by decision-makers to describe the uncertainty and vague information.

The greatest uncertainties in this study are caused by the modelling technique-related
parameters. Take transportation cost of transporting one unit of the product as an exam-
ple. In practice, in order to collect the transportation cost of transporting one unit of the
product, investigations and surveys were made to different experts, and the experts usu-
ally can not give an exact expression for it. So in this situation, triangular fuzzy numbers
are more suitable to explain uncertainty in these parameters such as transportation cost of
transporting one unit of the product is about dm, but definitely not less than dL and grater
than dR. Therefor, triangular fuzzy numbers (dL, dm, dR) is applied to express parameter
for transportation cost of transporting one unit of the product. The situations are similar
with the production costs and the customer demands. These can be estimated by experts
and professional engineers using fuzzy variables to interpret parameters for production cost
function and market demand function.

The list of symbols used for the development of the model is given in Table 1.

Notations Explanation

A set of directed arcs, let at ∈ A denote an arc connecting a pair of nodes
I set of all the O-D pairs associated with each pair of factor and sub-market,

and |I| = l
Pi set of paths that connect an O-D pair i ∈ I
k ∈ Pi denote the path k, consisting of a sequence of arcs connecting an O-D pair of

nodes i

qjk transportation flow (named production flow in following) on path k of product j

qj production vector of product j, and qj = (qj1, q
j
2, · · · , q

j
M )T , where M =

∑
i∈I |Pi|

qk production vector on path k, and qk = (q1k, q
2
k, · · · , qmk )

q an production flow matrix of the network, q = (qjk)M×m

Qj
n production quantity of product j produced by factory On

c̃jt fuzzy transportation cost of product j on arc at

c̃t total fuzzy transportation cost on arc at

C̃j
k fuzzy transportation cost of product j on path k

dji demand quantity of product j for the O-D pair i
Dj

s demand quantity of product j in sub-market Ds

Bs set of paths which the destination of the path is sub-market Ds

g̃jn fuzzy production cost of product j produced by factory On

g̃n total fuzzy production cost in factory On

f̃ j
k fuzzy production cost of product j allocated on path k

(C̃total)
j
k total fuzzy cost for product j on path k, and (C̃total)

j
k = C̃j

k ⊕ f̃ j
k

p̃js fuzzy price of product j in sub-market Ds

r̃jk fuzzy revenue of product j on path k

π̃j
k fuzzy profit of product j on path k⊕

abbreviation for fuzzy sum, for example,
⊕3

i=1 xi = x1 ⊕ x2 ⊕ x3

Table 1: Notations used for the development of the model

3 Modelling

3.1 Assumption

Considering the complexity of the problem and referring to the existing literature [30, 40],
we do some assumptions as follows:
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(i) The transportation cost functions are separable, the total transportation cost on each
arc is equal to the sum of the transportation costs of all products.

If the unit transportation cost for each product on each arc is constant. then the as-
sumption (i) is reasonable. For the case that different products are delivered using the
same mode of transportation (e.g., truck), we assume that the total transportation cost can
be distributed to each product according to some means (e.g., the ratio of each product
transportation flow).

(ii) The production cost functions are separable, i.e., the total production cost in each
factory is equal to the sum of the production costs of all products.

(iii) There are no inventories in the side of factories, distribution centers and demand
markets.

(iv) The transportation cost function, production cost and market demand function are
fuzzy functions, and the parameters of them are triangular fuzzy numbers.

3.2 Integrated FPTPMM model

Our goal is to find the production flow matrix at which profit is maximized. To obtain the
optimal production flow matrix q, we need to know the objective function for this problem,
that is, the total profit function. In the following, we first allocate production cost and
revenue for each product to each path and study the cost function and revenue function of
each product on each path (see Fig. 1(b), right), and then calculate the profit on each path.

Because dji is said to be the demand for the O-D pair i for product j, then
∑

k∈Pi
qjk = dji ,

which states that the demand for the O-D pair i for product j is equal to the sum of the
production flows on all paths of the O-D pair i for product j. So the set

Q = {q : qjk ≥ 0,
∑
k∈Pi

qjk = dji , i ∈ I, j = 1, 2, · · · ,m}

is the feasible set. Q is clearly a convex set. In many production and transportation
problems, the demand on sub-market were considered as known constant (See [26,34,49] or
fuzzy numbers with known membership function (See [13, 20, 37, 38]). In this paper, dji is
considered to be a decision variable which is decided by the production flow of product j on
path k, qjk. So, the feasible set can be rewritten as

Q = {q : qjk ≥ 0, i ∈ I, k ∈ Pi, j = 1, 2, · · · ,m}.

Firstly, we find the fuzzy transportation cost function for product j on path k. The fuzzy
cost of product j on path k should be the fuzzy cost of all products j on arcs at which belong
to the sequence of arcs on path k (See [?, 28]). So, according to assumption (i), the fuzzy
transportation cost function for product j on path k, C̃j

k : RM×m → E(j = 1, 2, · · · ,m),

C̃j
k(q

j
k) =

⊕
at∈A

δtk c̃
j
at
(qjk),

where δtk = 1, if arc at is contained in path k, and 0, otherwise. If unit cost of transportation
of unit product on arc at is a fuzzy number like references [16,37,38], then c̃jat

(qjk) is a fuzzy

linear function: c̃jat
(qjk) = c̃jt · q

j
k, which is a special case.

Remark 3.1. In this formula, we have used the fuzzy Minkowski addition ũ⊕ ṽ and mul-
tiplication λũ. About their operations we use the α-level cut set to represent. More detail
about fuzzy Minkowski addition and multiplication please see Section 4.
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Secondly, we need to determine the fuzzy production cost function for product j on path
k. If the origin of path k is factory On, then the production cost for product j on path k
is gjn(q

j
k). If, for example, path 1 is composed of arc O1 → M1 and arc M1 → D1 in Fig.

1(a), i.e., the origin of path 1 is factory O1, according to assumption (ii), then the fuzzy
production cost function for product j on path 1 is f̃ j

1 (q
j
1) = g̃j1(q

j
1), path 5 is composed of

arc O2 → M1 and arc M1 → D1, i.e., the origin of path 5 is factory O2, then the fuzzy
production cost for product j on path 5 is f̃ j

5 (q
j
5) = g̃j2(q

j
5). So, the fuzzy production cost

for product j on path k can be written as

f̃ j
k(q

j
k) =

n1⊕
n=1

αkng̃
j
n(q

j
k),

where αkn = 1, if the origin of path k is factory On, and 0, otherwise.
Because the total cost includes production cost and transportation cost, then the total

fuzzy cost for product j on path k can be written as

(C̃total)
j
k(q

j
k) = C̃j

k(q
j
k)⊕ f̃ j

k(q
j
k).

Next, we need to determine the fuzzy revenue function for product j on path k. Obvi-
ously, revenue is the simple multiplication of quantity by price: Revenue = Quantity∗Price,
where Quantity is the total number of units we sell in market, and Price is the amount we
charged for each unit, which is a fuzzy function. The only variable we need to control is the
quantity. But the quantity we choose will influence the price through the demand function.
The fuzzy price of product j at sub-market Ds is related to the demand for all products in
sub-markets Ds, i.e., the fuzzy demand function

p̃js(q) = p̃js(D
1
s , D

2
s , · · · , Dm

s ),

where Dj
s =

∑
k∈Bs

qjk.
If the destination of path k is Ds, the revenue function of product j on the path k should

be equal to the transport volume of product j on path k multiply by the price of product j
on sub-market Ds [54]. For example, in Fig. 1(a), path 1 is composed of arc O1 → M1 and
arc M1 → D1, i.e., the destination of path 1 is sub-market D1, the fuzzy revenue function
for product j on path 1 is r̃j1(q) = p̃j1(q)q

j
1, path 5 is composed of arc O2 → M1 and arc

M1 → D1, i.e., the destination of path 2 is also sub-market D1, then the fuzzy revenue
function for product j on path 5 is r̃j5(q) = p̃j1(q)q

j
5, path 9 is composed of arc O2 → M1

and arc M1 → D3, i.e., the destination of path 9 is sub-market D3, then the fuzzy revenue
function for product j on path 9 is r̃j9(q) = p̃j3(q)q

j
9. So it holds that

r̃jk(q) =

n3⊕
s=1

σksp̃
j
s(q)q

j
k,

where σks = 1, if the destination of path k is sub-market Ds, and 0, otherwise.
Finally, we need to determine the profit for product j on path k. According to the above

discuss, the fuzzy profits for product j on path k can be written as

π̃j
k(q) = r̃jk(q)⊖g (C̃total)

j
k(q

j
k). (3.1)

Remark 3.2. Here, symbol ⊖g represents generalized difference (g-difference for short).
In fact, fuzzy difference have three forms, Hukuhara difference (H-difference for short),
generalized Hukuhara difference (gH-difference for short) and generalized difference [21,47].
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The reason we use the g-difference to express the fuzzy revenue will be given later in Section
4.

So, the fuzzy profits function of product j is

F̃ j(q) =
⊕
i∈I

⊕
k∈Pi

π̃j
k(q), j = 1, 2, · · · ,m.

and the total fuzzy profits function of monopolistic firm is

F̃ (q) =

m⊕
j=1

F̃ j(q) =

m⊕
j=1

⊕
i∈I

⊕
k∈Pi

π̃j
k(q). (3.2)

The monopolistic firm seeks to maximize profits across the whole network, so we have
the following integrated FPTPMM model

max
q∈Q

F̃ (q) =

m⊕
j=1

⊕
i∈I

⊕
k∈Pi

π̃j
k(q) (3.3)



π̃j
k(q) = r̃jk(q)⊖g (C̃total)

j
k(q

j
k)

r̃jk(q) =
⊕n3

s=1 σksp̃
j
s(q)q

j
k

p̃js(q) = p̃js(D
1
s , D

2
s , · · · , Dm

s )

Dj
s =

∑
k∈Bs

qjk
(C̃total)

j
k(q

j
k) = C̃j

k(q
j
k)⊕ f̃ j

k(q
j
k)

C̃j
k(q

j
k) =

⊕
at∈A δtk c̃

j
at
(qjk)

f̃ j
k(q

j
k) =

⊕n1

n=1 αkng̃
j
n(q

j
k)

Q = {q : qjk ≥ 0}
i ∈ I, k ∈ Pi, j = 1, 2, . . . ,m.

where σks = 1, if the destination of path k is sub-market Ds, and 0, otherwise. δtk = 1, if
arc at is contained in path k, and 0, otherwise. αkn = 1, if the origin of path k is factory
On, and 0, otherwise.

The proposed integrated FPTPMM model (3.3) consider the three factors affecting the
total profits, fuzzy production cost, fuzzy transportation cost and fuzzy demand as a system,
which does not simply add the existing production quantity decision model, distribution
and transportation problem and pricing model together. This research method, allocate
production cost and revenue for each product to each path and then calculate the profit for
each product to each path, is not only very simple, but also can overcome the difficulties of
comprehensive consideration.

4 Solution Method

In order to determine the solution methods for the above fuzzy programming problem, we
must first analyze the properties of fuzzy-valued function F̃ (q). The notion of convexity
plays an important role in economic theory and modeling, but the conditions for convex and
concave fuzzy-valued function are very strict. In the following, we discuss the production,
transportation and pricing problems under generalized convex and generalized concave fuzzy-
valued function.
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4.1 Theoretical basis

We first give some preliminary definitions and results which will be needed in the sequel.
Let E denotes the family of fuzzy numbers. Obviously, the α-level set ãα is a closed,

bounded and convex subset of R for each α ∈ [0, 1]. i.e., a closed interval in R. Therefore,
we can denote it using ãα = [ãLα, ã

R
α ]. Let ũ and ṽ be two fuzzy numbers. We have the

following useful results for standard Minkowski addition, H-difference and multiplication

(ũ⊕ ṽ)α = [ũL
α + ṽLα , ũ

R
α + ṽRα ], (ũ⊖H ṽ)α = [ũL

α − ṽLα , ũ
R
α − ṽRα ].

λũα =

{
[λũL

α, λũ
R
α ], λ > 0;

[λũR
α , λũ

L
α], λ < 0.

(4.1)

However, the H-difference of two fuzzy numbers does not always exist for arbitrary pairs
of fuzzy numbers. It only exists for fuzzy numbers ũ and ṽ for which the widths are such
that len(ũ) ≥ len(ṽ), where len(ũ) = ũR

α − ũL
α is the length of fuzzy number ũ. Recently,

Stefanini introduced the concept of generalized H-difference for the two fuzzy numbers ũ, ṽ
(gH-difference for short) and is defined as follows.

Definition 4.1 ([47]). Given ũ, ṽ ∈ E, the gH-difference is the fuzzy quantity w̃ ∈ E, if it
exists, such that ũ⊖gH ṽ = w̃ ⇐⇒ (i) ũ = ṽ ⊕ w̃ or (ii) ṽ = ũ⊕ (−1)w̃.

In terms of α-cuts, if the gH-difference ũ⊖gH ṽ exists, then

(ũ⊖gH ṽ)α = [min{ũL
α − ṽLα , ũ

R
α − ṽRα },max{ũL

α − ṽLα , ũ
R
α − ṽRα }].

Similarly, it is possible that the gH-difference of two fuzzy numbers does not exist. So
we introduce another concept of difference proposed by Stefanini, a difference that always
exists.

Definition 4.2 ([47]). The generalized difference (g-difference for short) of two fuzzy num-
bers ũ, ṽ is given by its level sets as

(ũ⊖g ṽ)α = cl
∪
β≥α

(ũβ ⊖gH ṽβ),

where the gH-difference ⊖gH is with interval operands ũβ , ṽβ .

The following lemma give simplified notation for ũ⊖g ṽ.

Lemma 4.3 ([5]). For any two fuzzy numbers ũ, ṽ ∈ E, the g-difference ũ⊖g ṽ exists and,
for ∀α ∈ [0, 1], we have

(ũ⊖g ṽ)α = [min{ inf
β≥α

(ũL
β − ṽLβ ), inf

β≥α
(ũR

β − ṽRβ )},max{sup
β≥α

(ũL
β − ṽLβ ), sup

β≥α
(ũR

β − ṽRβ )}].

Let f̃ : K(⊂ Rn) → E is said to be a fuzzy-valued function. For any α ∈ (0, 1], denote
f̃(x)α = [f̃(x)Lα, f̃(x)

R
α ]. Here the endpoint functions f̃(x)Lα, f̃(x)

R
α : K → R are called upper

and lower functions of f̃ , respectively.
About fuzzy derivative, both definitions for the derivative, the H-derivative (initially

introduced by Puri and Ralescu [42]) and the S-derivative (initially introduced by Seikkala
[46]), are very restrictive. So here we use the more general definition of the derivative for the
fuzzy-valued function introduced by Bede and Gal [4] by enlarging the class of differentiable
fuzzy-valued function. For more details about the H-derivative, S-derivative and G-derivative
see [8, 44]. In this paper, we use the following g-differentiability concept proposed by Bede
and Stefanini, that further extends the differentiability of fuzzy-valued function.
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Definition 4.4 ([5]). Let x0 ∈ [a, b] and h be such that x0+h ∈ [a, b], then the g-derivative
of a function f̃ : [a, b] → E at x0 is defined as

f̃ ′(x0) = lim
h→0

f̃(x0 + h)⊖g f̃(x0)

h
. (4.2)

If f̃ ′(x0) ∈ E satisfying (4.2) exists, we say that f̃ is generalized differentiable (g-differentiable
for short) at x0.

Lemma 4.5 ([5]). Let f̃ : [a, b] → E be such that f̃(x)α = [f̃(x)Lα, f̃(x)
R
α ]. If f̃(x)Lα and

f̃(x)Rα are differentiable real-valued functions with respect to x, uniformly for α ∈ [0, 1], then
f̃(x) is g-differentiable and we have

f̃ ′(x)α = [ inf
β≥α

(min{f̃ ′(x)Lβ , f̃
′(x)Rβ }), sup

β≥α
(max{f̃ ′(x)Lβ , f̃

′(x)Rβ })].

Definition 4.6 ( [5]). Let H̃(x) be a fuzzy-valued function defined on K ⊂ Rn and let

x0 = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
n ) be an element of K fixed. We consider the fuzzy-valued function

f̃i(xi) = H̃(x
(0)
1 , x

(0)
2 , . . . , x

(0)
i−1, xi, x

(0)
i+1, . . . , x

(0)
n ). If f̃i(xi) is g-differentiable at x

(0)
i , then

we say that H̃(x) has the ith partial g-derivative at x0, denoted by H̃ ′
i(x0), and H̃ ′

i(x0) =

(f̃i)
′(x

(0)
i ).

Definition 4.7 ( [5]). Let H̃(x) be a fuzzy-valued function defined on K ⊂ Rn and let

x0 = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
n ) be fixed. We say that H̃(x) is g-differentiable at x0 if all the

partial g-derivatives H̃ ′
1(x0), H̃

′
2(x0), . . . , H̃

′
n(x0) exist on some neighborhoods of x0 and are

continuous at x0. Given a fuzzy-valued function H̃, the generalized gradient of H̃ at x0,
denoted by ∇̃H̃(x0) is defined by

∇̃H̃(x0) = (H̃ ′
1(x0), H̃

′
2(x0), . . . , H̃

′
n(x0)).

Let X = (xij)m×n be a matrix of Rm×n, X
0 = (x

(0)
ij )m×n be fixed, and Xij denote a

matrix whose the ijth element is variable xij , others are fixed constants x
(0)
ij . If H̃ : M(⊂

Rm×n) → E be a fuzzy-valued function, then H̃(Xij) : T → E is a fuzzy-valued function of
one variable.

Next, we introduce some special notations, definitions and results which will be used in
FPTPMM problem.

Definition 4.8. Let H̃ : M(⊂ Rm×n) → E be a fuzzy-valued function and let matrix X0 be
fixed. We consider the fuzzy-valued function f̃ij(xij) = H̃(Xij). If f̃ij(xij) is g-differentiable

at x
(0)
ij , then we say that H̃ has the ijth partial g-derivative at X0, denoted by H̃ ′

ij(X
0),

and H̃ ′
ij(X

0) = (f̃ij)
′(x

(0)
ij ). We say that H̃ is g-differentiable at X0 if all the partial g-

derivatives H̃ ′
ij(X

0) exist on some neighborhoods of X0 and are continuous at X0. And if

F̃ to be g-differentiable at X, we call [H̃ ′
ij(X

0)]m×n the gradient of f̃ at X, also denote

∇̃H̃(x) = [H̃ ′
ij(X

0)]m×n.

For example, q = (qjk)M×m ∈ Q, F̃ : K(⊂ RM×m) → E be a fuzzy-valued function,

F̃ ′
kj(q) denote the partially derivative of F̃ (q) w.r.t. the component qjk, then

∇̃F̃ (q) =


F̃ ′
11(q) F̃ ′

12(q) · · · · · · F̃ ′
1m(q)

F̃ ′
21(q) F̃ ′

22(q) · · · · · · F̃ ′
2m(q)

· · · · · · · · · · · ·
F̃ ′
M1(q) F̃ ′

M2(q) · · · · · · F̃ ′
Mm(q)





604 G. FANG AND J. XU

We also need to introduce a special multiplication of the two matrices which is needed
for the sequel. In order to distinguish it from a traditional matrix multiplication, we define
the special matrix multiplication qT ⊙ ∇̃F̃ (q) as follows

qT ⊙ ∇̃F̃ (q) =

M⊕
s=1

m⊕
t=1

qts · F̃ ′
st(q).

Let fuzzy-valued function f̃ : K(⊂ RM×m) → E and x, y ∈ K. We say f̃(x) ⪯ f̃(y) if
for every α ∈ (0, 1], f̃(x)Lα ≤ f̃(y)Lα and f̃(x)Rα ≤ f̃(y)Rα . We say f̃(x) ≺ f̃(y) if and only if
f̃(x) ⪯ f̃(y) and f̃(x) ̸= f̃(y). We also write f̃(x) ⪯ f̃(y) for f̃(y) ⪰ f̃(x), and f̃(x) ≺ f̃(y)
for f̃(y) ≻ f̃(x).

Next we present other concepts of invex and incave fuzzy mappings. These are variation
of RufiSn-Lizana et al in [44].

Definition 4.9. Let y ∈ K ⊂ RM×m, we say K is invex at y w.r.t. η : K ×K → RM×m,
if for each x ∈ K,λ ∈ [0, 1], y + λη(x, y) ∈ K. K is said to be an invex set w.r.t. η, if K is
invex at each x ∈ K.

Definition 4.10. A g-differentiable fuzzy-valued function f̃ : K(⊂ RM×m) → E is called
fuzzy invex w.r.t. a function η : K × K → RM×m, if for all x, y ∈ K f̃(x) ⪰ η(x, y)T ⊙
∇̃f̃(y) ⊕ f̃(y). f̃ is called fuzzy incave w.r.t. a function η, if for all x, y ∈ K, f̃(x) ⪯
η(x, y)T ⊙ ∇̃f̃(y)⊕ f̃(y).

Definition 4.11 ([44]). A fuzzy-valued function f̃ : K ⊂ RM×m → E said to be preincave
on invex set K w.r.t. η, if for any x ∈ K,λ ∈ [0, 1], f̃ [y + λη(x, y)] ⪰ λf̃(x)⊕ (1− λ)f̃(y).

Definition 4.12. Let f̃ : K ⊂ RM×m → E be a fuzzy-valued function defined on an invex
set K ⊂ RM×m,K ̸= ∅ w.r.t. η : K ×K → Rn. If for any x, y ∈ K , there exists δ > 0 for
any real number h ∈ (0, δ), such that

lim
h→0+

f̃(y + hη(x, y))⊖g f̃(y)

h
= η(x, y)T ⊙ ∇̃f̃η(y),

then f̃ is called the fuzzy η-extended directional at y,∇̃f̃η(y) is called the fuzzy η-extended
directional derivative at y in the direction η(x, y).

Definition 4.13 ((Condition C) [35]). We say that the function η : K×K → RM×m satisfies
Condition C if for any x, y ∈ K, the following relations are satisfied for any t ∈ [0, 1].

(i) η(y, y + tη(x, y)) = −tη(x, y);

(ii) η(x, y + tη(x, y)) = (1− t)η(x, y).

The following two Theorems explain the relationship between the fuzzy incave function and
fuzzy preincave function.

Theorem 4.14. Let K is a nonempty invex set w.r.t. η, and η satisfies Condition C, if a
fuzzy-valued function f̃ : K ⊂ RM×m → E is an fuzzy incave function, then f̃ is a fuzzy
preincave function.

Proof. Since K is a nonempty invex set w.r.t. η, for all x, y ∈ K,λ ∈ [0, 1], we have
y∗ = y + λη(x, y) ∈ K. By the incavity of f̃ , we have

f̃(y) ⪯ η(y, y∗)T ⊙ ∇̃f̃η(y
∗)⊕ f̃(y∗).
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Similarly, the incavity condition applied to the pair x, y∗ yields

f̃(x) ⪯ η(x, y∗)T ⊙∇f̃η(y
∗)⊕ f̃(y∗).

Therefore, for every α ∈ [0, 1], we have

f̃(y)Lα ≤ [η(y, y∗)T ⊙ ∇̃f̃η(y
∗)]Lα + f̃(y∗)Lα, (4.3a)

f̃(y)Rα ≤ [η(y, y∗)T ⊙ ∇̃f̃η(y
∗)]Rα + f̃(y∗)Rα , (4.3b)

f̃(x)Lα ≤ [η(x, y∗)T ⊙ ∇̃f̃η(y
∗)]Lα + f̃(y∗)Lα, (4.3c)

f̃(x)Rα ≤ [η(x, y∗)T ⊙ ∇̃f̃η(y
∗)]Rα + f̃(y∗)Rα . (4.3d)

Now, multiplying (4.3c) by λ and multiplying (4.3a) by (1− λ) and adding, we note that

λf̃(x)Lα + (1− λ)f̃(y)Lα ≤ λ[η(x, y∗)T ⊙ ∇̃f̃η(y
∗)]Lα + (1− λ)[η(y, y∗)T ⊙ ∇̃f̃η(y

∗)]Lα + f̃(y∗)Lα.
(4.4a)

Similarly, multiplying (4.3d) by λ and multiplying (4.3b) by (1 − λ) and adding, we note
that

λf̃(x)Rα +(1−λ)f̃(y)Rα ≤ λ[η(x, y∗)T ⊙∇̃f̃η(y
∗)]Rα +(1−λ)[η(y, y∗)T ⊙∇̃f̃η(y

∗)]Rα + f̃(y∗)Rα .
(4.4b)

From (i) and (ii) of Condition C, we have

η(y, y∗) = η(y, y + λη(x, y)) = −λη(x, y),

η(x, y∗) = η(x, y + λη(x, y)) = (1− λ)η(x, y).

Thus

λ[η(x, y∗)T ⊙ ∇̃f̃η(y
∗)]Lα + (1− λ)[η(y, y∗)T ⊙ ∇̃f̃η(y

∗)]Lα + f̃(y∗)Lα

= λ(1− λ)[η(x, y)T ⊙ ∇̃f̃η(y
∗)]Lα + (−λ)(1− λ)[η(x, y)T ⊙∇f̃η(y

∗)]Lα + f̃(y∗)Lα

= f̃(y∗)Lα.

Similarly,

λ[η(x, y∗)T ⊙ ∇̃f̃η(y
∗)]Rα + (1− λ)[η(y, y∗)T ⊙ ∇̃f̃η(y

∗)]Rα + f̃(y∗)Rα = f̃(y
∗)Rα .

By (4.4a) and (4.4b), for every α ∈ [0, 1], we have

λf̃(x)Lα + (1− λ)f̃(y)Lα ≤ f̃(y∗)Lα, λf̃(x)
R
α + (1− λ)f̃(y)Rα ≤ f̃(y∗)Rα ,

i.e.,

λf̃(x)⊕ (1− λ)f̃(y) ⪯ f̃(y∗) = f̃(y + λη(x, y)).

Therefore, f̃ is preincave.

Lemma 4.15. Let fuzzy-valued function f̃ : K(⊂ RM×m) → E and x, y, z ∈ K. If f̃(x) ⪰
f̃(y), then

f̃(x)⊖g f̃(z) ⪰ f̃(y)⊖g f̃(z).
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Proof. By Lemma 4.3, for all α ∈ [0, 1], we have

(f̃(x)⊖g f̃(z))α = [(f̃(x)⊖g f̃(z))
L
α, (f̃(x)⊖g f̃(z))

R
α ]

= [min{ inf
β≥α

(f̃(x)Lβ − f̃(z)Lβ ), inf
β≥α

(f̃(x)Rβ − f̃(z)Rβ )},

max{sup
β≥α

(f̃(x)Lβ − f̃(z)Lβ ), sup
β≥α

(f̃(x)Rβ − f̃(z)Rβ )}],

(f̃(y)⊖g f̃(z))α = [(f̃(y)⊖g f̃(z))
L
α, (f̃(y)⊖g f̃(z))

R
α ]

= [min{ inf
β≥α

(f̃(y)Lβ − f̃(z)Lβ ), inf
β≥α

(f̃(y)Rβ − f̃(z)Rβ )},

max{sup
β≥α

(f̃(y)Lβ − f̃(z)Lβ ), sup
β≥α

(f̃(y)Rβ − f̃(z)Rβ )}].

Since f̃(x) ⪰ f̃(y), so for all β ∈ [0, 1], it holds that f̃(x)Lβ − f̃(z)Lβ ≥ f̃(y)Lβ − f̃(z)Lβ ,

f̃(x)Rβ − f̃(z)Rβ ≥ f̃(y)Rβ − f̃(z)Rβ , i.e.,

inf
β≥α

(f̃(x)Lβ − f̃(z)Lβ )} ≥ inf
β≥α

(f̃(y)Lβ − f̃(z)Lβ )}, inf
β≥α

(f̃(x)Rβ − f̃(z)Rβ )} ≥ inf
β≥α

(f̃(y)Rβ − f̃(z)Rβ )},

sup
β≥α

(f̃(x)Lβ − f̃(z)Lβ )} ≥ sup
β≥α

(f̃(y)Lβ − f̃(z)Lβ )}, sup
β≥α

(f̃(x)Rβ − f̃(z)Rβ )} ≥ sup
β≥α

(f̃(y)Rβ − f̃(z)Rβ )}.

Thus,

min{ inf
β≥α

(f̃(x)Lβ − f̃(z)Lβ ), inf
β≥α

(f̃(x)Rβ − f̃(z)Rβ )}

≥ min{ inf
β≥α

(f̃(y)Lβ − f̃(z)Lβ ), inf
β≥α

(f̃(y)Rβ − f̃(z)Rβ )},

max{sup
β≥α

(f̃(x)Lβ − f̃(z)Lβ ), sup
β≥α

(f̃(x)Rβ − f̃(z)Rβ )}

≥ max{sup
β≥α

(f̃(y)Lβ − f̃(z)Lβ ), sup
β≥α

(f̃(y)Rβ − f̃(z)Rβ )}.

Therefore, for all α ∈ [0, 1], we have

(f̃(x)⊖g f̃(z))
L
α ≥ (f̃(y)⊖g f̃(z))

L
α, (f̃(x)⊖g f̃(z))

R
α ≥ (f̃(y)⊖g f̃(z))

R
α ,

i.e., f̃(x)⊖g f̃(z) ⪰ f̃(y)⊖g f̃(z).

Theorem 4.16. Let K is a nonempty invex set w.r.t. η and f̃ : K ⊂ RM×m → E is an
fuzzy preincave w.r.t. η and η-extended directional at y, then f̃ is a fuzzy incave w.r.t. η.

Proof. Since K is a nonempty invex set w.r.t. η, for all x, y ∈ K,λ ∈ (0, 1], from the
definition of fuzzy preincave, we can get

f̃(y + λη(x, y)) ⪰ λf̃(x)⊕ (1− λ)f̃(y).

By Lemma 4.15,

f̃(y + λη(x, y))⊖g f̃(y) ⪰ λf̃(x)⊕ (1− λ)f̃(y)⊖g f̃(y).
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By Lemma 4.3, for all α ∈ [0, 1], we have

[λf̃(x)⊕ (1− λ)f̃(y)⊖g f̃(y)]α

= [min{ inf
β≥α

(λf̃(x)Lβ + (1− λ)f̃(y)Lβ − f̃(y)Lβ ), inf
β≥α

(λf̃(x)Rβ + (1− λ)f̃(y)Rβ − f̃(y)Rβ )},

max{sup
β≥α

(λf̃(x)Lβ + (1− λ)f̃(y)Lβ − f̃(y)Lβ ), sup
β≥α

(λf̃(x)Rβ + (1− λ)f̃(y)Rβ − f̃(y)Rβ )}]

= [min{ inf
β≥α

(λf̃(x)Lβ − λf̃(y)Lβ ), inf
β≥α

(λf̃(x)Rβ − λf̃(y)Rβ )},

max{sup
β≥α

(λf̃(x)Lβ − λf̃(y)Lβ ), sup
β≥α

(λf̃(x)Rβ − λf̃(y)Rβ )}]

= λ[min{ inf
β≥α

(f̃(x)Lβ − f̃(y)Lβ ), inf
β≥α

(f̃(x)Rβ − f̃(y)Rβ )},

max{sup
β≥α

(f̃(x)Lβ − f̃(y)Lβ ), sup
β≥α

(f̃(x)Rβ − f̃(y)Rβ )}]

= [λ(f̃(x)⊖g f̃(y))]α.

Therefore, it follows that for all λ ∈ (0, 1],

λf̃(x)⊕ (1− λ)f̃(y)⊖g f̃(y) = λ(f̃(x)⊖g f̃(y)).

So, we have

f̃(y + λη(x, y))⊖g f̃(y) ⪰ λ(f̃(x)⊖g f̃(y)).

This implies that for all λ ∈ (0, 1],

f̃(y + λη(x, y))⊖g f̃(y)

λ
⪰ f̃(x)⊖g f̃(y).

Since f̃ is the fuzzy η-extended directional at y, and taking λ → 0+, we have

lim
λ→0+

f̃(y + λη(x, y))⊖g f̃(y)

λ
⪰ f̃(x)⊖g f̃(y),

i.e.

η(x, y)T ⊙ ∇̃f̃(y) ⪰ f̃(x)⊖g f̃(y).

Thus, f̃ is a fuzzy incave w.r.t. η.

A well-known fact in mathematical programming is that the variational inequality prob-
lem is closely related to the optimization problem. Similarly, the fuzzy variational inequality
problem is also closely related to the fuzzy optimization problem. In this section, we intro-
duce a fuzzy variational-like inequality problems (FVLIP): to find x∗ ∈ K ⊂ RM×m, a fuzzy
matrix ∇̃f̃(x∗) = [∇̃f̃(x∗)ij ]M×m such that for any x ∈ K, such that

⟨∇̃f̃(x∗), η(x, x∗)⟩ = η(x, x∗)T ⊙ ∇̃f̃(x∗) ⪯ 0.

Theorem 4.17. Let set K be an open invex set w.r.t. η, x∗ ∈ K, and f̃ : K → E be a
g-differentiable fuzzy incave w.r.t. η. If x∗ is a solution of FVLIP, then x∗ is a local optimal
solution of FP: maxx∈K f̃(x).
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Proof. Suppose that x∗ is not a local optimal solution of FP, then there exists an x̄ ∈
K

∩
ℵδ(x

∗) such that f̃(x̄) ≻ f̃(x∗), and for all α ∈ [0, 1],

f̃(x̄)Lα > f̃(x∗)Lα, f̃(x̄)
R
α > f̃(x∗)Rα . (4.5a)

Since f̃ is a g-differentiable incave fuzzy function, it holds that

f̃(x̄) ⪯ η(x̄, x∗)T ⊙ ∇̃f̃(x∗)⊕ f̃(x∗),

then for all α ∈ [0, 1]

f̃(x̄)Lα ≤ [η(x̄, x∗)T ⊙ ∇̃f̃(x∗)]Lα + f̃(x∗)Lα,

f̃(x̄)Rα ≤ [η(x̄, x∗)T ⊙ ∇̃f̃(x∗)]Rα + f̃(x∗)Rα . (4.5b)

By (4.5a) and (4.5b), it holds that

[η(x̄, x∗)T ⊙ ∇̃f̃(x∗)]Lα > 0, [η(x̄, x∗)T ⊙ ∇̃f̃(x∗)]Rα > 0,

then
η(x̄, x∗)T ⊙ ∇̃f̃(x∗) = ⟨∇̃f̃(x∗), η(x, x∗)⟩ ≻ 0.

This contradicts the fact that x∗ is a solution of FVLIP.

Theorem 4.18. Let the set K be an open invex set w.r.t. η, x∗ ∈ K, and f̃ : K → E be
a g-differentiable invex fuzzy w.r.t. η. If x∗ is a local optimal solution of FP, then x∗ is a
solution of FVLIP.

Proof. Suppose that x∗ is not a solution of FVLIP, then there exists an x̄ ∈ K, such that

⟨∇̃f̃(x∗), η(x̄, x∗)⟩ = η(x̄, x∗)T ⊙ ∇̃f̃(x∗) ≻ 0.

Since f̃ is a g-differentiable fuzzy invex function, then

f̃(x̄) ⪰ η(x̄, x∗)T ⊙ ∇̃f̃(x∗)⊕ f̃(x∗).

Thus, we have
f̃(x̄) ≻ f̃(x∗).

This contradicts the fact that x∗ is a local optimal solution of FP.

Theorems 4.17 and 4.18 show that the fuzzy variational-like inequality problem is not
completely equivalent to the fuzzy optimization problem and depends on the characteristics
of the fuzzy-valued function f̃ .

4.2 Specific solution for integrated FPTPMM model

For FPTPMM problem, the fuzzy variational-like inequality problems (FVLIP) should be:
to find q∗ ∈ Q, a fuzzy matrix ∇̃F̃ (q∗) = [∇̃F̃ (q∗)ij ]M×m such that for any q ∈ Q, such
that

⟨∇̃F̃ (q∗), η(q, q∗)⟩ = η(q, q∗)T ⊙ ∇̃F̃ (q∗) ⪯ 0. (4.6)

The following theorem is an immediate consequence of Theorems 4.17 and 4.18.

Theorem 4.19. Let the feasible set Q be an open invex set w.r.t. η, q∗ ∈ Q, we have
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(i) If F̃ : Q → E be a g-differentiable fuzzy incave w.r.t. η, q∗ is a solution of
⟨∇̃F̃ (q∗), η(q, q∗)⟩ ⪯ 0, then q∗ is a local optimal solution of the integrated FPTPMM
model.

(ii) If F̃ : Q → E be a g-differentiable fuzzy invex w.r.t. η, q∗ is a local optimal solution
of the integrated FPTPMM model, then q∗ is a solution of ⟨∇̃F̃ (q∗), η(q, q∗)⟩ ⪯ 0.

Remark 4.20. By (3.2), we can obtain ∇F̃ (q) is a M ×m matrix whose components are

F̃ ′
st(q) =

m⊕
j=1

M⊕
k=1

[π̃j
k(q)]

′
st, (s = 1, 2, · · · ,M, t = 1, 2, · · · ,m),

where [π̃j
k(q)]

′
st represents the partially derivative of π̃j

k(q) at q w.r.t. the component qts.

Remark 4.21. Theorem 4.19 shows that the solution of the integrated FPTPMM model
can be obtained by solving the FVLIP when F̃ (q) is a g-differentiable fuzzy incave. In fact,
according to the relationship between the fuzzy incave and fuzzy preincave (Theorem 4.14
and Theorem 4.16), if F̃ (q) is a g-differentiable fuzzy preincave w.r.t. η and η-extended
directional at q, then the solution of the integrated FPTPMM model can also be obtained
by solving the FVLIP (8).

If η(q, q∗) = q − q∗, then the economic interpretation of FVLIP (8) is that for all pro-
duction flow matrix q ∈ Q, if the combination increment of fuzzy total profit on all paths
at production flow matrix q∗ is non-positive, i.e., for all production flow matrix q ∈ Q, the
fuzzy total profit on all paths at production flow matrix q is not more than that at produc-
tion flow matrix q∗. then the production flow matrix q∗ is a point where the fuzzy function
F̃ (q) achieves its maximum.

According to Theorem 4.19, to obtain the solution to the integrated FPTPMM model
(3.3), we only need to solve the FVLIP (8). However, it is very difficult to solve FVLIP (8) for
the general η(x, y). But we are able to transform it equivalently into a generalized nonlinear
complementarity problem if η(x, y) have the following special form: η(x, y) = G(x)−G(y).
So we present the solution methods for when η(x, y) = G(x)−G(y).

The generalized nonlinear complementarity problem, denoted by GNCP, is to find q∗ ≥ 0
such that

∇̃F̃ (q∗) ⪰ 0, G(q∗)T ⊙ ∇̃F̃ (q∗) = 0. (4.7)

Using Fischer-Burmeister NCP-function [17]

φ(a, b) =
1

2
[
√
a2 + b2 − (a+ b)]2.

(4.7) equivalent to finding a global minimum for the unconstrained minimization problem

min
q∈Q

m⊕
t=1

M⊕
s=1

φ[G(qts),

m⊕
j=1

M⊕
k=1

[π̃j
k(q)]

′
st]. (4.8)

(4.8) is a fuzzy unconstrained minimization problem, we transform it to crisp unconstrained
minimization problem by defuzzification.

As we all know, it is very difficult to handle a optimistic problem when it involves
uncertain information, so it is necessary to transform the fuzzy numbers into a determinate
form. In this paper, we use a ranking fuzzy numbers approach to defuzzification. There have
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been many different methods proposed for ranking fuzzy intervals, most of which suggest
mapping each fuzzy interval into a real line to define a ranking function. The ranking
function, called the Average Value (AV), was introduced by Ibáñez and Muñoz [22] and was
defined as a dependent on several parameters, allowing for flexibility in the final classification.
The following definition for the ranking function is a particular case of an AV that considers
a mean optimism degree.

Definition 4.22. Let α ∈ [0, 1], then the defuzzified value of f̃(x) is given by

f(x) =

∫ 1

0

α[f̃(x)Lα + f̃(x)Rα ]dα.

In the following, we give the solution method for the integrated FPTPMM model under
the condition of general convex and general concave fuzzy-valued function.

Step 1: For all k ∈ Pi and all j calculate the profits for product j on path k, π̃j
k(q), using

formula (3.1).
Step 2: For all k ∈ Pi and all j calculate the partially derivative of π̃j

k(q) at q w.r.t. the

component qts, [π̃
j
k(q)]

′
st.

Step 3: Defuzzification, we denote [π̃j
k(q)]

′
st as the defuzzified value of [π̃j

k(q)]
′
st, and

[π̃j
k(q)]

′
st =

∫ 1

0

α{[(π̃j
k(q))

′
st]

L
α + [(π̃j

k(q))
′
st]

R
α}dα. (4.9)

Step 4: Using (3.2), obtain the function F̃ (q) for the integrated FPTPMM model.
Step 5: Obtain the function η(x, y) which make the function F̃ (q) is a G-differentiable

incave fuzzy-valued function w.r.t. η(x, y), and rewritten η(x, y) as η(x, y) = G(x)−G(y).
Step 6: Finding a global minimum for the crisp unconstrained minimization problem

min
q∈Q

m∑
t=1

M∑
s=1

φ{G(qts),

m∑
j=1

M∑
k=1

[πj
k(q)]

′
st}.

Remark 4.23. Note that a fuzzy concave function is a incave fuzzy by taking η(x, y) = x−y.
The above solution method is contained in the solution method under a concavity condition.
Similarly, if F̃ (q) is a g-differentiable fuzzy preincave w.r.t. η and η-extended directional at
q, then the above solution method is also can be used.

5 An Illustrative Example

In this section, a practical example is used to demonstrate the practicality of the proposed
optimization methodology and to guide similar real-world applications. In this part, the
case problem is first presented. Following that, we use the above solution method to solve
this problem. Finally, computations are done and the results demonstrate .

5.1 Case presentation

In this section, we give an example to demonstrate the application of the model. We assume
that a milk products firm has 3 factories which have two types of production, pure milk and
yogurt (m=2). These products are sent through 4 distribution centers to 4 sub-markets.
These factories, distribution centers and sub-markets are located in eleven different cities.
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Figure 2: Fig.2 Network topology and path graph for illustrative example

Because these cities all have different distance and transport conditions, and the differ-
ent sub-markets have different consumers, decision makers need to decide the production
quantities for pure milk and yogurt, the transportation methods for these products and
the sub-market pricing. We use the above model to solve these problems. The exam-
ple has a topology as depicted in the left of Fig. 2. Table 2 summarizes the constituent
paths of each O − D pair and the path graph ia depicted in the right of Fig. 2. Thus
|I| = 12, |A| = 19,M = 21.

i ODi Pi sequence of arcs qjk i ODi Pi sequence of arcs qjk
1 O1 → D1 k1 {a1, a9} qj1 7 O2 → D3 k12 {a5, a15} qj12

k2 {a2, a12} qj2 8 O2 → D4 k13 {a5, a16} qj13
2 O1 → D2 k3 {a1, a10} qj3 9 O3 → D1 k14 {a6, a12} qj14

k4 {a2, a13} qj4 10 O3 → D2 k15 {a6, a13} qj15
k5 {a3, a17} qj5 k16 {a7, a14} qj16

3 O1 → D3 k6 {a1, a11} qj6 k17 {a8, a17} qj17
k7 {a3, a18} qj7 11 O3 → D3 k18 {a7, a15} qj18

4 O1 → D4 k8 {a3, a19} qj8 k19 {a8, a18} qj19
5 O2 → D1 k9 {a4, a12} qj9 12 O3 → D4 k20 {a7, a16} qj20
6 O2 → D2 k10 {a4, a13} qj10 k21 {a8, a19} qj21

k11 {a5, a14} qj11

Table 2: OD pairs and their constituent paths

The fuzzy parameters for cost and demand functions have triangular membership func-
tions. The fuzzy transportation cost functions for product j on the arc at are given by

c̃jt (q) = m̃j
tq, (j = 1, 2, t = 1, 2, · · · , 19). (5.1)

where
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m̃1

1 · · · m̃1
19

m̃2
1 · · · m̃2

19

)
=

(
7̃.5 7̃.5 ˜10.5 9̃ ˜10.5 6̃ 7̃.5 7̃.5
4̃.5 ˜10.5 6̃ 7̃.5 9̃ 7̃.5 9̃ 3̃

9̃ 4̃.5 7̃.5 7̃.5 6̃ 9̃ 1̃2 6̃ 7̃.5 7̃.5 1̃2
6̃ 6̃ 6̃ 4̃.5 9̃ 6̃ 7̃.5 6̃ 7̃.5 4̃.5 6̃

)
Obviously, the transportation cost functions is convex.
The membership functions of the fuzzy parameters are triangular membership functions

as follows

µm̃j
k
(x) =

 (x−mj
k + 3)/2, mj

k − 3 < x ≤ mj
k;

(−x+mj
k + 3)/2, mj

k < x < mj
k + 3;

0, otherwise.

The fuzzy production cost functions for factories, g̃ji (q), are given by

g̃j1(q) = h̃j
1q, g̃

j
2(q) = h̃j

2q, g̃
j
3(q) = h̃j

3q, (j = 1, 2). (5.2)

where (
h̃1
1 h̃1

2 h̃1
3

h̃2
1 h̃2

2 h̃2
3

)
=

(
7̃.5 6̃ 7̃.5
6̃ 7̃.5 7̃.5

)
The membership functions of the fuzzy parameters are triangular membership functions as
follows

µh̃j
k
(x) =

 (x− hj
k + 1)/2, hj

k − 1 < x ≤ hj
k;

(−x+ hj
k + 1)/2, hj

k < x < hj
k + 1;

0, otherwise.

The demand functions,p̃ji , at the sub-markets are

p̃11 = 750− 3̃d11 − 3̃d21, p̃
2
1 = 750− 6̃d21 − 4̃.5d11,

p̃12 = 750− 6̃d12 − 3̃d22, p̃
2
2 = 750− 4̃.5d22 − 6̃d12,

p̃13 = 750− 3̃d13 − 6̃d23, p̃
2
3 = 750− 4̃.5d23 − 4̃.5d13,

p̃14 = 750− 4̃.5d14 − 6̃d24, p̃
2
4 = 750− 6̃d24 − 3̃d14. (5.3)

where dji is the demand in sub-market i for product j, and the membership functions of the

fuzzy parameters for pji are also triangular membership functions with an interval length 2.

5.2 Case solution

In this illustrative example, the fuzzy price for product j at destination Ds: p̃js(q) is con-
cave, the fuzzy cost function for product j on the path k and the fuzzy production cost
functions for the factories are both convex, then integrated FPTPMM model (3.3) is a
concave programming. So, we use the above solution method to solve this problem.

Step 1: For all k ∈ Pi and all j calculate the profits for product j on path k ∈ Pi using
(3.1).

Let A1, A2, A3, A4 denote the set of paths k for which the destination paths are
D1, D2, D3, D4, respectively. Then A1 = {1, 2, 9, 14}, A2 = {3, 4, 5, 10, 11, 15, 16, 17}, A3 =
{6, 7, 12, 18, 19}, A4 = {8, 13, 20, 21}. So

dj1 =
∑
k∈A1

qjk, d
j
2 =

∑
k∈A2

qjk, d
j
3 =

∑
k∈A3

qjk, d
j
4 =

∑
k∈A4

qjk.
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Using formula (3.1), the fuzzy profits for product j on path k ∈ Pi are given by

π̃j
k(q) =


p̃j1q

j
k ⊖g [C̃

j
k(q

j
k)⊕ f̃ j

k(q
j
k)], k ∈ A1;

p̃j2q
j
k ⊖g [C̃

j
k(q

j
k)⊕ f̃ j

k(q
j
k)], k ∈ A2;

p̃j3q
j
k ⊖g [C̃

j
k(q

j
k)⊕ f̃ j

k(q
j
k)], k ∈ A3;

p̃j4q
j
k ⊖g [C̃

j
k(q

j
k)⊕ f̃ j

k(q
j
k)], k ∈ A4.

(5.4)

where C̃j
k(q

j
k) = ñj

kq
j
k, and

(ñ1
1, ñ

1
2, · · · , ñ1

21) = ( ˜16.5, 1̃5, 1̃2, ˜13.5, 1̃8, 1̃5, 1̃8, ˜22.5, ˜16.5, 1̃5, 1̃8, ˜22.5, ˜16.5, ˜13.5,

1̃2, ˜16.5, 1̃5, ˜19.5, 1̃5, 1̃5, ˜19.5);

(ñ2
1, ñ

2
2, · · · , ñ2

21) = ( ˜10.5, 1̃8, ˜10.5, ˜19.5, ˜13.5, ˜10.5, ˜10.5, 1̃2, 1̃5, ˜16.5, 1̃5, ˜16.5, 1̃5, 1̃5,

˜16.5, 1̃5, ˜10.5, ˜16.5, 7̃.5, ˜16.5, 9̃)

f̃ j
k(q

j
k) =


h̃j
1q

j
k, k = 1, 2, . . . , 8;

h̃j
2q

j
k, k = 9, 10, . . . , 13;

h̃j
3q

j
k, k = 14, 15, . . . , 21.

(5.5)

Step 2: For all k ∈ Pi and all j calculate the partial derivative of π̃j
k(q) w.r.t. the

component qts, [π̃
j
k(q)]

′
st.

Step 3: Defuzzification. Using formula (4.9), determine the defuzzified value for [π̃j
k(q)]

′
st,

[π̃j
k(q)]

′
st as follows

[π̃j
k(q)

′]st =

∫ 1

0

α{[(π̃j
k(q))

′
st]

L
α + [(π̃j

k(q))
′
st]

R
α}dα.

Step 4: Using (3.2), obtain the function F̃ (q) for the integrated FPTPMM model:

F̃ (q) =

2⊕
j=1

21⊕
k=1

π̃j
k(q).

Step 5: From formulae (5.1)-(5.3), we know that the objective function F̃ (q) is a concave
fuzzy function and also is an incave fuzzy function, where η(x, y) = x− y.

Step 6: Finding a global minimum for the crisp unconstrained minimization problem:

min
q∈Q

2∑
t=1

21∑
s=1

φ{qts,
2∑

j=1

21∑
k=1

[π̃j
k(q)]

′
st}.

This problem can be solved using the optimization software 1stOpt1.5. Here, we only
give the following optimal seven solutions to reference for decision makers, which are shown
in Table 3. Although the solution to the original problem is a set, the defuzzified total
profits for all solutions are 147684.69.

From the optimal production flow matrix, we derive more information for the decision
makers. The production quantity for product j (j = 1, 2) at factory On (n = 1, 2, 3) can be
given as follows

Q1
1 =

8∑
k=1

(q1k)
∗, Q1

2 =

13∑
k=9

(q1k)
∗, Q1

3 =

21∑
k=14

(q1k)
∗,
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Table 3: Numerical results for integrated FPTPMM model

Q2
1 =

8∑
k=1

(q2k)
∗, Q2

2 =

13∑
k=9

(q2k)
∗, Q2

3 =

21∑
k=14

(q2k)
∗.

The optimal transportation flow for product j on arc at can be described as follows

T j
t =

21⊕
k=1

δtkq
j
k, (j = 1, 2, t = 1, 2, · · · , 19)

where δtk = 1, if arc at is contained in path k, and 0, otherwise.

Table 4: The production quantity of products at factories for integrated FPTPMM model
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Table 5: Demand and price of products at sub-markets for integrated FPTPMM model

Table 6: Transportation flow of products on arc at for integrated FPTPMM model

More information is given in Tables 4-6, where Table 4 shows the production quantity
of products at factories for integrated FPTPMM model, Table 5 shows the demand and
price for products at the sub-market for integrated FPTPMM model and Table 6 shows the
transportation flow for products on arc at ∈ A for integrated FPTPMM model. The results
for seven solutions show that only paths 6, 13, 14, 19, 20 allocated product 1, while, for prod-
uct 2, only factory O1 produce product 2 and these products are transported sub-markets
through unique path 3. arcs a2, a3, a4, a9, a13, a14, a15, a17 and a19 do not transport any
production. Although the production quantities of products at factories and transportation
flow on arcs are different, the demands and prices at sub-markets are almost the same.
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5.3 Comparison of results

To demonstrate the advantages of the proposed integrated FPTPMM model, we compare
it with traditional approach in which the production planning, transportation and pricing
problems are solved separately.

The traditional approach considers the FPTPMM problem in two separate phases. First,
the optimal outputs and price is determined based on the most profitable conditions. And
then, according to the known supplies and demands obtained in first phase, the optimal
transportation means are determined. So we first consider individually production and
pricing problems. The fuzzy production and pricing problems for multi-product multi-
market (FPPMM) optimization model is formulated as

max F̃ (q) = [

2⊕
j=1

4⊕
i=1

p̃ji · d
j
i ]⊖g [

2⊕
j=1

3⊕
n=1

g̃jn(Q
j
n)]

subject to 
Q1

1 +Q1
2 +Q1

3 = d11 + d12 + d13 + d14
Q2

1 +Q2
2 +Q2

3 = d21 + d22 + d23 + d24
Qj

n ≥ 0, dji ≥ 0, n = 1, 2, 3, j = 1, 2, i = 1, 2, 3, 4.

After defuzzifying the objective function, this problem also can be solved using the
optimization software 1stOpt1.5. A approximate solution can be given as follows

d11 = 124, d12 = 10.88, d13 = 124, d14 = 78.67, d21 = 0, d22 = 81.5, d23 = 0, d24 = 0,

Q1
1 = 0, Q1

2 = 337.55, Q1
3 = 0, Q2

1 = 81.5, Q2
2 = 0, Q2

3 = 0.

Secondly, according to the known supplies from the factories and the known demand
in the sub-markets, the Fuzzy transportation problems for multi-product multi-market
(FTMM) can be modeled as a fuzzy linear programming problem. Using a simplified ap-
proach for solving fuzzy transportation problems proposed by Ebrahimnejad [16], we obtain
the following optimal solution

q∗ =(
0 0 0 0 0 0 0 0 124 10.88 0 124 78.67 0 0 0 0 0 0 0 0
0 0 81.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)T

.

About the demand and price for products at the sub-market and the transportation flow for
products on arc at ∈ A for traditional model are given in Tables 7-8.

sub-market D1 sub-market D2 sub-market D3 sub-market D4

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

demand 124 0 10.88 81.5 124 0 78.67 0
price 378 - 440.22 377.97 317.25 - 395.99 -

Table 7: Demand and price for products at sub-market for traditional FPPMM model
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Table 8: Transportation flow of products on arc at for traditional FTMM method

T j
t j = 1 j = 2 T j

i j = 1 j = 2 T j
i j = 1 j = 2 T j

i j = 1 j = 2

T j
1 0 81.5 T j

6 0 0 T j
11 0 0 T j

16 78.67 0

T j
2 0 0 T j

7 0 0 T j
12 124 0 T j

17 0 0

T j
3 0 0 T j

8 0 0 T j
13 10.88 0 T j

18 0 0

T j
4 134.88 0 T j

9 0 0 T j
14 0 0 T j

19 0 0

T j
5 202.67 0 T j

10 0 81.5 T j
15 124 0

The results for solution q∗ show that factories O1 and O3 do not produce production 1,
factory O3 does not produce production 2, arcs a2, a3, a6, a7, a8, a9, a11, a14, a17, a18, a19 do
not transport any production.

Table 9: comparison of two methods

Table 9 provides the comparison of results for the integrated method and traditional
method. The row labelled ’Percentage of increase from Integrated method’ give the value
from integrated method minus the value from traditional method divided by the value from
traditional method and expressed as a percentage. The results shows that the revenues
have not changed much in the integrated model, it only increased by 1.998%, but the trans-
portation cost have changed much, which can be reduced by a surprising number 23.358%.
Compared with traditional method, the percentage of increase in total profit is 3.067%.

6 Conclusion

In this paper, we have simultaneously considered a production, transportation and pricing
optimization problem for multi-product multi-market under uncertain demand and uncer-
tain cost, i.e. the demand and cost are fuzzy-valued functions. We first developed the
integrated fuzzy production planning, transportation and pricing for multi-product multi-
market (FPTPMM for short) model. Then, we discussed the solution methods for the inte-
grated FPTPMM model based on the fact that F̃ is a special generalized concave function
and derived an equivalence relation between the integrated FPTPMM model and the fuzzy
variational-like inequality. Finally, an illustrative example was given to demonstrate an ap-
plication of the theoretical results. The main contributions of this thesis can be summarized
as follows:

(1) This is the first attempt in fuzzy environment to bridge these two streams of study:
the fuzzy production-pricing problem and the fuzzy transportation problem, or the fuzzy
production transportation problem and the fuzzy pricing problem. This study not only
provides a solution for production, pricing and transportation decision problems in supply
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chain under the fuzzy condition, but also provides theoretical support for collaborative
production, transportation, pricing strategy in supply chain under the fuzzy condition.

(2) The proposed integrated FPTPMM model consider the three factors affecting the
fuzzy total profits, fuzzy production cost, fuzzy transportation cost and fuzzy demand as a
system, which does not simply add the existing fuzzy production quantity decision model,
fuzzy distribution and transportation problem and fuzzy pricing model together. This re-
search method, allocate production cost and revenue for each product to each path and
then calculate the profit for each product to each path, is not only very simple, but also can
overcome the difficulties of comprehensive consideration.

(3) An equivalence relationship between the FPTPMMmodel and a fuzzy variational-like
inequality problem is developed. Some theorem solutions are proved for the fuzzy variational-
like inequality, which extends the application fields of fuzzy variational-like inequalities.

However, a general solution method for the integrated FPTPMM model cannot be given
when η(x, y) cannot be rewrite as G(x)−G(y). With this in mind, one direction for future
research may be a study of the methods for the case when η(x, y) cannot be rewritten as
G(x) − G(y), and further studies as to how the incave function F̃ can be converted into a
concave fuzzy-valued function using an invertible transformation.
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