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maps and derived scalarization results under the cone-subconvexlikeness in [10]. Some other
related works of approximate solutions can be seen in [5, 11]. Recently, Chicco et al. [4]
introduced the concept of improvement set and presented E-efficient solutions via improve-
ment set. Improvement set is an important tool to study vector optimization problems in
a unified framework and study properties and applications of improvement set in vector
optimization, see [17–19].

Borwein and Lewis pointed out there exist many convex sets which often has empty
interior, and whence, they proposed a kind of generalized interior notion named as quasi
relative interior in [2]. Soon afterwards, Limber and Goodrich introduced the quasi interior
in [8]. It is well-known that the classic weakly efficient solutions depend on the nonemptiness
of the interior of ordering cone in vector optimization. When the ordering cone has empty
interior, naturally some generalized interior tools will be employed. Zălinescu obtained
some properties of quasi interior and quasi relative interior and applications in optimization
problems in [15,16]. Bao and Mordukhovich considered a class of multiobjective optimization
problems and established some existence results of weak efficiency defined by several kinds of
generalized interiors by means of variational analysis tool in [1]. Xia, Zhang and Zhao gave
some properties of improvement set, introduced weak E-efficient solutions and established
the corresponding alternative theorem and linear scalarization result in the sense of quasi
interior in [14].

Motivated by the works of [12,14–16], in this paper, we mainly focus on some properties
of improvement set and applications in vector optimization problems. By using the notion
of quasi interior, we obtain some new properties of improvement set and establish linear
scalarization of weakly efficient solutions defined by quasi interior for vector optimization
problems. Especially, we also present some examples to show that the generalized convexity
can not be weaken to the classical near-subconvexlikeness.

2 Preliminaries

Let X be a real linear space, Y be a real nontrivial separated locally convex topological
vector space and Y ∗ be the topological dual space of Y . We denote the n-dimensional
Euclidean space, the nonnegative orthant and the positive orthant by Rn, Rn

+ and Rn
++,

respectively. For a nonempty subset A in Y , A is said to be proper if A ̸= ∅ and A ̸= Y , the
generated cone and the positive dual cone of A are respectively defined as

coneA = {αa|α ≥ 0, a ∈ A}, A+ = {µ ∈ Y ∗|⟨µ, y⟩ ≥ 0,∀y ∈ A}, (2.1)

and the support functional of the set A be defined as σA(µ) = sup
a∈A

{⟨µ, a⟩}, ∀µ ∈ Y ∗.

Moreover, we denote the topological interior and topological closure of the set A by intA
and clA, respectively. And for a convex subset A, the quasi interior and quasi relative
interior denoted by qiA and qriA are respectively defined as

qiA = {y ∈ A|cl(cone(A− y)) = Y };

qriA = {y ∈ A|cl(cone(A− y)) is a linear subspace in Y }.
(2.2)

It is well known that intA ⊂ qiA ⊂ qriA; If intA ̸= ∅, then intA = qiA = qriA; If qiA ̸= ∅,
then qiA = qriA. The important equivalent definitions of the quasi interior and quasi relative
interior are introduced by Zălinescu [16] as follows:

qiA = A ∩ qi(clA), qriA = A ∩ qri(clA).
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Consider the following vector optimization problem:

(VOP) minF (x) subject to x ∈ S, (2.3)

where F : S ⇒ Y , S ⊂ X and S ̸= ∅.

Definition 2.1. [4, 19] Let K be a proper convex cone in Y and E be a nonempty subset
in Y . E is said to be an improvement set with respect to K if 0 /∈ E and E +K = E.

Definition 2.2. [14] Let K be a proper convex cone with nonempty quasi interior in Y
and E be a convex improvement set with respect to K in Y . A point pair (x, y) is called a
weak E-efficient point of (VOP) if x ∈ S, y ∈ F (x) such that

(y − qiE) ∩ F (S) = ∅.

Consider the following scalar optimization problem:

(VOP)µ min
x∈S

⟨µ, F (x)⟩, µ ∈ Y ∗\{0Y ∗},

where ⟨µ, F (x)⟩ = {⟨µ, y⟩|y ∈ F (x)}. Let E be an improvement set with respect to K in
Y . A point x ∈ S is called an optimal solution of (VOP)µ with respect to E if there exists
y ∈ F (x) such that

⟨µ, y − y⟩ ≥ σ−E(µ),∀x ∈ S,∀y ∈ F (x).

From the definition of σA(µ), we have σ−E(µ) = sup
e∈E

⟨µ,−e⟩. Moreover, the point pair (x, y)

is called an optimal point of (VOP)µ with respect to E.

3 Properties of improvement sets via quasi interior and applica-
tions in (VOP)

In this section, we first give some properties of improvement sets by means of the notion of
quasi interior and improve some corresponding results established by Xia, Zhang and Zhao
in [14]. As applications, we obtain a scalarization result of weakly efficient solutions defined
by improvement set and quasi interior for (VOP). In particular, we also point out that the
corresponding generalized convexity of objective function could not be weaken to the near-
subconvexlikeness even if for the case of the exact weakly efficient solutions established by
Yang, Li and Wang in [12].

Lemma 3.1. Let K be a proper convex cone with nonempty quasi interior in Y . If K is
closed, then 0 /∈ qiK.

Proof. On the contrary, assume that 0 ∈ qiK. Then by using the definition of quasi interior,
we have

cl(cone(K − 0)) = Y.

Hence from the closedness of K, it follows that K = Y , which contradicts to the fact that
K is proper.

Remark 3.1. Noting that the converse of Lemma 3.1 may not be true. In fact, if we take
Y = l2, K = l1+, then it is clear that K is a proper convex cone with 0 /∈ qiK, and K is not
closed.
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Remark 3.2. Lemma 3.1 shows that the closedness of K implies 0 /∈ qiK when K is a
proper convex cone. Naturally, if K is a proper convex cone, it remains one open question
that whether the pointedness of K implies 0 /∈ qiK. However, we would like to point out
that this result may not be valid when Y is a locally convex topological vector space and is
not necessarily separated.

Example 3.1. Let Y be the real two-dimensional linear space and

K = {(y1, y2) ∈ Y |y1 − y2 ≤ 0} \ {(y1, y2) ∈ Y |y1 − y2 = 0, y1 < 0}.

It is clear that K is a proper pointed convex cone. Define a new topology on Y as follows:

T = {A×B ⊂ Y | A = (α, β), α ∈ R, β ∈ R, α < β,B = (−∞,+∞)} ∪ {∅, Y }.

Clearly, T is a topology and it has a convex neighborhood basis of zero T0 defined as follows:

T0 = {A×B ⊂ Y | A = (−α, α), α ∈ R++, B = (−∞,+∞)}.

And on this basis, we can verify that the map TV1 : Y ×Y → Y defined as (y1, y2) 7→ y1+y2
and the map TV2 : R×Y → Y defined as (λ, y) 7→ λy are continuous. Hence, (Y,T ) is a real
locally convex topological vector space. Moreover, we can obtain that K is not closed since
K ⊊ Y = clK. However, from the definition of quasi interior and clK = Y , it follows that
0 ∈ qiK. Therefore, in this case, the pointedness of K does not necessarily imply 0 /∈ qiK.

Based on Lemma 3.1 and by using the notion of quasi interior, we can obtain some
properties of improvement set which improve some corresponding results given by Xia, Zhang
and Zhao in [14].

Theorem 3.2. Let A be a nonempty subset in Y , K be a proper convex cone with nonempty
quasi interior and 0 /∈ qiK in Y and E be a convex improvement set with respect to K in
Y . If A ∩ (−qiE) = ∅, then cone(A+ E) ∩ (−qiK) = ∅.

Proof. The proof is similar to Theorem 3.2 in [14].

Theorem 3.3. Let K be a proper convex cone with nonempty quasi interior and 0 /∈ qiK
in Y and E be a convex improvement set with respect to K in Y . If E satisfies Assumption
(Q), i.e., qiE ⊂ E +qiK and cone(F (S)+E) is a closed convex set, then one and only one
of the following statements is true:

(i) ∃x ∈ S, F (x) ∩ (−qiE) ̸= ∅;
(ii) ∃µ ∈ K+ \ {0Y ∗}, ⟨µ, y⟩ ≥ σ−E(µ), ∀y ∈ F (S).

Proof. The proof is similar to Theorem 4.1 in [14].

Remark 3.3. Assume that K is a proper convex cone with nonempty topological inte-
rior. Yang, Li and Wang proposed the near-subconvexlikeness, i.e., cl cone(F (S) + K) is
a convex set and established alternative theorem and linear scalarization result of weakly
efficient solutions of (VOP) in [12]. Near-subconvexlikeness is one of the most general gen-
eralized convexity to derive the linear scalarization results of (VOP). Furthermore, Zhao,
Yang and Peng generalizes near-subconvexlikeness to the case of improvement set in [19],
i.e., cl cone(F (S) + E) is a convex set. More generally speaking, if K is a proper convex
cone with nonempty quasi interior, then it is worth noting that the assumption condition
“cone(F (S) + E) is a closed convex set” in Theorem 3.3 could not be weaken to the case
that cl cone(F (S) + E) is a convex set.
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In the following, we let N+ be the set of all positive integers and

lp =

{
y = (yn)n∈N+

∣∣∣ ∑
n∈N+

|yn|p < +∞

}
, 1 ≤ p < +∞

endowed with its usual norm. The positive cone of lp, denoted by lp+, is

lp+ =
{
y = (yn)n∈N+ ∈ lp

∣∣∣yn ≥ 0, n ∈ N+
}
, 1 ≤ p < +∞.

It is well-known that

qilp+ = lp++ =
{
y = (yn)n∈N+ ∈ lp

∣∣∣yn > 0, n ∈ N+
}
, 1 ≤ p < +∞.

Example 3.2. Let

X = Y = l2, S = −l2+ \ −l1+, F (x) = [1, 2]x,

K = l1+, E = {y = (y1, y2, · · · ) ∈ l1+|y1 ≥ 1, y2 ≥ 1} = l1+ + (1, 1, 0, · · · ).

Clearly, F (S) = −l2+ \ −l1+, K is a proper convex cone with 0 /∈ qiK = l1++, E is a convex
improvement set with respect to K and qiE = l1+++(1, 1, 0, · · · ). So E satisfies Assumption
(Q). We first verify that F (S) is a convex set. In fact, for any x = (x1, x2, · · · ) ∈ F (S),
y = (y1, y2, · · · ) ∈ F (S) and λ ∈ (0, 1), we have λx+ (1− λ)y ∈ −l2+ and

∞∑
n=1

|λxn + (1− λ)yn| = −
∞∑

n=1

(λxn + (1− λ)yn)

≥ −λ

∞∑
n=1

xn = λ

∞∑
n=1

|xn| = +∞,

which implies λx+(1−λ)y /∈ l1. Hence, by the fact that−l1+ ⊂ l1, we get λx+(1−λ)y ∈ F (S)
and so F (S) is a convex set. Therefore, cone(F (S) + E) is a convex set and thus it follows
that cl cone(F (S) +E) is a convex set. However, cone(F (S) +E) is not closed. In fact, we
can verify that

(0, 0, 1, 0, 0, · · · ) /∈ cone(F (S) + E),

(0, 0, 1, 0, 0, · · · ) ∈ cl cone(F (S) + E).

Since for any x = (x1, x2, · · · ) ∈ F (S), y = (y1, y2, · · · ) ∈ E, then it is clear that x+ y ∈ l2

and
∞∑

n=1

|xn + yn| ≥
∞∑

n=1

|xn| −
∞∑

n=1

|yn| ≥ +∞,

which implies x + y /∈ l1. Hence x + y ∈ l2 \ l1, that is F (S) + E ⊂ l2 \ l1. Therefore,
cone(F (S) + E) ⊂ l2 \ l1 and from (0, 0, 1, 0, 0, · · · ) ∈ l1, it follows that (0, 0, 1, 0, 0, · · · ) /∈
cone(F (S) + E). Furthermore, we prove (0, 0, 1, 0, 0, · · · ) ∈ cl cone(F (S) + E). Since

−
(
1, 1,

1

2
,
1

3
, · · ·

)
∈ F (S) + (1, 1, 0, 0, · · · ),
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then by virtue of the fact that

(
1, 1,

1

2
,
1

3
, · · ·

)
∈ qil2+, we have

Y = cl cone

(
l2+ −

(
1, 1,

1

2
,
1

3
, · · ·

))
= cl cone cl

(
l1+ −

(
1, 1,

1

2
,
1

3
, · · ·

))
= cl cone

(
l1+ −

(
1, 1,

1

2
,
1

3
, · · ·

))
⊂ cl cone(l1+ + F (S) + (1, 1, 0, 0, · · · )) = cl cone(F (S) + E) ⊂ Y,

which implies cl cone(F (S)+E) = Y and so (0, 0, 1, 0, 0, · · · ) ∈ cl cone(F (S)+E). Therefore,
it follows that cone(F (S) + E) is not closed.

In the following, we can verify that Theorem 3.3 does not hold. Clearly, F (S)∩(−qiE) =
∅. And we only need to verify that for any µ ∈ K+ \ {0Y ∗}, there exists y ∈ F (S) such that

⟨µ, y⟩ < σ−E(µ) = sup
e∈−E

⟨µ, e⟩.

For any given µ = (µ1, µ2, · · · ) ∈ K+ \ {0Y ∗}, it is clear that there exists a component µk0

such that µk0
> 0. We can take y = (y1, y2, · · · ) satisfying

yn =


− 1

n
, n ̸= k0,

−µ1 + µ2 + µn

µn
, n = k0,

then it is clear that y ∈ F (S) and

⟨µ, y⟩ =
∞∑

n=1

µnyn ≤ µk0
yk0

= −µ1 − µ2 − µk0
< −µ1 − µ2 = σ−E(µ).

Based on Theorem 3.3, we have the following scalarization result of weakly efficient
solutions defined by improvement set and quasi interior for (VOP).

Theorem 3.4. Let x ∈ S, y ∈ F (x), K be a proper convex cone with nonempty quasi
interior and 0 /∈ qiK in Y and E be a convex improvement set with respect to K in Y . If
E satisfies Assumption (Q) and cone(F (S)− y + E) is a closed convex set, then (x, y) is a
weak E-efficient point of (VOP) if and only if there exists µ ∈ K+ \ {0Y ∗} such that (x, y)
is an optimal point of (VOP)µ with respect to E.

Proof. The proof is similar to Theorem 4.2 in [14].

Remark 3.4. The assumption condition “cone(F (S)− y+E) is a closed convex set” could
not be weaken to the near E-subconvexlikeness proposed by Zhao, Yang and Peng in [19].

Example 3.3. Let

X = Y = l2,K = l1+, E = l1+ \ {0},

S = (−l2+ \ −l1+) ∪ {(−α, 0, 0, · · · )|α ∈ [1, 2]}, F (x) = [1, 2]x.
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Clearly, K is a proper convex cone with 0 /∈ qiK = l1++, E is a convex improvement set with
respect to K, qiE = l1++, E satisfies Assumption (Q) and

F (S) = (−l2+ \ −l1+) ∪ {(−α, 0, 0, · · · )|α ∈ [1, 4]}.

Let x = y = (−1, 0, 0, · · · ). It is clear that (x, y) is a weak E-efficient point of (VOP). Similar
to the analysis of Example 3.2, we can verify that cone(F (S)−y+E) is convex but not closed
and cl cone(F (S)− y +E) is convex. Furthermore, for any µ = (µ1, µ2, · · · ) ∈ K+ \ {0Y ∗},
there exists a component µk0

satisfying µk0
> 0. We can take y = (y1, y2, · · · ) satisfying

yk0
= −3 and yn = − 1

n
, n ̸= k0, then it is clear that y ∈ F (S) and

⟨µ, y − y⟩ ≤ µk0(yk0 − yk0
) ≤ −µk0 < 0 = σ−E(µ).

This implies that in this case, Theorem 3.4 is not valid.

Remark 3.5. In the case of intK ̸= ∅, Yang, Li and Wang obtain the following linear
scalarization result of weakly efficient solutions for (VOP) under the near-subconvexlikeness
in [12].

Let x ∈ S, y ∈ F (x),K be a proper convex cone with nonempty interior and cl cone(F (S)−
y +K) is a convex set. Then (x, y) is a weakly efficient point of (VOP) if and only if there
exists µ ∈ K+ \ {0Y ∗} such that (x, y) is an optimal point of (VOP)µ.

It is worth noting that the above result also could not be generalized to the case of quasi
interior. For example, let

X = Y = l2,K = l1+, S = (−l2+ \ −l1+) ∪ {(−α, 0, 0, · · · )|α ∈ [1, 2]}, F (x) = [1, 2]x.

and x = y = (−1, 0, 0, · · · ). We can verify that K be a proper convex cone with nonempty
quasi interior, cl cone(F (S)− y+K) is a convex set and (x, y) is a weakly efficient point of
(VOP). However, for any given µ ∈ K+ \ {0Y ∗}, (x, y) is not an optimal point of (VOP)µ.

4 Concluding Remarks

In this paper, by using the notion of quasi interior, we give some properties of improvement
set and applications in vector optimization. The main results improve some corresponding
results established by Xia, Zhang and Zhao in [14]. In particular, we also present some
examples to show that the generalized convexity of objective function could not be weaken
to the near-subconvexlikeness even if for the classical case of the exact weakly efficient
solutions.
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[15] C. Zălinescu, On the use of the quasi-relative interior in optimization, Optimization 64
(2015) 1795–1823.
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