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that is,

clcone(B +K)is convex ⇔ co(B) ⊆ clcone(B +K),

where B is a nonempty subset of Banach space Y , K ⊆ Y is a convex cone. By using this
characterization of near cone-subconvexlikeness, Sach established saddle-point criterion for
Benson proper efficient solutions of a vector optimization problem with nearly subconvexlike
objectives and constraints.

It is worth noting that co-radiant set is a useful tool for studying vector optimization
problems. Its role in vector optimization is similar to that of a convex cone, for example,
see [3–5]. Some interesting questions then arise naturally: Whether the above property
holds when the convex cone K is replaced by a co-radiant set C(ε) (ε ≥ 0)? Could this
characterization be used to investigate (C, ε)-Benson proper efficient elements of vector
optimization problem with set-valued maps?

Based on the above considerations, we have three objectives in this work. First, to
explore some properties of near (C, ε)-subconvexlikeness; Second, to establish linear scalar-
ization result for (C, ε)-Benson proper efficient elements of a vector optimization problem
with set-valued maps; Third, to obtain Lagrangian multiplier theorem for (C, ε)-Benson
proper efficient elements of a vector optimization problem with set-valued maps via linear
scalarization method.

2 Preliminaries

Throughout the paper, X will be a real linear space, Y and Z be two real locally convex
Hausdorff topological vector spaces. The topological dual spaces of Y and Z are denoted
by Y ∗ and Z∗, respectively. Let Rn be the usual n−dimensional Euclidean space with
the nonnegative orthant Rn

+ := {(x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n}, and denote
Rn

++ := {(x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.
For any nonempty set B ⊆ Y , intB and clB denote its topological interior and closure,

respectively. The cone hull, positive cone hull, convex hull of B are defined as, respectively,

coneB = {λb : b ∈ B, λ ≥ 0},
cone+B = {λb : b ∈ B, λ > 0},

coB = {
k∑

i=1

λibi :

k∑
i=1

λi = 1, bi ∈ B, λi > 0,∀i ∈ 1, . . . , k, k ∈ N}.

A set B ⊆ Y is said to be proper if ∅ ̸= B ̸= Y , and be pointed if B ∩ (−B) ⊆ {0}.
We denote the positive polar cone and the strict positive polar cone of B by B+ and B+i,
respectively, i.e.,

B+ = {y∗ ∈ Y ∗ : y∗(b) ≥ 0,∀b ∈ B},
B+i = {y∗ ∈ Y ∗ : y∗(b) > 0,∀b ∈ B\{0}} .

Recall that a base of a cone K ⊆ Y is a convex subset B of K such that 0 /∈ B and
K = coneB.

Definition 2.1 ([5]). A set B ⊆ Y is called a co-radiant set if αB ⊆ B for each scalar
α > 1.
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Let C ⊆ Y be a nonempty co-radiant set, ε ∈ R and denote

C(ε) := εC, ∀ε > 0; C(0) :=
∪
ε>0

C(ε) = cone+C.

By definition, it is easy to see that coneC = C(0)
∪
{0}, and C(ε)+i = C+i for each ε ≥ 0.

Some elementary properties of co-radiant sets to be used later are collected in the fol-
lowing two lemmas.

Lemma 2.2. Suppose C ⊆ Y is a proper pointed co-radiant set. Then

(i) ∀ε ≥ 0, C(ε) is a proper pointed co-radiant.

(ii) C(0) ∪ {0} is a pointed cone.

(iii) ∀ε1, ε2 ≥ 0: ε1 ≤ ε2, C(ε2) ⊆ C(ε1).

(iv) For any nonempty set B ⊆ Y ,

C(ε) ⊆ clcone(B + C(ε)),∀ε ≥ 0, (2.1)

clcone(B + C(0)) = clcone(B + C(0) ∪ {0}). (2.2)

Proof. The straightforward proof of (i)-(iii) can be found in [5].
(iv): Let ε ≥ 0. Pick arbitrarily q ∈ C(ε), then

q = lim
λ→+∞

1

λ
(b+ λq),∀b ∈ B.

According to (i), we have that λq ∈ C(ε) for λ > 1, which along with the above equality
implies q ∈ clcone(B + C(ε)). Hence, (2.1) holds.

Next, we show (2.2). Since

B + C(0) ⊆ B + C(0) ∪ {0}
⊆ clconeB + clC(0)

= clcone+B + clC(0)

⊆ clcone+(B + C(0))

= clcone(B + C(0)),

we get

clcone(B + C(0)) ⊆ clcone(B + C(0) ∪ {0}) ⊆ clcone(B + C(0)),

i.e., (2.2) holds.

Remark 2.3. It should be noted that even if C is a proper pointed convex co-radiant set,
and B is a nonempty convex set, the following equation may be not true

clcone(B + C(ε)) = clcone(B + C(ε) ∪ {0}),

where ε > 0. For example, let B = {(−1,−1)} ⊆ R2, C = {(y1, y2) ∈ R2 : y1 ≥ 1, y2 ≥ 1},
ε = 1. It’s clear that clcone(B+C(ε)) = R2

+, but clcone(B+C(ε)∪{0}) = R2
+∪{(y1, y2) ∈

R2 : y2 = y1, y1 ≤ 0}.
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Lemma 2.4. Suppose that C ⊆ Y is a convex co-radiant set. Then

(i) ∀ε ≥ 0, C(ε) is convex.

(ii) ∀ε1, ε2 ≥ 0, C(ε2) + C(ε1) ⊆ C(εi), i = 1, 2.

(iii) ∀ε1, ε2 ≥ 0, intC(ε2) + C(ε1) ⊆ intC(εi), i = 1, 2.

(iv) ∀ε ≥ 0, C(ε) + intC(0) = intC(ε).

(v) For any nonempty set B ⊆ Y ,

clcone(B + C(ε1)) + C(ε2) ⊆ clcone(B + C(ε1)),∀ε1, ε2 ≥ 0.

Proof. The proof of (i)-(ii) can be seen in [6], and (iii) is a direct consequence of (ii).
(iv): According to (iii) we see that C(ε)+ intC(0) ⊆ intC(ε). Conversely, if d ∈ intC(ε),

then for each p ∈ intC(0), there exists λ > 0 such that d − λp ∈ C(ε). Notice that
intC(0) = cone+intC(0), it follows that λp ∈ intC(0), and d ∈ λp+C(ε) ⊆ intC(0)+C(ε).
By the arbitrariness of d, it follows that intC(ε) ⊆ C(ε) + intC(0).

(v): Let ε1 ≥ 0 and ε2 ≥ 0 be fixed but arbitrary. It follows from Lemma 2.2(iii) that

clcone(B + C(ε1)) + C(ε2) ⊆ clcone(B + C(ε1)) + C(0)

= clcone+(B + C(ε1)) + C(0)

⊆ clcone+(B + C(ε1) + C(0)). (2.3)

Since C is convex co-radiant, by (ii), we have

C(ε1) + C(0) ⊆ C(ε1).

which combined with (2.3) yields that

clcone(B + C(ε1)) + C(ε2) ⊆ clcone+(B + C(ε1) + C(0))

⊆ clcone+(B + C(ε1))

= clcone(B + C(ε1)).

3 Charaterizations of near (C, ε)–subconvexlikeness

Let B ⊆ Y be a nonempty set, C ⊆ Y be a nonempty co-radiant set, and ε ≥ 0.

Definition 3.1. The set B is said to be nearly (C, ε)–sunconvexlike if clcone(B + C(ε)) is
a convex set.

In general, the set clcone(B + C(ε)) (ε > 0) is different from the set clcone(B + C(0)).
Therefore, when the set B is nearly (C, ε0)–subconvexlike for some ε0 > 0, B may be not
nearly (C, 0)–subconvexlike. For example, let B = {(−1, 0), (0,−1)}, C = {(y1, y2) ∈ R2 :
y1 + y2 ≥ 1} ∩ R2

+, ε0 = 1. Obviously, clcone(B + C(1)) = {(y1, y2) ∈ R2 : y1 + y2 ≥ 0}
is convex, but clcone(B + C(0)) = {(y1, y2) ∈ R2 : y1 ≥ 0} ∪ {(y1, y2) ∈ R2 : y2 ≥ 0} is
nonconvex. However, we have the following result.

Theorem 3.2. If the set B is nearly (C, ε)–subconvexlike for each ε > 0, then B is nearly
(C, 0)–subconvexlike.
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Proof. As clcone(B+C(0)) is a cone, it follows that B is nearly (C, 0)–subconvexlike if and
only if

clcone(B + C(0)) + clcone(B + C(0)) = clcone(B + C(0)). (3.1)

In the sequence, we show (3.1) holds.
We first prove

cone+(B + C(0)) + cone+(B + C(0)) ⊆ clcone(B + C(0)). (3.2)

For any y1, y2 ∈ cone+(B + C(0)), there exist λ1, λ2 > 0, b1, b2 ∈ B, c1, c2 ∈ C, ε1, ε2 > 0
such that yi = λi(bi + εici), i = 1, 2 and

λ1(b1 + ε1c1) + λ2(b2 + ε2c2)

∈ clcone(B + C(ε1)) + clcone(B + C(ε1)). (3.3)

Now, consider two possible cases:
Case 1. ε1 = ε2. Since clcone(B + C(ε1)) is convex,

clcone(B + C(ε1)) + clcone(B + C(ε1)) = clcone(B + C(ε1)).

By (3.3), we have

λ1(b1 + ε1c1) + λ2(b2 + ε2c2)

∈clcone(B + C(ε1)) ⊆ clcone(B + C(0)).

Case 2. ε1 ̸= ε2. Without loss of generality we assume that ε1 < ε2. It’s clear from Lemma
2.2(iii) that

clcone(B + C(ε2)) ⊆ clcone(B + C(ε1)).

As clcone(B + C(ε1)) is convex,

clcone(B + C(ε1)) + clcone(B + C(ε1)) = clcone(B + C(ε1)).

Then, it follows from (3.3) that

λ1(b1 + ε1c1) + λ2(b2 + ε2c2)

∈ clcone(B + C(ε1)) + clcone(B + C(ε2))

⊆ clcone(B + C(ε1)) + clcone(B + C(ε1))

= clcone(B + C(ε1))

⊆ clcone(B + C(0)).

Combining two cases, we conclude that (3.2) holds.
Next, we show that

clcone(B + C(0)) + clcone(B + C(0)) = clcone(B + C(0)). (3.4)

Since

clcone(B + C(0)) ⊆ clcone(B + C(0)) + clcone(B + C(0))

= clcone+(B + C(0)) + clcone+(B + C(0))

⊆ cl[cone+(B + C(0)) + cone+(B + C(0))],



556 L.-P. TANG AND Y. GAO

it follows from (3.2) that

clcone(B + C(0)) ⊆ clcone(B + C(0)) + clcone(B + C(0))

⊆ clcone(B + C(0)),

which means (3.1) holds. This completes the proof.

Remark 3.3. Theorem 3.2 provides a sufficient condition for near (C, 0)–subconvexlikeness
without the assumption of closedness. Therefore, Theorem 3.2 improves Lemma 3.2 in [4].

Subsequently, we present some sufficient conditions for near (C, ε)–subconvexlikeness of
the set B.

Theorem 3.4. Let C be a convex co-radiant set, and ε ≥ 0. If co(B) ⊆ clcone(B + C(ε)),
then B is a nearly (C, ε)–subconvexlike set.

Proof. Since C is convex, it follows from Lemma 2.4 (i) that C(ε) is convex, and

co(B + C(ε)) = co(B) + C(ε).

Under the assumption of co(B) ⊆ clcone(B + C(ε)), we have

co(B + C(ε)) = co(B) + C(ε) ⊆ co(B) + C(0)

⊆ clcone(B + C(ε)) + C(0).

By Lemma 2.4 (v), we get

clcone(B + C(ε)) + C(0) ⊆ clcone(B + C(ε)).

Therefore co(B+C(ε)) ⊆ clcone(B+C(ε)), which means thatB is nearly (C, ε)–subconvexlike.

Remark 3.5. It’s worth noting that there are two situations in Theorem 3.4:
Case 1. ε = 0. If C is convex co-radiant, then

B is nearly (C, ε)–subconvexlike ⇔ co(B) ⊆ clcone(B + C(ε)).

In fact, clcone(B + C(0)) = clcone(B + C(0) ∪ {0}) is convex if and only if co(B) ⊆
clcone(B + C(0) ∪ {0}) = clcone(B + C(0)).
Case 2. ε > 0. If C is convex co-radiant, then

B is nearly (C, ε)–subconvexlike ⇎ co(B) ⊆ clcone(B + C(ε)),

which means that the convexity of clcone(B+C(ε)) does not guarantee the inclusion relation
co(B) ⊆ clcone(B + C(ε)) in general. For example, let B = {(y1, y2) ∈ R2 : y1 + y2 =
−1,−1 ≤ y1 ≤ 0}, C = {(y1, y2) ∈ R2 : y1 + y2 ≥ 1} ∩R2

+, ε = 1. It’s clear that clcone(B +
C(ε)) = {(y1, y2) ∈ R2 : y1 + y2 ≥ 0} is convex, however co(B) = B ⊈ clcone(B + C(ε)).

In the following, we study some conditions under which the converse statement of The-
orem 3.4 is true when ε > 0.

Theorem 3.6. Let C be a convex co-radiant set, and ε > 0. Assume that 0 ∈ cl(C(ε)),
then
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B is nearly (C, ε)–subconvexlike =⇒ co(B) ⊆ clcone(B + C(ε)).

Proof. Since 0 ∈ cl(C(ε)),

co(B) ⊆ co(B) + clC(ε) ⊆ cl[co(B) + C(ε)]. (3.5)

Note that C and clcone(B + C(ε)) are convex, we have

co(B) + C(ε) = co(B + C(ε)) ⊆ clcone(B + C(ε)). (3.6)

Combining (3.5) and (3.6), we get co(B) ⊆ clcone(B + C(ε)).

Remark 3.7. When C is convex and co-radiant, the condition intC(0) ⊆ C(ε) can ensure
the condition 0 ∈ cl(C(ε)). In fact, 0 ∈ cl(C(ε)) ⇔ intC(0) ⊆ C(ε).

In view of Theorem 3.4, Remark 3.5 (i) and Theorem 3.6, the following result is an
immediate consequence.

Corollary 3.8. Let C be a convex co-radiant set, and ε ≥ 0. Assume that 0 ∈ cl(C(ε)),
then

B is nearly (C, ε)–subconvexlike ⇔ co(B) ⊆ clcone(B + C(ε)).

Gutiérrez et al. [7] introduceed the notion of near (C, ε)–subconvexlikeness for set-valued
map.

Definition 3.9. The set-valued map F : X ⇒ Y is nearly (C, ε)–subconvexlike on a
nonempty set A ⊆ X if clcone(imF |A + C(ε)) is a conex set, where imF |A is the image of
A under F .

In view of Definition 3.1 and Definition 3.9, the map F is nearly (C, ε)–subconvexlike on
A if and only if clcone(F (A) +C(ε)) is convex. Consequently, the characterizations of near
(C, ε)–subconvexlikeness of a set-valued map can be easily derived by using the property of
near (C, ε)–subconvexlikeness of a set.

4 Lagrangian Multiplier Theorem for (C, ε)–Benson Proper Effi-
cient Elements of A Vector Optimization Problems with Set-
Valued Maps

Let A ⊆ X be a nonempty set, D ⊆ Y be a closed proper convex cone with nonempty
interior, C be a co-radiant set in Y , and ε ≥ 0.

Consider the following vector optimization problem with set-valued maps:

(V P ) min
x∈V

F (x),

where F : X ⇒ Y , G : X ⇒ Z, V = {x ∈ A : G(x) ∩ (−D) ̸= ∅}.

Definition 4.1 ([4]). Let x̄ ∈ V , ȳ ∈ F (x̄). (x̄, ȳ) is a (C, ε)–Benson proper efficient element
of (V P ), if

clcone(F (V )− ȳ + C(ε)) ∩ −C(ε) ⊂ {0}. (4.1)
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Remark 4.2. Since clcone(F (V ) − ȳ + C(ε)) is a cone, (x̄, ȳ) is a (C, ε)–Benson proper
efficient element of (V P ) if and only if

clcone(F (V )− ȳ + C(ε)) ∩ −(C(0) ∪ {0}) = {0}. (4.2)

Theorem 4.3. Let ε > 0. Assume that

(i) C ⊆ Y is a convex co-radiant set and 0 ∈ cl(C(ε));

(ii) F ×G is nearly ((C, ε)×D)–subconvexlike on A;

(iii) −intD ̸= ∅ and V ′ = {x ∈ A : G(x) ∩ (−intD) ̸= ∅} ̸= ∅.

Then F is nearly (C, ε)–subconvexlike on V ′.

Proof. In view of Corollary 3.8, it is sufficient to check that

coF (V ′) ⊆ clcone(F (V ′) + C(ε)). (4.3)

Take arbitrary y1, y2 ∈ F (V ′), there exist x1, x2 ∈ V ′ with y1, y2 ∈ F (xi) and z1, z2 ∈
G(xi) ∩ (−intD). For any α ∈ (0, 1),

αy1 + (1− α)y2 ∈ coF (V ′),

αz1 + (1− α)z2 ∈ coG(A).

Consider two cases:
Case 1. αy1 + (1− α)y2 = 0. It’s clear that

αy1 + (1− α)y2 ∈ clcone(F (V ′) + C(ε)). (4.4)

Case 2. αy1 + (1 − α)y2 ̸= 0. Since F × G is nearly ((C, ε) × D)–subconvexlike on A, by
Corollary 3.8, it follows that

co(F ×G)(A) ⊆ clcone[(F ×G)(A) + (C(ε)×D)].

Since V ′ ⊆ A, we have

co(F ×G)(V ′) ⊆ clcone[(F ×G)(A) + (C(ε)×D)].

Consequently, there exist {λn} ⊆ R++, {xn} ⊆ A, {yn} ⊆ F (xn), {zn} ⊆ G(xn), {qn} ⊆
C(ε) and {dn} ⊆ D such that

αy1 + (1− α)y2 = lim
n

λn(yn + qn), (4.5)

αz1 + (1− α)z2 = lim
n

λn(zn + dn). (4.6)

As intD is convex and z1, z2 ∈ −intD, it follows that αz1 + (1 − α)z2 ∈ −intD. By (4.6),
there exists a number N such that λn(zn + dn) ∈ −intD for all n > N . Note that intD is
a cone and dn ∈ D, we get that zn ∈ −intD, ∀n > N , i.e.,

xn ∈ V ′, ∀n > N ,

which along with (4.5) yields that (4.4) holds.
Due to the arbitrariness of y1, y2 ∈ F (V ′) and α ∈ (0, 1), it follows from (4.4) that (4.3)

holds.
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Remark 4.4. Similar results of Theorem 4.3 can be obtained if ε = 0, as the condition of
0 ∈ clC(0) holds automatically. In this case, Theorem 4.3 reduces to Lemma 4.4 in [11].

Dauer and Saleh in [2] introduced an important separation theorem for two cones.

Lemma 4.5. [2] Let M and N be cones in Y and M ∩N = {0}. Suppose that one of the
following assumptions holds:

(i) M is closed and N has a compact base;

(ii) M is weakly closed and N has a weakly compact base.

Then there is a pointed convex cone S in Y such that N\{0} ⊆ intS and M ∩ S = {0}.

According to Theorem 4.3, Remark 4.4(i) and Lemma 4.5, we can obtain scalarization
results for (V P ).

Theorem 4.6. Suppose that

(I) ε ≥ 0 and C ⊆ Y is a nonempty convex co-radiant set;

(II) x̄ ∈ V , ȳ ∈ F (x̄) and (F − ȳ)×G is nearly ((C, ε)×D)–subconvexlike on the set A;

(III) One of the following assumptions holds:

(i) C(0) ∪ {0} has a weakly compact base and 0 ∈ cl(C(ε)),

(ii) C(0) ∪ {0} has a compact base;

(IV) −intD ̸= ∅ and V ′ = {x ∈ A : G(x) ∩ (−intD) ̸= ∅} ̸= ∅.

If (x̄, ȳ) is a (C, ε)-Benson proper efficient element of (V P ), then there exists (y∗, z∗) ∈
C+i ×D+ such that

⟨y∗, y + εq⟩+ ⟨z∗, z⟩ ≥ ⟨y∗, ȳ⟩, ∀x ∈ A,∀(y, z) ∈ F (x)×G(x),∀q ∈ C, (4.7)

0 ≥ ⟨z∗, z̄⟩ ≥ εσ−C(y
∗),∀z̄ ∈ G(x̄) ∩ (−D), (4.8)

where σ−C(y
∗) = supy∈−C⟨y∗, y⟩.

Proof. When condition (i) in (III) is satisfied. It follows from Theorem 4.3 that F−ȳ is nearly
(C, ε)–subconvexlike on V ′, i.e., clcone(F (V ′) − ȳ + C(ε)) is convex, then clcone(F (V ′) −
ȳ + C(ε)) is weakly closed.
Since (x̄, ȳ) is a (C, ε)-Benson proper efficient element of (V P ), it follows from Remark 4.2
that

clcone(F (V )− ȳ + C(ε)) ∩ −(C(0) ∪ {0}) = {0}.
Note that V ′ ⊆ V , we have

clcone(F (V ′)− ȳ + C(ε)) ∩ −(C(0) ∪ {0}) = {0}.

In view of Lemma 4.5, there exists a pointed convex cone S such that C(0)\{0} ⊆ intS and

clcone(F (V ′)− ȳ + C(ε)) ∩ −S = {0}. (4.9)
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Now, we justify

clcone[((F − ȳ)×G)(A) + C(ε)×D] ∩ −(intS × intD) = ∅. (4.10)

Otherwise, there exist x0 ∈ A, y0 ∈ F (x0), z0 ∈ G(x0), q0 ∈ C and d0 ∈ D such that

(y0 − ȳ + εq0, z0 + d0) ∈ −(intS × intD).

So, x0 ∈ V ′ and clcone((F (V ′) − ȳ) + C(ε) ∩ −S ̸= {0}, contradicting (4.9). Hence (4.10)
holds.

When condition (ii) in (III) is satisfied. (4.10) can be obtained similarly to the above.
Applying the separation theorem to (4.10), there exists (y∗, z∗) ∈ Y ∗×Z∗\{(0,0)} such

that

⟨y∗, y − ȳ + εq⟩+ ⟨z∗, z + d⟩ ≥ 0, ∀x ∈ A,∀(y, z) ∈ F (x)×G(x),∀q ∈ C, ∀d ∈ D, (4.11)

⟨y∗, s⟩+ ⟨z∗, d⟩ > 0,∀s ∈ intS, ∀d ∈ intD. (4.12)

Due to (4.12), it is obvious that

y∗ ∈ S+, z∗ ∈ D+.

Next, we show y∗ ̸= 0. Otherwise the inequalities (4.11) and (4.12) reduce to, respec-
tively,

⟨z∗, z⟩ ≥ 0,∀x ∈ A, z ∈ G(x), (4.13)

⟨z∗, d⟩ > 0,∀d ∈ intD. (4.14)

Under the assumption of (IV), there exist x̃ ∈ A and z̃ ∈ G(x̃) ∩ (−intD). Substituting z̃
into (4.13) and (4.14), we arrive at

⟨z∗, z̃⟩ ≥ 0 > ⟨z∗, z̃⟩.

This is a contradiction. Hence y∗ ̸= 0.
Note that y∗ ∈ S+\{0} and C(ε)\{0} ⊆ C(0)\{0} ⊆ intS, therefore y ∈ C+i, which

together with (4.11) yields the desired results.

Remark 4.7. (i) Although the conditions of the above theorem and Theorem 3.8 in [7] are
different, the same scalarization results are obtained.
(ii) When the co-radiant set C is replaced by a closed convex cone K or K\{0}, Theorem
4.6 reduces to Corollary 4.1 in [11].

Based on Theorem 4.6, we derive Lagrangian multiplier theorem for (C, ε)-Benson proper
efficient elements of (V P ). For convenience, denote the set of all continuous linear operators
from Z into Y by L(Z, Y ).

Theorem 4.8. Assume that

(I) ε ≥ 0 and C ⊆ Y is a convex co-radiant set with nonempty interior;

(II) x̄ ∈ V , ȳ ∈ F (x̄) and (F − ȳ)×G is nearly (C, ε)×D-suconvexlike on the set A;

(III) One of the following conditions holds:

(i) C(0) ∪ {0} has a weakly compact base and 0 ∈ cl(C(ε)),
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(ii) C(0) ∪ {0} has a compact base;

(IV) −intD ̸= ∅ and V ′ = {x ∈ A : G(x) ∩ (−intD) ̸= ∅}.

If (x̄, ȳ) is a (C, ε)-Benson proper efficient element of (V P ) and 0 ∈ G(x̄), there exist
T ∈ L+(Z, Y ) = {T ∈ L(Z, Y ) : T (D) ⊆ C(0)∪{0}}, p̄ ∈ int(C(0)) and y∗ ∈ C+i such that

T (G(x̄) ∩ (−D)) ⊆ [εσ−C(y
∗), 0]p̄\(−intC(ε)), (4.15)

and (x̄, ȳ) is a (C, ε)-Benson proper efficient element of the following problem

(UV P ) min
x∈A

F (x) + T (G(x)).

Proof. From the proof of Theorem 4.6, it follows that there exists (y∗, z∗) ∈ C+i × D+ =
C(0)+i ×D+ such that

⟨y∗, y + εq⟩+ ⟨z∗, z⟩ ≥ ⟨y∗, ȳ⟩, ∀x ∈ A,∀(y, z) ∈ F (x)×G(x),∀q ∈ C, (4.16)

0 ≥ ⟨z∗, z̄⟩ ≥ εσ−C(y
∗), ∀z̄ ∈ G(x̄) ∩ (−D). (4.17)

As y∗ ∈ C(0)+i, we get
⟨y∗, p⟩ > 0,∀p ∈ intC(0).

Consequently, there exits p̄ ∈ intC(0) such that ⟨y∗, p̄⟩ = 1.
Let

T := ⟨z∗, z⟩p̄, z ∈ Z.

It’s easy to see that T ∈ L+(Z, Y ). From (4.17), it follows that

T (z̄) = ⟨z∗, z̄⟩p̄ ∈ [εσ−C(y
∗), 0]p̄,∀z̄ ∈ G(x̄) ∩ (−D).

Now, we claim T (z̄) /∈ −int(C(ε)),∀z̄ ∈ G(x̄) ∩ (−D). Otherwise, there exists z0 ∈
G(x̄)∩(−D) such that T (z0) ∈ −intC(ε). In view of Lemma 2.4(iv), we get C(ε)+intC(0) =
intC(ε), and

T (z0) ∈ −C(ε)− intC(0),

i.e., there exists q0 ∈ C such that T (z0) + εq0 ∈ −intC(0). Since y∗ ∈ C(0)+i, we have that

⟨z∗, z0⟩+ ε⟨y∗, q0⟩ = ⟨y∗, T (z0) + εq0⟩ < 0,

which contradicts to (4.17). Therefore,

T (z̄) ∈ [εσ−C(y
∗), 0]p̄\(−intC(ε)),∀z̄ ∈ G(x̄) ∩ (−D),

i.e., (4.15) holds
Notice that y∗ ∈ C(0)+i. By (4.16), we can conclude that

clcone(F (A) + T (G(A))− ȳ + C(ε)) ∩ −(C(0) ∪ {0}) = {0}.

Under the assumption of 0 ∈ G(x̄), it’s obvious that ȳ ∈ F (x̄) ⊆ F (x̄) + T (G(x̄)). Hence,
(x̄, ȳ) is a (C, ε)-Benson proper efficient element of (UV P ).
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Remark 4.9. (i) If the co-radiant set C in Theorem 4.8 is replaced by a closed pointed
convex cone K or K\{0}, then (4.15) becomes T (G(x̄)∩(−D)) = {0}. In this case, Theorem
4.8 reduces to Theorem 5.1 in [10].

(ii) The near ((C, ε)×D)–subconvexlikeness of (F − ȳ)×G on A does not imply the near
(C, ε)–subconvexlikeness of (F − ȳ) on V . We illustrate this issue in the example below.

Example 4.1. Let X = Y = R2, Z = R, C = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 1}
∪
{(y1, y2) ∈

R2 : y1 ≥ 1, y2 ≥ 0}, D = R+ ⊆ Z and A = {(0, 0), (0, 1), (1, 0)} ⊆ X. Consider the maps
F : A ⇒ Y , G : A ⇒ Z defined as follows:

F ((0, 0)) = [−2,+∞)× {0},
F ((0, 1)) = {0} × [−2,+∞),

F ((1, 0)) = {(−2,−1)},
G((0, 0)) = {0},
G((0, 1)) = {0},
G((1, 0)) = (1,+∞).

Take x̄ = (0, 0) ∈ A, ȳ = (0, 0) ∈ F (x̄). Clearly V = {(0, 0), (0, 1)}, and it’s easy to check
that clcone[((F− ȳ)×G)(A)+C(1)×D] = R2×R+ is convex, but clcone(F (V )− ȳ+C(1)) =
{(y1, y2) ∈ R2 : y1 ≥ 0}

∪
{(y1, y2) ∈ R2 : y2 ≥ 0} is nonconvex. Therefore, Theorem 4.8

improves and extends Theorem 5.2 in [4].
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