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e.g., [9, 10, 18, 22, 25, 33]). Clearly, existence results, optimality conditions or characteriza-
tions of the solution set and stability of solution mappings for optimization problems with
constraints have attracted widespread attention. Specially, because of the extensive practical
application, the research of stability is very important and indispensable among them.

It is well known that the aim of stability analysis is to study the changes in the behaviour
of the solutions under perturbation, which include Berge continuity, Hölder continuity, con-
nectedness, Painlevé-Kuratowski convergence and so on. Among them, Painlevé-Kuratowski
convergence plays an important role in stability analysis. Several researchers have studied
the Painlevé-Kuratowski convergence of different optimization problems and related prob-
lems. Huang [13] discussed the convergence of solutions for vector-valued and set-valued op-
timization problems in the sense of Painlevé-Kuratowski, when the data of the approximate
problems Painlevé-Kuratowski converge to the data of the original problems. Based on the
concept of continuous convergence, Lucchetti and Miglierina [21] discussed the Painlevé-
Kuratowski convergence of solutions for convex vector optimization problems. Applying
the same method of [13], Zeng et al. [31] obtained the sufficient conditions of Painlevé-
Kuratowski convergence of efficient points for convex vector-valued optimization problem.
In 2012, Lalitha and Chatterjee [16] studied the Painlevé-Kuratowski convergence of the
sets of minimal, weak minimal and Henig proper minimal points for properly quasiconvex
vector optimization problem. Subsequently, Li, Wang and Lin [19] discussed the Painlevé-
Kuratowski convergence of solutions for set-valued optimization problems with naturally
quasi-functions, which extended and improved the corresponding results of [13] and [16].
Recently, by suitable gap function, Anh et al. [1] obtained the sufficient (and necessary)
conditions of upper (lower) Painlevé-Kuratowski convergence of solutions for vector quasi-
equilibrium problems. Very recently, under some types of continuity assumption, Hung,
Hoang and Tam [15] discussed the convergence of solutions for vector quasi-equilibrium
problems in the sense of Painlevé-Kuratowski.

On the other hand, ordering relation is an important tool to study optimization problems.
There are different optimization results under different order relations. Several papers have
studied the Painlevé-Kuratowski convergence of solutions based on the ordering set which
is a closed, convex and pointed cone with nonempty interior (e.g., [1, 13, 15, 16, 19, 21, 31]),
rather than a general ordering set. However, if the ordering set is not a cone, some of the
known results maybe not applicable. It is natural to raise the following question: whether
the stability of solutions for these problems can be obtained under general ordering set
(e.g., the improvement set)? To the best of our knowledge, up to now, there are only a
few articles discussed the stability of vector optimization problems using improvement set
(see [5, 6, 11, 17, 32]). Moreover, the Painlevé-Kuratowski convergence of perturbed set-
valued optimization problem with approximate quasi-equilibrium constraints via general
ordering set has not been discussed yet. Motivated by the literatures above, the aim of this
paper is to study the Painlevé-Kuratowski convergence of minimal point sets for (PSOP)
with approximate quasi-equilibrium constraints using improvement set, under functional
perturbations of both objective function and feasible set. Furthermore, the relationships
between minimal point sets of (PSOP) and maximum sets of (SP) are discussed. Our
results improve and generalize the corresponding results in [1, 15,17,19,31].

The outline of the paper is as follows. In Sect.2, we introduce the perturbed set-valued
optimization problem (PSOP) with approximate quasi-equilibrium constrains, and recall
some concepts which will be used in the sequel. In Sect.3, under some types of continuity
assumption, we discuss the Painlevé-Kuratowski convergence of constraint sets for (PSOP).
In Sect.4, we establish the sufficient conditions of upper Painlevé-Kuratowski convergence
of E-minimal point sets, weak E-minimal point sets and Borwein E-minimal point sets for
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(PSOP). In Sect.5, by using some assumptions of convergence, we obtain lower Painlevé-
Kuratowski convergence of E-minimal point sets and Borwein E-minimal point sets for
(PSOP). In Sect.6, by using the oriented distance function (△), we establish a scalarized
problem (SP) and discuss the relationships between the minimal point sets of (PSOP) and
the maximum sets of (SP). Moreover, some interesting examples are also given to illustrate
the results.

2 Preliminaries

Throughout the paper, unless specified otherwise, we assume that X, Y and Z are three
real Banach spaces, W is also a real Banach space. Let A ⊂ X, B ⊂ Z be nonempty
compact subsets, Kn : A ⇒ A, Tn : A ⇒ B and fn : X ⇒ W be set-valued mappings
and gn : A × B × A −→ Y be a single-valued mapping. CY ⊂ Y (CW ⊂ W ) is a closed,
convex and pointed cone with nonempty interior, i.e., intCY ̸= ∅ (intCW ̸= ∅). Let the
nonempty proper set D be a free-disposal set in Y with respect to CY , i.e., D ⊂ Y satisfies
the free-disposal assumption D + CY = D.

We first recall the notion of an improvement set.

Definition 2.1 ([11,32]). A nonempty set E ⊂ W is said to be an improvement set iff

(i) 0W /∈ E;

(ii) E + CW = E.

Remark 2.2. Compared with [4, 29], it is obvious that improvement set is always free-
disposal set, but the converse may not be true. If E is an improvement set and CW is
a closed convex point cone with nonempty interior, then E + intCW = intE ̸= ∅ and
(W \ E)− CW ⊆ W \ E.

Definition 2.3 ([17]). Let E be an improvement set in W . An element y ∈ A ⊂ W is said
to be

(i) an E-minimal point of A iff
(A− y) ∩ (−E) = ∅.

(ii) a weak E-minimal point of A iff

(A− y) ∩ (−intE) = ∅.

(iii) a Borwein proper E-minimal point of A iff

clcone(A− y) ∩ (−E) = ∅.

In this paper, consider the following perturbed set-valued optimization problem, given
as

(PSOP ) : minEfn(x) s.t. x ∈ Sn

and
Sn = {x ∈ Kn(x) : gn(x, t, y) + εne ∈ D, ∀t ∈ Tn(x), ∀y ∈ Kn(x)},

where e ∈ intCY , εn(̸= ε0) ≥ 0. For simplicity’s sake, we denote K0 := K,T0 := T, f0 :=
f, g0 := g, S0 := S and ε0 := ε.
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Based on the above notions of minimality for a set, the set of E-minimal point, weak
E-minimal point and Borwein proper E-minimal point of (PSOP ) are denoted by
EMinfn(Sn), EWMinfn(Sn) and BEMinfn(Sn), respectively. Clearly, BEMinfn(Sn) ⊆
EMinfn(Sn) ⊆ EWMinfn(Sn).

Because of the aim of this paper is to study the Painlevé-Kuratowski convergence, we
give some basic definitions as follows.

Definition 2.4 ([1, 27]). A sequence of sets {An ⊂ X : n ∈ N} is said to converge in the

sense of Painlevé-Kuratowski (P.K.) to A (denoted as An
P.K.−→ A) if limsupn→∞An ⊂ A ⊂

liminfn→∞An with

lim inf
n→∞

An := {x ∈ X|∃(xn), xn ∈ An,∀n ∈ N, xn → x},

lim sup
n→∞

An := {x ∈ X|∃(nk),∃(xnk
), xnk

∈ Ank
,∀k ∈ N, xnk

→ x}.

When limsupn→∞An ⊂ A holds, the relation is referred as upper Painlevé-Kuratowski

convergence (u.P.K, for short), denoted as An
u.P.K.−→ A; When A ⊂ liminfn→∞An holds,

the relation is referred as lower Painlevé-Kuratowski convergence (l.P.K, for short), denoted

as An
l.P.K.−→ A.

Definition 2.5 ([13]). A sequence of vector-valued mappings gn : A×B×A → Y (n ∈ N)
Painlevé-Kuratowski (P.K. for short) converges to a vector-valued mapping g : A×B×A →
Y (written as gn

P.K.−→ g), if epign
P.K.−→ epig, where epign = {(x, t, y, z) : z ∈ gn(x, t, y) +CY }

and epig = {(x, t, y, z) : z ∈ g(x, t, y) + CY }.

Remark 2.6. By Definition 2.5, for any xn → x0, gn(xn, ·, ·)
P.K.−→ g(x0, ·, ·), if epi(gn)xn

P.K.−→
epi(g)x0

, where epi(gn)xn
= {(xn, t, y, z) : z ∈ gn(xn, t, y)+CY } and epi(g)x0

= {(x0, t, y, z) :
z ∈ g(x0, t, y) + CY }.

Definition 2.7 ( [23]). Let gn, g : X × Z × X → Y and let U(x, t, y) be the family of
neighborhoods of (x, t, y) ∈ X × Z × X. We say that gn Γ−converges to g, if for every
(x, t, y) ∈ X × Z ×X:

(i) ∀U ∈ U(x, t, y), ∀e ∈ intCY , ∃ne,U ∈ N such that ∀n ≥ ne,U , ∃(xn, tn, yn) ∈ U ,
gn(xn, tn, yn) ∈ g(x, t, y) + e− CY ;

(ii) ∀e ∈ intCY , ∃Ue ∈ U(x, t, y), ke ∈ N such that ∀(xn, tn, yn) ∈ Ue, ∀n ≥ ke,
gn(xn, tn, yn) ∈ g(x, t, y)− e+ CY .

Remark 2.8. The Painlevé-Kuratowski convergence is strictly larger than the Γ−convergence
and the continuous convergence, respectively. The following example is given to illustrate
the result.

Example 2.1. Let X = Z = R, Y = R2, CY = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ x} and let
A = B = [0,+∞).

Suppose that g, gn : A×B ×A → Y are given as

g(x, t, y) = gn(x, t, y) =

{
(0, 0), x+ t+ y = 0,

(x+ t+ y, 1
x+t+y ), x+ t+ y > 0.
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We can easily verify that gn P.K. converges to g. But gn is neither continuously conver-
gent nor Γ−convergent. In fact, take x = t = y = 0, xn = yn = tn = 1

2n and ε = (1, 1
2 ). For

all n ≥ 2,

gn(xn, tn, yn) + ε = (
3

2n
,
2n

3
) + (1,

1

2
) /∈ CY .

By Definition 2.7, gn is not Γ−convergent. At the same time, (xn, tn, yn) → (x, t, y), but
gn(xn, tn, yn) ↛ g(x, t, y). It is obvious that gn is not continuously convergent.

3 Painlevé-Kuratowski Convergence of the Constraint Sets for
(PSOP )

In this section, under some types of continuity assumption, we investigate the Painlevé-
Kuratowski convergence of the approximate solution sets for vector quasi-equilibrium prob-
lems which are referred as the constraint sets for (PSOP ). We always assume that all
approximate solution sets considered in this section are not equal empty sets.

Next, we give the definition related to convergence of mapping sequences which will be
used in the rest of this paper.

Definition 3.1 ( [1, 27]). Let Gn : X ⇒ Y be a sequence of set-valued mappings and
G : X ⇒ Y be a set-valued mapping. {Gn} is said to outer converge continuously
(resp. inner converge continuously) to G at x0 if lim supn→∞ Gn(xn) ⊆ G(x0) (resp.
G(x0) ⊆ lim infn→∞ Gn(xn)), ∀xn → x0. {Gn} is said to converge continuously to G at
x0 if lim supn→∞ Gn(xn) ⊆ G(x0) ⊆ lim infn→∞ Gn(xn), ∀xn → x0. If {Gn} converges con-
tinuously to G at every x0 ∈ X, then it is said that {Gn} converges continiously to G on
X.

A sequence of mappings {hn}, hn : X → Y , is said to continuous convergence to a
mapping h : X → Y at x0 if limn→∞ hn(xn) = h(x0) for any xn → x0.

By virtue of the notion of Painlevé-Kuratowski convergence, the following lemma is given.

Lemma 3.2. Let Gn : X ⇒ Y be a sequence of set-valued mappings and G : X ⇒ Y be a
set-valued mapping.

(i) {Gn} inner converges continuously to G at x0, thus for any net {xn} ⊂ X with xn →
x0 and any y0 ∈ G(x0), there exists yn ∈ Gn(xn) such that yn → y0.

(ii) {Gn} outer converges continuously to G at x0 with compact values, then for any net
{xn} ⊂ X with xn → x0 and for any yn ∈ Gn(xn), there exist y0 ∈ G(x0) and a subnet
{yβ} of {yn} such that yβ → y0.

In [3, 20], the following definitions of upper/lower semicontinuity and C−upper/lower
semicontinuity were given.

Definition 3.3. Let X and Y be topological vector spaces, F : X ⇒ Y be a set-valued
mapping.

(i) F is said to be upper semicontinuous (u.s.c, for short) at x0 ∈ X, if for any open set
V with F (x0) ⊂ V, there exists a neighborhood U of x0 in X such that F (x) ⊂ V for
all x ∈ U ;
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(ii) F is said to be lower semicontinuous (l.s.c, for short) at x0 ∈ X, if for any open set V
with F (x0)∩ V ̸= ∅, there exists a neighborhood U of x0 in X such that F (x)∩ V ̸= ∅
for all x ∈ U ;

(iii) F is said to be continuous at x0 ∈ X, if it is both l.s.c and u.s.c at x0 ∈ X. F is said
to be l.s.c (resp. u.s.c) on X, iff it is l.s.c (resp. u.s.c) at each x ∈ X;

(iv) F is closed, if Graph(F ) is a closed set in X×Y. F has compact (resp. closed) values,
if F (x) is a compact (resp. closed) set for each x ∈ X.

Definition 3.4. Let E be a nonempty subset of X, and let g be a mapping from E to Y .
g is said to be C−lower semicontinuous (resp. C−upper semicontinuous) at x0 ∈ E if for
any neighborhood W of 0Y in Y , there exists a neighborhood U(x0) of x0 such that for each
x ∈ U(x0) ∩ E,

g(x) ∈ g(x0) +W + C (resp. g(x) ∈ g(x0) +W − C).

g is said to be C−lower semicontinuous (resp. C−upper semicontinuous) on E iff g is
C−lower semicontinuous (resp. C−upper semicontinuous) at every point of E.

g is said to be C−semicontinuous at every point of E, if it is both C−upper semicontin-
uous and C−lower semicontinuous at every point of E.

Remark 3.5. g is said to be C−lower semicontinuious at x ∈ E if it satisfies one of the
following two equivalent conditions:

(i) For any neighborhood Vg(x) ⊂ Z of g(x), there exists a neighborhood Ux ⊂ E of x
such that g(u) ∈ Vg(x) + C for all u ∈ Ux.

(ii) For any k ∈ intC, there exists a neighborhood Ux ⊂ E of x such that g(u) ∈ g(x) −
k + intC for all u ∈ Ux.

Lemma 3.6 ([3]). Let X and Y be topological vector spaces, F : X ⇒ Y be a set-valued
mapping.

(i) F is lower semicontinuous at x0 ∈ X if and only if for any net {xn} ⊂ X with xn → x0

and any y0 ∈ F (x0), there exists yn ∈ F (xn) such that yn → y0.

(ii) If F has compact values (i.e., F (x) is a compact set for each x ∈ X), then F is upper
semicontinuous at x0 if and only if for any net {xn} ⊂ X with xn → x0 and for any
yn ∈ F (xn), there exist y0 ∈ F (x0) and a subnet {ynk

} of {yn} such that ynk
→ y0.

Theorem 3.7. Let n ∈ N , D be a closed free-disposal set and εn → ε0. Suppose that

(i) Kn converges continuously to K with compact values on A;

(ii) Tn inner converges continuously to T on A;

(iii) for xn ∈ Kn(xn), yn ∈ Kn(xn), tn ∈ Tn(xn), satisfying (xn, tn, yn) → (x, t, y) ∈
A×B ×A, limn→∞ gn(xn, tn, yn) exists;

(iv) −gn
P.K.−→ −g.

Then, lim supn→∞ Sn ⊆ S.
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Proof. Suppose to the contrary, lim supn→∞ Sn ⊈ S, i.e., there exists x0 ∈ lim supn→∞ Sn,
but x0 /∈ S. Since x0 ∈ lim supn→∞ Sn, there exists xnk

∈ Snk
such that xnk

→ x0, as
k → ∞. Then, for any y ∈ Knk

(xnk
), t ∈ Tnk

(xnk
), one has

gnk
(xnk

, t, y) + εnk
e ∈ D. (3.1)

As Kn outer converges continuously to K, then we have x0 ∈ K(x0). As x0 /∈ S, there exist
y0 ∈ K(x0), t0 ∈ T (x0) such that

g(x0, t0, y0) + ε0e /∈ D. (3.2)

Since Kn, Tn inner converges continuously to K, T , respectively, for all y0 ∈ K(x0), t0 ∈
T (x0), there exist ynk

∈ Knk
(xnk

), tnk
∈ Tnk

(xnk
) such that ynk

→ y0, tnk
→ t0, as k → ∞.

From (3.1), we have
gnk

(xnk
, tnk

, ynk
) + εnk

e ∈ D. (3.3)

By the assumption (iii), (iv) and (xnk
, tnk

, ynk
,−gnk

(xnk
, tnk

, ynk
)) ∈ epi(−gn), there exists

z0 ∈ Y such that

(xnk
, tnk

, ynk
,−gnk

(xnk
, tnk

, ynk
)) −→ (x0, t0, y0, z0) ∈ epi(−g) as k → ∞.

Thus,
−gnk

(xnk
, tnk

, ynk
) → z0 ∈ −g(x0, t0, y0) + CY as k → ∞.

And so, there exists n0 ∈ N for all nk ≥ n0, such that

−gnk
(xnk

, tnk
, ynk

) ∈ −g(x0, t0, y0) + CY − |εnk
− ε0|e+ CY .

Then, from (3.3) we have

g(x0, t0, y0) + εnk
e+ |εnk

− ε0|e ∈ gnk
(xnk

, tnk
, ynk

) + εnk
e+ CY

⊆ D + CY

⊆ D.

By the closedness of D and εnk
→ ε0, we have

g(x0, t0, y0) + ε0e ∈ D, (3.4)

which contradicts (3.2). Thus, lim supn→∞ Sn ⊆ S. This completes the proof.

Next, we give Example 3.1 to illustrate this result.

Example 3.1. Suppose thatX = Z = R, Y = l∞ = {x = (x1, x2, · · · , xi, · · · ) : supi≥1 |xi| <
∞}, and CY = {x = (x1, x2, · · · , xi, · · · ) ∈ l∞ : xi ≥ 0, i = 1, 2, · · · }, e ∈ intCY .
Let D = CY ∪ {x = (x1, x2, · · · , xi, · · · ) ∈ l∞ : −1 ≤ x1 ≤ 0, 1 ≤ xi, i = 2, 3, · · · },
A = [0, 3], B = [−5, 1], εn = 1

n , ε = 0, and let K(x) = [1, 2], T (x) = Tn(x) = (−x, 1],
Kn(x) = [1− 1

2n , 2 +
1
2n ].

We consider g, gn : A×B ×A → Y given as

g(x, t, y) = t2y2(x,
x

2
· · · , x

i
· · · ), ∀(x, t, y) ∈ A×B ×A,

and

gn(x, t, y) = (t− 1

n
)2(y +

1

n
)2(x,

x

2
· · · , x

i
· · · ), ∀(x, t, y) ∈ A×B ×A.
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It is clear that all conditions of Theorem 3.7 are satisfied. By a simple computation, we can
get

S = [1, 2],

and

Sn = [1− 1

2n
, 2 +

1

2n
].

From Definition 2.4, we can obtain lim supn→∞ Sn ⊆ S. Theorem 3.7 is applicable.

Theorem 3.8. Let n ∈ N , εn ↘ ε0, i.e., εn > ε0 for all n and εn → ε0, and let D be a
closed free-disposal set. Suppose that

(i) Kn converges continuously to K with compact values on A, and for any x0 ∈ K(x0),
there exists xn ∈ Kn(xn) such that xn → x0;

(ii) Tn outer converges continuously to T with compact values on A;

(iii) −gn(x, ·, ·) are continuous on B ×A;

(iv) for any xn ∈ A, with xn → x0 ∈ K(x0), −gn(xn, ·, ·)
P.K.−→ −g(x0, ·, ·).

Then, S ⊆ lim infn→∞ Sn.

Proof. For any x0 ∈ S, such that

g(x0, t, y) + ε0e ∈ D, ∀y ∈ K(x0),∀t ∈ T (x0). (3.5)

Since x0 ∈ K(x0), there exists xn ∈ Kn(xn) such that xn → x0. In order to prove that
x0 ∈ lim infn→∞ Sn, we only need to prove that xn ∈ Sn for n large enough. On the contrary,
suppose that for all n0 ∈ N , there exists k ≥ n0 such that xnk

/∈ Snk
. Then, there exist

ynk
∈ Knk

(xnk
), tnk

∈ Tnk
(xnk

) such that

gnk
(xnk

, tnk
, ynk

) + εnk
e /∈ D. (3.6)

As Kn, Tn outer converges continuously to K, T with compact values, respectively, without
loss of generality, we can assume that ynk

→ y0 ∈ K(x0), tnk
→ t0 ∈ T (x0), respectively.

From Remark 2.6 and the assumption (iv), for (x0, t0, y0,−g(x0, t0, y0)) ∈ epi(−g), there
exists (xnk

, tnk
, ynk

, znk
) ∈ epi(−gnk

) such that

(xnk
, tnk

, ynk
, znk

) → (x0, t0, y0,−g(x0, t0, y0)),

then, there exists n1 ∈ N , for all k ≥ n1 we have

−g(x0, t0, y0) ∈ −gnk
(xnk

, tnk
, ynk

)− 1

2
(εnk

− ε0)e+ CY . (3.7)

Since −gn(xnk
, ·, ·) are continuous on B × A, (tnk

, ynk
) → (t0, y0) and (tnk

, ynk
) → (t0, y0),

there exists n2 ∈ N , for all k ≥ n2, one has

−gnk
(xnk

, tnk
, ynk

) ∈ −gnk
(xnk

, tnk
, ynk

)− 1

2
(εnk

− ε0)e+ CY .

From (3.7), for all k ≥ max{n1, n2}, it follows that

−g(x0, t0, y0) ∈ −gnk
(xnk

, tnk
, ynk

)− (εnk
− ε0)e+ CY .
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thus, combining (3.6), for all k ≥ max{n1, n2},

g(x0, t0, y0) + ε0e ∈ gnk
(xnk

, tnk
, ynk

) + εnk
e− CY

⊆ Y \D − CY

⊆ Y \D.

(3.8)

Which contradicts (3.5) and so completed the proof.

Remark 3.9. Theorems 3.7 and 3.8 improve and extend the latest corresponding ones
of [1, 15] in the following two aspects:

(i) Theorems 3.7 and 3.8 extend the ordering relation for generalized vector quasi-
equilibrium models in [1, 15] from the ordering cone case to the free-disposal set case.

(ii) The assumption of continuous convergence in [1] and the assumption of Γ−convergence
in [15] are weakened to P.K. convergence.

The following examples are given to illustrate Theorem 3.8 and Remark 3.9.

Example 3.2. Let Y = Z = R2, X = l1 = {x = (x1, x2, · · · , xi, · · · ) :
∑∞

i=1 |xi| < ∞}, and
CY = R2

+, e ∈ intCY . And let D = CY ∪ {x = (x1, x2) : −1 ≤ x1 ≤ 0, 1 ≤ x2}, εn = 1
2n ,

ε = 0, and K(x) = Kn(x) = clcone{{ ei
i }

∞
i=1 ∪ {0Y }}, T (x) = Tn(x) = [0, 1].

Suppose that

g(x, t, y) + εe = t(

∞∑
i=1

(yi + xi) + 3,

∞∑
i=1

xi + 1), ∀(x, t, y) ∈ X × Z ×X,

and

gn(x, t, y) + εne = t(

∞∑
i=1

(yi + xi) + 3,

∞∑
i=1

xi + 1) +
1

2n
e, ∀(x, t, y) ∈ X × Z ×X.

Obviously, all assumptions of Theorem 3.8 are satisfied. It is easy to obtain that

S = Sn = K = Kn.

Thus, S ⊆ lim infn→∞ Sn. Therefore, Theorem 3.8 is applicable.

We give Example 3.3 to illustrate that Theorems 3.7 and 3.8 hold, even if the assumptions
of continuous convergence and Γ−convergence are not satisfied.

Example 3.3. Let Y = R2, X = Z = R+, D = CY = {(x1, x2) ∈ R2 : 0 ≤ x1, 0 ≤ x2 ≤ x1}
and A = [0, 8], B = [0, 4]. And let e = (1, 1) ∈ intCY , εn = 1

2n , ε = 0, and Kn(x) = K(x) =
[ 15 , 5], T (x) = Tn(x) = [0, 2].

Suppose that

g(x, t, y) = gn(x, t, y) =

{
(ty, ty), x = 0

(x+ ty, 1
x + ty), x > 0

, ∀(x, t, y) ∈ A×B ×A.

From Definition 2.5 and Remark 2.6, it is easy to check that −gn
P.K.−→ −g and for xn →

x0 ∈ K(x0), −gn(xn, ·, ·)
P.K.−→ −g(x0, ·, ·). However, gn is neither continuously convergent

nor Γ−convergent. Indeed, take x = t = y = 0, xn = 1
n , yn = tn = 0 and ε = (1, 1

2 ). For all
n ≥ 1,

−gn(xn, tn, yn) + ε = (− 1

n
,−n) + (1,

1

2
) /∈ CY .
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By Definition 2.7, gn is not Γ−convergent. In the meanwhile, (xn, tn, yn) → (x, t, y), but
gn(xn, tn, yn) ↛ g(x, t, y). Thus gn is not continuously convergent.

For simple computation, one can obtain

S = Sn = [1, 5].

Thus, lim supn→∞ Sn ⊆ S ⊆ lim infn→∞ Sn. Therefore, Theorems 3.7 and 3.8 are useable,
but the corresponding ones in [1, 15] (e.g., Theorems 3.1 and 3.2 in [1] and Theorems 3.1
and 3.3 in [15]) are not useable here.

Theorem 3.10. Let n ∈ N be fixed and D be a closed free-disposal set. Assume that

(i) Kn is continuous with compact values on A;

(ii) Tn is lower semicontinuous on A;

(iii) gn is CY −upper semicontinuous on A×B ×A.

Then, Sn is closed.

Proof. Taking xm ∈ Sn with xm → x0, we only need to prove x0 ∈ Sn. In the light
of Lemma 3.6, as Kn is upper semicontinuous with compact value, for xm ∈ Kn(xm),
xm → x0 ∈ Kn(x0). Because of xm ∈ Sn, one has

gn(xm, t, y) + εne ∈ D, ∀y ∈ Kn(xm),∀t ∈ Tn(xm).

By the lower semicontinuity of Kn, Tn, for any y0 ∈ Kn(x0), t0 ∈ Tn(x0), there exist
ym ∈ Kn(xm), tm ∈ Tn(xm) such that ym → y0, tm → t0, respectively. Since gn is
CY −upper semicontinuous, for any neighborhood V of the origin 0Y in Y , such that

gn(x0, t0, y0) + εne ∈ gn(xm, tm, ym) + εne+ V + CY ,

for m large enough, and so

gn(x0, t0, y0) + εne ∈ D + V.

Since V is arbitrary and D is closed, we conclude that

gn(x0, t0, y0) + εne ∈ D, ∀y0 ∈ Kn(x0),∀t0 ∈ Tn(x0),

i.e., x0 ∈ Sn, Sn is a closed set. This completes the proof.

4 Upper Painlevé-Kuratowski Convergence of Solutions for (PSOP)

In this section, we establish the sufficient conditions of upper Painlevé-Kuratowski conver-
gence of E-minimal point sets, weak E-minimal point sets and Borwein E-minimal point sets
for perturbed set-valued optimization problem via improvement set. For simplicity’s sake,
in the rest of this section, we suppose that E is an improvement set, and Sn is uniformly
bounded for sufficiently large n

Definition 4.1 ([13]). Let f, fn : X ⇒ W (n ∈ N) be set-valued mappings. A,An(n ∈ N) be
sets in X and {(An, fn) : n ∈ N} be corresponding sequence pair. We say that (An, fn) →
(A, f) in the sense of P.K. convergence, denoted by (An, fn)

P.K.−→ (A, f), iff fn
P.K.−→ f , where

fn(x) =

{
fn(x), x ∈ A,

{+∞}, x ∈ X \A,
and f(x) =

{
f(x), x ∈ A,

{+∞}, x ∈ X \A.
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The following example shows that there exists (An, fn) −→ (A, f) in the sense of P.K.,
but fn doesn’t converge continuously to f on X.

Example 4.1. Let f, fn : R ⇒ R(n ∈ N) be, respectively, defined as

f(x) = [−2, x2 − 2] and fn(x) = [−2, x2 + nx+
1

n
].

Let A = [0,+∞), An = [− 2
n ,+∞) and CW = R+. From Definition 4.1, it is easy to check

that (An, fn)
P.K.−→ (A, f). However, fn doesn’t converge continuously to f on X. Taking

xn = − 1
n , x0 = 0, thus fn(xn) = [−2, 1

n2 − 1 + 1
n ] and f(x0) = {−2}, lim supn→∞ fn(xn) ⊈

f(x0). Obviously, fn doesn’t converge continuously to f on X.

Theorem 4.2. Assume that Sn
P.K.−→ S, fn converges continuously to f with compact values

on X, then
lim sup
n→∞

EWMinfn(Sn) ⊆ EWMinf(S).

Proof. For any y ∈ lim supn→∞ EWMinfn(Sn), there exists a subsequence {ynk
} ⊂ fnk

(xnk
)

in EWMinfn(Sn) such that ynk
→ y, where xnk

∈ Sn. Thus,

(fnk
(Snk

)− ynk
) ∩ (−intE) = ∅. (4.1)

Since Sn
P.K.−→ S, there exists x ∈ S such that xnk

→ x. As fn outer converges continuously
to f , we have y ∈ f(S).

Next, we prove that y ∈ EWMinf(S). Suppose to the contrary, y /∈ EWMinf(S), i.e.,

(f(S)− y) ∩ (−intE) ̸= ∅.

There exists y ∈ f(x), where x ∈ S, s.t.,

y − y ∈ (f(S)− y) ∩ (−intE).

As Sn
P.K.−→ S, then there exists xnk

∈ Sn such that xnk
→ x. Since fn inner converges

continuously to f , by the Lemma 3.2, for y ∈ f(x), there exists ynk
∈ fnk

(xnk
) such that

ynk
→ y. Hence, we have

ynk
− ynk

→ y − y.

By the openness of −intE, it follows that

ynk
− ynk

∈ −intE, for k large enough,

which contradicts (4.1). Therefore y ∈ EWMinf(S) and lim supn→∞ EWMinfn(Sn) ⊆
EWMinf(S). The proof is complete.

Using the same proof method of Theorem 4.2, with suitable modification, we can obtain
the upper Painlevé-Kuratowski convergence of E-minimal point sets as follows.

Theorem 4.3. Let E be an open improvement set. If Sn
P.K.−→ S and fn converges continu-

ously to f , then
lim sup
n→∞

EMinfn(Sn) ⊆ EMinf(S).

The following example is given to illustrate Theorems 4.2 and 4.3.
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Example 4.2. Let X = W = R2, S = [1, 5]×[1, 5] and Sn = [1− 1
2n , 5−

1
2n ]×[1− 1

2n , 5−
1
2n ].

And let E = {(x1, x2) : 0 < x1, 0 < x2}, CW = R2
+. Suppose that

f(x) = [5− 4x1 − x2
1, 0]× [5− 4x2 − x2

2, 0], ∀x = (x1, x2) ∈ S,

and

fn(x) = [5−4(x1+
1

2n
)−(x1+

1

2n
)2, 0]×[5−4(x2+

1

2n
)−(x2+

1

2n
)2, 0], ∀x = (x1, x2) ∈ Sn.

It is easy to check that all assumptions of Theorems 4.2 and 4.3 are satisfied. From the
simply computation, we have

EWMinf(S) = EMinf(S) = {(−40, [−40, 0])} ∪ {([−40, 0],−40)},

and
EWMinfn(Sn) = EMinfn(Sn) = {(−40, [−40, 0])} ∪ {([−40, 0],−40)}.

Thus,

lim sup
n→∞

EMinfn(Sn) ⊆ EMinf(S) and lim sup
n→∞

EWMinfn(Sn) ⊆ EWMinf(S).

When the convergence continuously of objective mapping sequence is replaced by

(Sn, fn)
P.K.−→ (S, f), we can obtain the following result.

Theorem 4.4. Suppose that Sn
P.K.−→ S. If (Sn, fn)

P.K.−→ (S, f), then

lim sup
n→∞

EWMin(fn(Sn) + C) ⊆ EWMin(f(S) + C).

Proof. For any y ∈ lim supn→∞ EWMin(fn(Sn)+C), there exists ynk
∈ EWMin(fn(Sn)+

C) such that ynk
→ y, and also ynk

∈ fnk
(xnk

) + C where xnk
∈ Snk

. Thus, we have

(fnk
(Snk

) + C − ynk
) ∩ (−intE) = ∅. (4.2)

Since Sn
P.K.−→ S, there exists x ∈ S such that xnk

→ x. As (Sn, fn)
P.K.−→ (S, f) and

(xnk
, ynk

) ∈ epifnk
, then (xnk

, ynk
) → (x, y) ∈ epif . Therefore y ∈ f(S) + C.

Now, we prove that y ∈ EWMin(f(S)+C). Suppose to the contrary, y /∈ EWMin(f(S)+
C), then

(f(S) + C − y) ∩ (−intE) ̸= ∅.

There exists y ∈ f(x) + C ⊆ f(S) + C such that

y − y ∈ (f(S) + C − y) ∩ (−intE).

Since (Sn, fn)
P.K.−→ (S, f) and (x, y) ∈ epif , there exists (xnk

, ynk
) ∈ epifnk

such that
(xnk

, ynk
) → (x, y). Hence, we have

ynk
− ynk

→ y − y.

Since y − y ∈ −intE, it follows that

ynk
− ynk

∈ (fnk
(Snk

) + C − ynk
) ∩ (−intE),

for k large enough, which contradicts (4.2). Therefore, lim supn→∞ EWMin(fn(Sn)+C) ⊆
EWMin(f(S) + C). This completes the proof.
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Next, we give the following sufficient conditions of the upper Painlevé-Kuratowski con-
vergence of Borwein E-minimal point sets for (PSOP ).

Theorem 4.5. If Sn
P.K.−→ S and E is an open improvement set. Assume that fn converges

continuously to f with compact values on X, then

lim sup
n→∞

BEMinfn(Sn) ⊆ BEMinf(S).

Proof. For any y ∈ lim supn→∞ BEMinfn(Sn), there exists a subsequence {ynk
} in

BEMinfn(Sn) such that ynk
→ y. Thus,

clcone(fnk
(Snk

)− ynk
) ∩ (−E) = ∅. (4.3)

It is obvious that ynk
∈ fnk

(xnk
), where xnk

∈ Snk
. And since Sn

P.K.−→ S, there exists x ∈ S
such that xnk

→ x. As fn outer converges continuously to f and ynk
→ y, we have y ∈ f(S).

Suppose that y /∈ BEMinf(S), i.e.,

clcone(f(S)− y) ∩ (−E) ̸= ∅.

So there exists t ∈ clcone(f(S)− y) ∩ (−E). We can assume that

t = λ(y − y) ∈ clcone(f(x)− y) ⊆ clcone(f(S)− y), (4.4)

where λ > 0 and y ∈ f(x). As Sn
P.K.−→ S, then there exists xn ∈ Sn such that xn → x. Since

fn inner converges continuously to f , it follows that there exists ynk
∈ fnk

(xnk
) such that

ynk
→ y. Hence, we have

λ(ynk
− ynk

) → t.

By the openness of −E and λ(y − y) ∈ −E, there exists an open neighborhood U of the
origin in Y , such that

λ(ynk
− ynk

) ∈ λ(y − y) + U ⊆ −E, for k large enough, (4.5)

which contradicts (4.3). Therefore, lim supn→∞ BEMinfn(Sn) ⊆ BEMinf(S). The proof
is complete.

Example 4.3. Continuing with Example 4.2 above, all assumptions of Theorem 4.5 are
satisfied. It follows from a direct computation that

BEMinf(S) = {(−40, [−40, 0])} ∪ {([−40, 0],−40)}

and
BEMinfn(Sn) = {(−40, [−40, 0])} ∪ {([−40, 0],−40)}.

Hence, by virtue of Theorem 4.5, lim supn→∞ BEMinfn(Sn) ⊆ BEMinf(S).

5 Lower Painlevé-Kuratowski Convergence of Solutions for (PSOP)

In this section, under some assumptions of convergence, we establish the sufficient conditions
of lower Painlevé-Kuratowski convergence of E-minimal point sets and Borwein E-minimal
point sets for (PSOP).
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Theorem 5.1. If Sn
P.K.−→ S and Sn is uniformly bounded for sufficiently large n. Let E be

a closed improvement set. Suppose that fn converges continuously to f with compact values
on X, then

EMinf(S) ⊆ lim inf
n→∞

EMinfn(Sn).

Proof. For any y ∈ EMinf(S), it follows that there exists x ∈ S such that y ∈ f(x) and

(f(S)− y) ∩ (−E) = ∅. (5.1)

By the virtue of Sn
P.K.−→ S, there exists xn ∈ Sn such that xn → x. Since fn inner converges

continuously to f , for above y ∈ f(x), there exists yn ∈ fn(xn) such that yn → y. Now, we
only need to prove that yn ∈ EMinfn(Sn).

Suppose to the contrary, assume that yn /∈ EMinfn(Sn), then there exists xn ∈ Sn such
that

(fn(xn)− yn) ∩ (−E) ̸= ∅.

Thus, there exists an ∈ (fn(xn)−yn)∩(−E). Without loss of generality, we can assume that

an = yn − yn where yn ∈ fn(xn). Since Sn
P.K.−→ S, there exist x ∈ S such that xn → x. As

fn outer converges continuously to f , it follows that there exist y ∈ f(x) and a subsequence
{ynk

} of {yn} such that ynk
→ y. Hence, we have

ynk
− ynk

→ y − y.

By the closedness of −E, one has

y − y ∈ −E, as k → ∞,

which contradicts the fact y ∈ EMinf(S) and so completed the proof.

We give the following example to illustrate the assumption of the closedness of E is
essential.

Example 5.1. Let W = R2, X = R and CW = R2
+, S = [0, 1], Sn = (0, 1 − 1

n ). Suppose
that

f(x) = [x, 1]× [x, 1],∀x ∈ X,

and

fn(x) = [x, 1]× [x, 1],∀x ∈ X,

where E = {(w1, w2) : 2 ≤ w1, 1 ≤ w2}.
By simple calculation, we get that

EMinf(S) = [0, 1]× [0, 1] and EMinfn(Sn) = (0, 1− 1

n
]× (0, 1− 1

n
].

Thus EMinf(S) ⊆ lim infn→∞ EMinfn(Sn). However, if E is not closed, the conclusion of
Theorem 5.1 may not be hold. Suppose that E = R2

+ \ {(0, 0)}, we can obtain that

EMinf(S) = {0} and EMinfn(Sn) = ∅,

thus EMinf(S) ⊈ lim infn→∞ EMinfn(Sn). Therefore the assumption of the closedness of
E is essential.
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The sufficient conditions of lower Painlevé-Kuratowski convergence of Borwein E-minimal
solution are given as follows.

Theorem 5.2. For each n ∈ N , BEMinfn(Sn) is nonempty. Assume that

(i) Sn
P.K.−→ S and Sn is uniformly bounded for sufficiently large n;

(ii) fn converges continuously to f with compact values on X;

(iii) E is a closed improvement set satisfied ∀e1 ∈ E, there exist M < ∞ and E∗ = {e∗ ∈
∂E|d(e∗, 0W ) ≤ M}, such that e1 ∈ λE∗ ⊆ E where λ ≥ 1.

Then
BEMinf(S) ⊆ lim inf

n→∞
BEMinfn(Sn).

Proof. For any y ∈ BEMinf(S), there exists x ∈ S, s.t., y ∈ f(x) and

clcone(f(S)− y) ∩ (−E) = ∅. (5.2)

As Sn
P.K.−→ S, then there exists xn ∈ Sn such that xn → x. And since fn inner converges

continuously to f , for y ∈ f(x), there exists yn ∈ fn(xn) such that yn → y. Therefore, we
only need to prove that yn ∈ BEMinfn(Sn). If yn /∈ BEMinfn(Sn), we have

clcone(fn(Sn)− yn) ∩ (−E) ̸= ∅.

Then, there exists tn ∈ clcone(fn(Sn)−yn)∩(−E). We can also assume that tn ∈ cone(yn−
yn) ⊆ clcone(fn(xn) − yn) ⊆ clcone(fn(Sn) − yn), where yn ∈ fn(xn) ⊂ BEMinfn(Sn),

xn ∈ Sn. As Sn
P.K.−→ S and Sn is uniformly bounded for sufficiently large n, then we can

assume that xn → x ∈ S. Since fn outer converges continuously to f and xn → x, for
yn ∈ fn(xn), without loss of generality, there exists y ∈ f(x) such that yn → y. Next, the
proof is divided to the following two cases:

Case 1. If y = y, it is easy to obtain that y ∈ lim infn→∞ BEMinfn(Sn).
Case 2. On the other hand, y ̸= y. Then there exists δ > 0 such that d(yn, yn) > δ for n

large enough. From condition (iii), there exist M < ∞ and E∗ = {e∗ ∈ ∂E|d(e∗, 0W ) ≤ M},
such that e1 ∈ λE∗ ⊆ E where λ ≥ 1. Thus we can assume that tn = λ0(yn − yn) for n
large enough and

tn → λ0(y − y) ∈ clcone(f(S)− y), (5.3)

where λ0 = M
δ . As the closedness of E and (5.3), one has

λ0(y − y) ∈ clcone(f(S)− y) ∩ (−E),

which contradicts (5.2). Therefore, BEMinf(S) ⊆ lim infn→∞ BEMinfn(Sn). The proof
is complete.

Example 5.2. Suppose that W = X = l∞ = {x = (x1, x2, · · · , xi, · · · ) : supi≥1 |xi| < ∞},
and CW = {x = (x1, x2, · · · , xi, · · · ) ∈ l∞ : xi ≥ 0, i = 1, 2, · · · }. Let E = C\{x =
(x1, x2, · · · , xi, · · · ) ∈ l∞ : 0 ≤ xi < 1, i = 1, 2, · · · }, S = [0, 1

2 ]× [0, 1
2 ]× · · ·× [0, 1

2 ]× · · · and
Sn = [0, 1

2 − 1
n ]× [0, 1

2 − 1
n ]× · · · × [0, 1

2 − 1
n ]× · · · .

We consider f : S ⇒ W and fn : Sn ⇒ W given as

f(x) = {(z1, z2, · · · , zi, · · · )|zi ∈ [x2
i − 1,−1

2
]}, ∀x ∈ S
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and

fn(x) = {(z1, z2, · · · , zi, · · · )|zi ∈ [x2
i − 1,−1

2
− 1

n
]}, ∀x ∈ Sn.

It is clear that all conditions of Theorem 5.2 are satisfied. A short calculation reveals that

BEMinf(S) = {(x1, x2, · · · , xi, · · · )|xi = −1, i ∈ N},

and
BEMinfn(Sn) = {(x1, x2, · · · , xi, · · · )| xi = −1, i ∈ N}.

By virtue of Definition 2.3 and Theorem 5.2, one hasBEMinf(S) ⊆ lim infn→∞ BEMinfn(Sn).
Thus, Theorem 5.2 is applicable.

6 Scalarization

In this section, by using the oriented distance function (△), we establish a scalarized problem
and discuss the relationships between the minimal point sets of (PSOP ) and the maximum
sets for the corresponding nonlinear scalarized problem (SP ).

Now, we give the following nonlinear scalarization function which was introduced by
Hiriart-Urruty [12], the oriented distance function (△).

Definition 6.1. For a set Q ⊂ W . Let the function △Q : W → R ∪ {±∞} be defined as

△Q(y) = dQ(y)− dW\Q(y),

with d∅(y) = +∞.

Some properties of the oriented distance function ∆ are given by Zaffaroni [30] as follows.

Lemma 6.2. If the set Q ⊂ W is a nonempty set and Q ̸= W , then

(i) △Q is real valued;

(ii) △Q(y) < 0 for every y ∈ intQ, △Q(y) = 0 for every y ∈ ∂Q, and △Q(y) > 0 for
every y ∈ int Qc;

(iii) if Q is closed, then Q = {y : △Q(y) ≤ 0}.

Let E is an improvement set, for ŷ ∈ f(S), consider the following nonlinear scalarized
problem (SP )ŷ:

(SP )ŷ : max△−E (ŷ − y) s.t. y ∈ f(S),

where
S = {x ∈ K(x) : g(x, t, y) + εe ∈ D, ∀t ∈ T (x), ∀y ∈ K(x)}.

The set of global maximum (GMax) and strict global maximum (SGMax) of this problem,
are defined as

GMaxŷf(S) := {y ∈ f(S) : △−E(ŷ − y0) ≤ △−E(ŷ − y), ∀y0 ∈ f(S)}. (6.1)

SGMaxŷf(S) := {y ∈ f(S) : △−E(ŷ− y0) < △−E(ŷ− y), ∀y0 ∈ f(S) with y0 ̸= y}. (6.2)

Definition 6.3. For a set Q ⊂ W , the function △−Q(ŷ − y) is said to be
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(i) order preserving on f(S), iff ∀y1, y2 ∈ f(S)

y1 − y2 ∈ −Q =⇒ △−Q(ŷ − y1) ≥ △−Q(ŷ − y2).

(ii) strictly order preserving on f(S), iff ∀y1, y2 ∈ f(S) and y1 ̸= y2

y1 − y2 ∈ −intQ =⇒ △−Q(ŷ − y1) > △−Q(ŷ − y2).

Definition 6.4. For a set Q ⊂ W , the function △−Q(ŷ − y) is said to be

(i) order representing on f(S), iff

{y ∈ f(S) : △−Q(ŷ − y) ≥ 0} ⊆ ŷ −Q ∪ {0}.

(ii) strictly order representing on f(S), iff

{y ∈ f(S) : △−Q(ŷ − y) > 0} ⊆ ŷ − intQ ∪ {0}.

Theorem 6.5. Assume that E is a closed improvement set, then y ∈ EMinf(S) if and
only if △−E(y − y) > 0, ∀y ∈ f(S).

Proof. “=⇒” Let y ∈ EMinf(S), then we have

(f(S)− y) ∩ (−E) = ∅.

Thus for all y ∈ f(S), (y − y) ∩ (−E) = ∅, i.e., y − y /∈ −E. In the light of Lemma 6.2 and
the closedness of E, this is equivalent to the fact

△−E(y − y) = d−E(y − y)− dW\−E(y − y) > 0, ∀y ∈ f(S).

“⇐=” If for any y ∈ f(S), △−E(y − y) > 0, thus we can get

△−E(y − y) = d−E(y − y)− dW\−E(y − y) > 0.

Therefore (y − y) ∩ (−E) = ∅, i.e., y ∈ EMinf(S). This completes the proof.

Similarly, we can get the following theorem.

Theorem 6.6. Let E is an improvement set. y ∈ EWMinf(S) if and only if △−E(y−y) ≥
0, ∀y ∈ f(S).

Proof. Using the similar proof method of Theorem 6.5, we can get the conclusion.

Inspired by [30], the following theorems are given to illustrate the relationships between
the minimal point sets of (PSOP ) and maximum sets of (SP )ŷ.

Theorem 6.7. Let E is an improvement set. If △−E(ŷ − y) is a

(i) order preserving function on f(S), then

SGMaxŷf(S) ⊆ EMinf(S);
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(ii) strictly order preserving function on f(S), then

GMaxŷf(S) ⊆ EWMinf(S).

Proof. Because the proof methods of (i), (ii) are similar, we only give the proof of (i).
To the contrary, suppose that there exists y0 ∈ SGMaxŷf(S) but y0 /∈ EMinf(S). For
y0 ∈ SGMaxŷf(S), there exists

△−E(ŷ − y) < △−E(ŷ − y0), ∀y ∈ f(S) with y ̸= y0. (6.3)

By virtue of y0 /∈ EMinf(S), from Definition 2.3, one has

(f(S)− y0) ∩ (−E) ̸= ∅.

Thus there exists y1 ∈ f(S) such that

y1 − y0 ∈ −E.

Since △−E(ŷ − y) is a order preserving function on f(S), we have

△−E(ŷ − y1) ≥ △−E(ŷ − y0),

which contradicts (6.3). Therefore y0 ∈ EMinf(S). The proof is complete.

Theorem 6.8. Let E is an improvement set and y ∈ f(S), for any y0 ∈ f(S), assume that
△−E(y − y0) is a

(i) order representing function on f(S) and y ∈ EMinf(S), then

y ∈ SGMaxyf(S);

(ii) strictly order representing function on f(S) and y ∈ EWMinf(S), then

y ∈ GMaxyf(S).

Proof. (i) By virtue of y ∈ EMinf(S), for any y0 ∈ f(S) one has

y0 − y /∈ −E.

On the contrary, suppose that y /∈ SGMaxyf(S), there exists y1 ∈ f(S) with y1 ̸= y such
that

0 ≤ △−E(y − y) ≤ △−E(y − y1).

Since △−E(y − y0) is a order representing function on f(S), we have

y1 ∈ {y0 ∈ f(S) : △−E(y − y0) ≥ 0} ⊆ y − E ∪ {0}.

Thus, y1 − y ∈ −E ∪ {0}. As y1 ̸= y, it follows that

y1 − y ∈ −E,

which contradicts the fact y ∈ EMinf(S). Therefore y ∈ SGMaxyf(S).
(ii) Using the similar proof method, with suitable modifications, we can get that if

△−E(y − y0) is a strictly order representing function on f(S) and y ∈ EWMinf(S), then

y ∈ GMaxyf(S).

So, the proof is complete.
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solution sets for generalized vector quasi-equilibrium problems, Computational and Ap-
plied Mathematics 37 (2018) 3832–3845.

[2] L.Q. Anh and N.V. Hung, Levitin-Polyak well-posedness for strong bilevel vector equi-
librium problems and applications to traffic network problems with equilibrium con-
straints, Positivity 22 (2018) 1223–1239.

[3] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
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