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However, to the best of our knowledge, there is no paper to study necessary and sufficient
conditions of the Benson proper efficiency for a vector optimization problem with general
cone constraints without any convexity assumption.

Based on the optimization theories in image space, Castellani and Giannessi [3] estab-
lished a unify scheme, which was so called Image Space Analysis (for short, ISA), to deal with
different optimization models, which can be expressed as the impossibility of a parametric
system. The ISA method is a powerful tool, and several aspect of theories in optimization
are developed in recent years, such as duality, existence of solutions, optimality conditions,
penalty methods and regularity conditions; see [3, 5, 6, 9, 10, 16–19]. Separation plays a cru-
cial role in the ISA. After the disjunction of two suitable sets for the given problem has
been constructed in the image space, different separation approaches are applied to the two
sets, such as linear separation [6, 9, 10, 18], nonlinear or conic separation [5, 10, 16, 17, 19].
In general, authors only considered the (weakly) efficient solutions of a constrained vector
optimization problem in terms of ISA, see [9,16,19], but the researches on properly efficient
solutions by ISA are limited. That’s due to the difficulty in converting the proper efficiency
of the constrained vector optimization problem to the impossibility of a parametric system
in the image space.

In this paper, we aim at studying the proper efficiency for the nonconvex vector opti-
mization problem with cone constraints via ISA approach. First, we characterize the Benson
proper efficiency in the image space, and show the relations among the Benson proper effi-
ciency, image regularity condition and regular separation. Then, we discuss the generalized
saddle-point and image regularity condition for the nonconvex vector optimization. Finally,
we use a nonconvex separation theorem to establish the generalized saddle-point criterion
without any convexity of the given problem.

The rest of the paper is organized as follows. In Section 2, we recall some concepts and
the basic separation about ISA. In Section 3, we discuss the proper efficiency in image space.
In Section 4, we investigate the generalized saddle-point and image regularity condition in
nonconvex vector optimization.

2 Preliminaries

In this section, we recall some notations and definitions, which will be used in the sequel.
Let Rℓ,Rm,Rn be Euclidean spaces. The closure, the topological interior and boundary of
a set M ⊆ Rℓ are denoted by clM , intM and bdM , respectively. Let cone(M) := {λa :
a ∈ M,λ ∈ R+} denote the cone set produced by M , and d(v,M) = inf{∥v − a∥ : a ∈ M}
denote the distance from a point v ∈ Rℓ to M . Let C ⊆ Rℓ and D ⊆ Rm be nonempty,
closed, convex and pointed cones with intC ̸= ∅ and intD ̸= ∅.

Definition 2.1. The function f : Rn → R is C-monotonically increasing iff

f(u2) ≤ f(u1), ∀ u1 − u2 ∈ C.

Definition 2.2. The function f : Rn → R is positive homogeneous iff

f(αu) = αf(u), ∀ u ∈ Rn, α ≥ 0.

Let y = (y1, ..., yℓ) ∈ Rℓ. ∥y∥1 =
∑ℓ

i=1 |yi|, ∥y∥2 = (y21 + ... + y2ℓ )
1/2 and ∥y∥∞ =

max{|y1|, ..., |yℓ|} denote the l1, l2, and l∞ norms of y, respectively. The unit sphere and
unit ball of Rℓ are denoted by U = {y ∈ Rℓ : ∥y∥ = 1} and B = {y ∈ Rℓ : ∥y∥ ≤ 1},
respectively. CU = C ∩ U = {y ∈ C : ∥y∥ = 1} denotes the norm-base of the cone C.
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Let C∗ = {y∗ ∈ Rℓ : ⟨y∗, y⟩ ≥ 0,∀y ∈ C} and C♯ = {y∗ ∈ Rℓ : ⟨y∗, y⟩ > 0,∀y ∈ C\{0}}
be the dual cone and strict positive dual cone of C, respectively.

The following cones called augmented dual cones of C were introduced in [7, 13,14].

Ca∗ = {(y∗, α) ∈ C∗ × R+ : ⟨y∗, y⟩ − α∥y∥ ≥ 0 for all y ∈ C},
Ca♯ = {(y∗, α) ∈ C♯ × R+ : ⟨y∗, y⟩ − α∥y∥ > 0 for all y ∈ C\{0} }.

Definition 2.3 ([14]). Let C and K be closed cones in Rℓ with intK ̸= ∅. A cone K is
called a conic neighborhood of the cone C if C\{0} ⊂ intK. For a positive real number ϵ,
a cone Cϵ = cone(CU + ϵB) is called ϵ-conic neighborhood of C.

Theorem 2.4 ([14]). Let C = Rℓ
+. Then, for every ϵ ∈ (0, 1), there exists a pair (y∗, α) ∈

Ca♯ such that

−C\{0} ⊂ int(S(y∗, α)) ⊂ −Cϵ,

where S(y∗, α) = {y ∈ Rℓ : ⟨y∗, y⟩+ α∥y∥1 ≤ 0} is a closed convex pointed cone, and

int(S(y∗, α)) = {y ∈ Rℓ : ⟨y∗, y⟩+ α∥y∥1 < 0}.

In this paper, we consider the following vector optimization problem with cone con-
straints:

(P ) minC f(x)

s.t. g(x) ∈ D, x ∈ X,

where X ⊂ Rn is a nonempty subset, f : Rn → Rℓ and g : Rn → Rm are vector-valued
functions. As usual, we denote by S = {x ∈ X : g(x) ∈ D} the feasible set of (P).

Definition 2.5. (i) An element x̄ ∈ S is called an efficient solution of (P) if (f(x̄) −
f(S)) ∩ C = {0}.

(ii) An element x̄ ∈ S is called a weakly efficient solution of (P) if (f(x̄)−f(S))∩intC = ∅.

(iii) An element x̄ ∈ S is called a Benson properly efficient solution of (P) if clcone(f(x̄)−
f(S)− C) ∩ C = {0}.

Next, we recall the main features of the ISA for the problem (P) with respect to the
efficient solution. Take arbitrary x̄ ∈ X. We consider the mapping Ax̄ : X → Rℓ ×Rm with

Ax̄(x) := (f(x̄)− f(x), g(x)), ∀x ∈ X

and the sets

Kx̄ := {(u, v) ∈ Rℓ × Rm : u = f(x̄)− f(x), v = g(x), x ∈ X},
H := {(u, v) ∈ Rℓ × Rm : u ∈ C\{0}, v ∈ D}, Ex̄ = Kx̄ − clH.

The sets Kx̄ and Ex̄ are called the image and extend image of (P), respectively. Obviously,
x̄ ∈ S is an efficient solution of (P), iff the generalized system

Ax̄(x) ∈ H, x ∈ X, (2.1)

has no solutions, or, equivalently

Kx̄ ∩H = ∅. (2.2)
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Remark 2.6. Let Hu := {(u, v) ∈ Rℓ × Rm : u ∈ C\{0}, v = 0}. Since H + clH = H, it
follows that (2.2) is equivalent to

Ex̄ ∩H = ∅, (2.3)

or, equivalently,

Ex̄ ∩Hu = ∅. (2.4)

Consider a real-valued function w : Rℓ+m × Π → R, where Π is a set of parameters
to be specified case by case. Let lev>0w(·;π) = {(u, v) ∈ Rℓ × Rm : w(u, v;π) > 0}
and lev≥0w(·;π) = {(u, v) ∈ Rℓ × Rm : w(u, v;π) ≥ 0} denote the positive level set and
nonnegative level set of w, respectively. Then, we recall the following concept of regular
weak separation functions.

Definition 2.7 ([10]). The class of all the functions w : Rℓ+m ×Π → R such that∩
π∈Π

lev>0w(·;π) = H

is called the class of regular weak separation functions and denoted by WR(Π).

Definition 2.8. The sets Kx̄ and H are said to admit regular separation with respect to
w ∈ WR(Π) and π̄ ∈ Π iff

w(u, v; π̄) ≤ 0, ∀ (u, v) ∈ Kx̄.

Obviously, if w(·; π̄) is clH-monotonically increasing, then the sets Kx̄ and H are regular
separation with respect to w ∈ WR(Π) and π̄ ∈ Π iff

w(u, v; π̄) ≤ 0, ∀ (u, v) ∈ Ex̄.

3 Proper Efficiency in Image Space

Proper efficiency is an important optimality notion in vector optimization. However, people
can’t find a suitable mapping Ax̄ such that solving the properly efficient solution of (P) can
be expressed by the impossibility of a generalized parametric system (2.1). This leads to
the few studies on the proper efficiency by ISA method.

On the other hand, it is worth noting that all the definitions of different solutions only
need the information of x ∈ S, and the characterizations of efficient solution in (2.1) and
(2.2) contain extra information. So, we introduce two sets as follows,

K1 = Kx̄ ∩ (Rℓ ×D) and E1 = Ex̄ ∩ (Rℓ ×D).

Obviously, K1 ∩H = ∅, E1 ∩H = ∅, (2.2) and (2.3) are equivalent.
Then, we can analyse the proper efficiency by using E1 in the following.

Theorem 3.1. Suppose that x̄ ∈ S. Then,

cl(cone(E1)) ∩Hu = ∅, (3.1)

iff x̄ is a Benson properly efficient solution of (P).
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Proof. “⇐=”. Assume that x̄ is a Benson properly efficient solution of (P). Note that
Ex̄ ∩ (Rℓ ×D) ⊂ (f(x̄)− f(S)− C)×D, which implies that

PRℓ(cl(cone(E1))) ⊂ clcone(f(x̄)− f(S)− C),

where PRℓ(·) denotes the projection from Rℓ × Rm to Rℓ.
Thus, clcone(f(x̄)− f(S)− C) ∩ C\{0} = ∅ implies (3.1).
“=⇒”. By the contrary, suppose that x̄ is not a Benson properly efficient solution of

(P), which means that clcone(f(x̄)− f(S)−C)∩C\{0} ̸= ∅. Let u ∈ clcone(f(x̄)− f(S)−
C) ∩ C\{0}. Then there exist sequences xn ∈ S, λn > 0 and cn ∈ C with n ∈ N such that

u = lim
n→+∞

λn(f(x̄)− f(xn)− cn).

It follows from xn ∈ S that g(xn) ∈ D, for all n ∈ N. Take dn = g(xn), vn = λn(g(xn)−dn) =
0, and un = λn(f(x̄) − f(xn) − cn), for all n ∈ N. Then we have that (un, vn) ∈ cone(E1)
and

(u, 0) = lim
n→+∞

(un, vn) = lim
n→+∞

λn(f(x̄)− f(xn)− cn, g(xn)− dn),

which implies (u, 0) ∈ clcone(E1). Together with (u, 0) ∈ C\{0} × {0} = Hu, we obtain

cl(cone(E1)) ∩Hu ̸= ∅,

which contradicts (3.1). The proof is complete.

Theorem 3.1 provides a characterization of the Benson proper efficiency for the con-
strained vector optimization problem in the image space. However, the disadvantage of E1
is obvious. Since E1 loses the information of g(x) ̸∈ D, we can’t use it to establish the
saddle-point criterion. On the other hand, combining with E1 ⊂ Ex̄, we immediately get the
following result.

Theorem 3.2. Suppose that x̄ ∈ S. If

cl(cone(Ex̄)) ∩Hu = ∅, (3.2)

then, x̄ is a Benson properly efficient solution of (P).

Remark 3.3. The condition (3.2) is called image regularity condition in some literatures(
[5, 16–19]), which is used in conic separation, penalty methods. When (P) reduces to a
scalar optimization problem, and under some convexity assumptions, the condition (3.2) is
equivalent to the existence of saddle-point. Obviously, cl(cone(Ex̄)) ∩ H = ∅ and (3.2) are
equivalent since H+ clH = H.

In general, the converse of Theorem 3.2 doesn’t hold, and we illustrate it in the following
example.

Example 3.1. Let ℓ = 2,m = n = 1, X = R, C = R2
+, and D = R+. The mappings f and

g are defined as follows,

f(x) := (x+ 1, 2x), g(x) :=

{
x

1
2 if x ≥ 0,

−x2 otherwise.
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Obviously, S = R+, and x̄ = 0 is a Benson properly efficient solution of (P). Moreover,
f(x̄) = (1, 0), and

Ex̄ = {(−u,−2u,−u2) : u ≤ 0} ∪ {(−u,−2u, u
1
2 ) : u ≥ 0} − R3

+,

H = (R2
+\{0})× R+, Hu = (R2

+\{0})× {0}.

Then, Ex̄ ∩Hu = ∅. On the other hand, cl(cone(Ex̄)) = R2 × (−R+) ∪ (−R2
+)× R+, and

cl(cone(Ex̄)) ∩Hu = (R2
+\{0})× {0} = Hu,

which means that the converse of Theorem 3.2 fails.

In the following, we give some assumptions to guarantee the image regularity condition.

Proposition 3.4. Let C = Rℓ
+. Assume that x̄ is a Benson properly efficient solution

of (P). Suppose that there exists r̄ > 0 such that max1≤i≤ℓ{fi(x̄) − fi(x)} ≤ r̄d(g(x), D),
∀x ̸∈ S. Then the image regularity condition (3.2) holds.

Proof. By the contrary, assume that (3.2) is not fulfilled. Then there exists u ∈ C\{0} such
that (u, 0) ∈ cl(cone(Ex̄)). Since x̄ is a Benson properly efficient solution of (P), it follows
from Theorem 3.1 that there exist sequences xn ̸∈ S, λn > 0, cn ∈ C and dn ∈ D with
n ∈ N such that

u = lim
n→+∞

λn(f(x̄)− f(xn)− cn) and v = lim
n→+∞

λn(g(xn)− dn) = 0. (3.3)

Again by u = (u1, ..., uℓ) ∈ Rℓ
+\{0}, then there exists 1 ≤ i ≤ ℓ such that ui > 0. Therefore,

lim
n→+∞

∥g(xn)− dn∥
fi(x̄)− fi(xn)− (cn)i

= 0. (3.4)

Together with ui > 0 and the first equation of (3.3), we get that fi(x̄)− fi(xn)− (cn)i > 0,
for sufficiently large n. Moreover,

0 ≤ d(g(xn), D)

fi(x̄)− fi(xn)− (cn)i
≤ ∥g(xn)− dn∥

fi(x̄)− fi(xn)− (cn)i
. (3.5)

It follows from (3.4) and (3.5) that

lim
n→+∞

d(g(xn), D)

fi(x̄)− fi(xn)− (cn)i
= 0,

so that, for every r > 0, there exists n ∈ N that

d(g(xn), D) <
1

r
(fi(x̄)− fi(xn)− (cn)i) ≤

1

r
(fi(x̄)− fi(xn)),

which is a contradiction to the assumption of this proposition. The proof is complete.

Remark 3.5. If ℓ = 1, then the assumptions of Proposition 3.4 reduce to that there exists
r̄ > 0 such that f(x̄) − f(x) ≤ r̄d(g(x), D), ∀x ∈ X, which mean that the exact penalty
function exists. It is worth noting that the existence of exact penalty functions is equivalent
to the image regularity condition (3.2) for the scalar optimization problem, see [17].
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By the regular separation between Kx̄ and H, we can also obtain a sufficient condition
for image regularity condition immediately.

Theorem 3.6. Suppose that function w(·;π) is positive homogeneous and clH-monotonically
increasing, for π ∈ Π and w ∈ WR(Π). If the sets Kx̄ and H are regular separation with
respect to w and π̄ ∈ Π, then the image regularity condition (3.2) holds.

Proof. The proof is easy, we omit it.

In particular, we give a special class of regular separation functions as follows:

w(u, v; θ, λ) := ω1(u, θ) + ω2(v, λ), u ∈ Rℓ, v ∈ Rm, (θ, λ) ∈ Π1 ×Π2, (3.6)

where ω1 : Rℓ ×Π1 −→ R and ω2 : Rm ×Π2 −→ R fulfill the following conditions∩
θ∈Π1

lev>0 ω1(·, θ) = C\{0}, (3.7)

∩
λ∈Π2

lev≥0 ω2(·, λ) = D, (3.8)

∀ λ ∈ Π2, ∀ t ≥ 0, ∃λt ∈ Π2 s.t. tω2(v, λ) = ω2(v, λt), ∀ v ∈ Rm. (3.9)

It is easy to verify that w ∈ WR(Π1 × Π2) if the functions (3.6) satisfy assumptions
(3.7)-(3.9). Under suitable assumptions, we also give a sufficient condition for Benson proper
efficiency.

Theorem 3.7. Assume that the function (3.6) fulfills conditions (3.7)-(3.9). Suppose that
ω1(·, θ) and ω2(·, λ) are C- and D-monotonicity increasing, respectively, and ω1(·, θ) is pos-
itive homogeneous, for θ ∈ Π1 and λ ∈ Π2. Moreover, x̄ ∈ S. If the sets Kx̄ and H are
regular separation with respect to w and (θ̄, λ̄) ∈ Π1 × Π2, then x̄ is a Benson properly
efficient solution of (P).

Proof. It follows from the monotonicity of ω1 and ω2 that w(·; θ, λ) is clH-monotonically
increasing. Together with the regular separation between Kx̄ and H, we have

w(u, v; θ̄, λ̄) = ω1(u, θ̄) + ω2(v, λ̄) ≤ 0, ∀ (u, v) ∈ Ex̄.

By (3.8), then for every (u, v) ∈ Ex̄ with v ∈ D, we get

ω1(u, θ̄) ≤ 0,

which implies that

ω1(f(x̄)− f(x), θ̄) ≤ 0, ∀ x ∈ S.

Again by the monotonicity and positive homogeneity of ω1, one has

ω1(u, θ̄) ≤ 0, ∀ u ∈ clcone(f(x̄)− f(S)− C). (3.10)

It follows from (3.7) and (3.10) that clcone(f(x̄)− f(S)−C)∩C = {0}, thus x̄ is a Benson
properly efficient solution of (P). This completes the proof.
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4 Generalized Saddle-Point and Image Regularity Condition for
the Nonconvex Vector Optimization

In [4], the Benson proper efficiency was characterized by the linear Lagrangian saddle-point
under generalized convexity assumptions and Slater condition. However, the classic saddle-
point criterion doesn’t exist for nonconvex case in general, so nonlinear Lagrangian functions
are introduced. In [7, 13, 14], the authors defined a conic scalarization function and used
it to characterize the properly minimal element of a set (in the sense of Benson or Henig).
Motivated by these results, we define a nonlinear separation function by

w(u, v;µ, α, λ, β) := ⟨µ, u⟩ − α∥u∥Y + ⟨λ, v⟩ − β∥v∥Z , (4.1)

where (µ, α, λ, β) ∈ Π = Ca♯ × Da∗, ∥ · ∥Y and ∥ · ∥Z denote the norms in Y = Rℓ and
Z = Rm, respectively.

Lemma 4.1. Let Π = Ca♯ ×Da∗. Then, w ∈ WR(Π), i.e.,∩
(µ,α,λ)∈Π

lev>0w(·;µ, α, λ, β) = H.

Proof. For every (µ, α, λ, β) ∈ Π = Ca♯ ×Da∗, we have

w(u, v;µ, α, λ, β) = ⟨µ, u⟩ − α∥u∥Y + ⟨λ, v⟩ − β∥v∥Z > 0, ∀(u, v) ∈ H,

which leads to ∩
(µ,α,λ,β)∈Π

lev>0w(·;µ, α, λ, β) ⊇ H.

Next, we prove the following inclusion∩
(µ,α,λ,β)∈Π

lev>0w(·;µ, α, λ, β) ⊆ H. (4.2)

By the contrary, assume that (4.2) is false. Then there exists (u0, v0) ̸∈ H such that

w(u0, v0;µ, α, λ, β) > 0, ∀(µ, α, λ, β) ∈ Π. (4.3)

Since (u0, v0) ̸∈ H, we consider the following three cases:
Case 1. If u0 = 0, v0 ∈ Z, then we set (λ0, β0) = (0, 0). For any (µ0, α0) ∈ Ca♯, we get

w(u0, v0;µ0, α0, λ0, β0) = ⟨µ0, u0⟩ − α0∥u0∥Y + ⟨λ0, v0⟩ − β0∥v0∥Z = 0,

which contradicts (4.3).
Case 2. If u0 ̸∈ C, v0 ∈ Z, then there exists µ0 ∈ C♯ such that ⟨µ0, u0⟩ ≤ 0. For

(µ0, α0, λ0, β0) = (µ0, 0, 0, 0) ∈ Ca♯ ×D∗, we have

w(u0, v0;µ0, α0, λ0) = ⟨µ0, u0⟩ − α0∥u0∥Y + ⟨λ0, v0⟩ − β0∥v0∥Z ≤ 0,

which contradicts (4.3).
Case 3. If u0 ∈ C\{0}, v0 ̸∈ D, then there exists λ0 ∈ D∗ such that ⟨λ0, v0⟩ < 0. Let

(µ0, α0) ∈ Ca♯, β0 = 0 and λn = nλ0 ∈ D∗. Then for sufficiently large n ∈ N, we can obtain

w(u0, v0;µ0, α0, λn, β0) = ⟨µ0, u0⟩ − α0∥u0∥Y + n⟨λ0, v0⟩ − β0∥v0∥Z < 0,

which contradicts (4.3).
The proof is complete.
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Take p ∈ Y . For separation function w in (4.1), we get a generalized Lagrangian function
L : X ×Π → R as follows:

L(x, µ, α, λ, β) : = w(p, 0;µ, α, λ, β)− w(p− f(x), g(x);µ, α, λ, β)

= ⟨µ, f(x)⟩+ α∥p− f(x)∥Y − α∥p∥Y − ⟨λ, g(x)⟩+ β∥g(x)∥Z ,
∀(x, µ, α, λ, β) ∈ X ×Π.

It is worth mentioning that the choice of p is arbitrary in L.

Definition 4.2. (P) is said to satisfy the generalized saddle-point criterion of L at x̄ ∈ X
for some (µ̄, ᾱ) ∈ Ca♯, if there exists (λ̄, β̄) ∈ Da∗ such that (x̄, λ̄, β̄) is a saddle-point of the
generalized Lagrangian function L(x, µ̄, ᾱ, λ, β), that is,

L(x̄, µ̄, ᾱ, λ, β) ≤ L(x̄, µ̄, ᾱ, λ̄, β̄) ≤ L(x, µ̄, ᾱ, λ̄, β̄), ∀(x, λ, β) ∈ X ×Da∗.

Proposition 4.3. Let p = f(x̄). Then, the following statements are equivalent.

(i) For x̄ ∈ X and (µ̄, ᾱ) ∈ Ca♯, there exists (λ̄, β̄) ∈ Da∗ such that (x̄, λ̄, β̄) is a saddle-
point of the generalized Lagrangian function L(x, µ̄, ᾱ, λ, β),

(ii) x̄ ∈ S and w(u, v; µ̄, ᾱ, λ̄, β̄) ≤ 0, ∀(u, v) ∈ Kx̄.

Proof. The proof is easy, we omit it.

In the following, we show the relationships between the generalized saddle-point criterion
of L and image regularity condition (3.2).

Theorem 4.4. For x̄ ∈ X and (µ̄, ᾱ) ∈ Ca♯, there exists (λ̄, β̄) ∈ Da∗ such that (x̄, λ̄, β̄) is
a saddle-point of the generalized Lagrangian function L(x, µ̄, ᾱ, λ, β), then image regularity
condition (3.2) holds and x̄ ∈ S. Moreover, if (λ̄, β̄) ∈ Da♯, then

cl(cone(Ex̄)) ∩ clH = {(0, 0)}. (4.4)

Proof. Suppose that (x̄, λ̄, β̄) is a saddle-point of L, , that is

⟨µ̄, f(x̄)⟩+ ᾱ∥p− f(x̄)∥Y − ᾱ∥p∥Y − ⟨λ, g(x̄)⟩+ β∥g(x̄)∥Z
≤ ⟨µ̄, f(x̄)⟩+ ᾱ∥p− f(x̄)∥Y − ᾱ∥p∥Y − ⟨λ̄, g(x̄)⟩+ β̄∥g(x̄)∥Z (4.5)

≤ ⟨µ̄, f(x)⟩+ ᾱ∥p− f(x)∥Y − ᾱ∥p∥Y − ⟨λ̄, g(x)⟩+ β̄∥g(x)∥Z , ∀(x, λ, β) ∈ X ×Da∗.

It follows from the first inequality of (4.5) that g(x̄) ∈ D and ⟨λ̄, g(x̄)⟩ − β̄∥g(x̄)∥Z = 0.
Together with the second inequality of (4.5), we get

0 ≤ ⟨µ̄, f(x)− f(x̄)⟩+ ᾱ∥p− f(x)∥Y − ᾱ∥p− f(x̄)∥Y − ⟨λ̄, g(x)⟩+ β̄∥g(x)∥Z
≤ ⟨µ̄, f(x)− f(x̄)⟩+ ᾱ∥f(x)− f(x̄)∥Y − ⟨λ̄, g(x)⟩+ β̄∥g(x)∥Z , ∀x ∈ X.

Since ⟨µ̄, ·⟩ + ᾱ∥ · ∥Y is C-monotonically increasing and ⟨λ̄, ·⟩ + β̄∥ · ∥Z is D-monotonically
increasing ( [13], Theorem 3.5), we have

⟨µ̄, f(x)− f(x̄) + c⟩+ ᾱ∥f(x)− f(x̄) + c∥Y + ⟨λ̄,−g(x) + d⟩+ β̄∥ − g(x) + d∥Z ≥ 0

∀x ∈ X, (c, d) ∈ C ×D,
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which implies that

w(u, v; µ̄, ᾱ, λ̄, β̄) = ⟨µ̄, u⟩ − ᾱ∥u∥Y + ⟨λ̄, v⟩ − β̄∥v∥Z ≤ 0, ∀(u, v) ∈ Ex̄.

On the other hand, w(·, ·; µ̄, ᾱ, λ̄, β̄) is positive homogeneous, we deduce that

w(u, v; µ̄, ᾱ, λ̄, β̄) = ⟨µ̄, u⟩ − ᾱ∥u∥Y + ⟨λ̄, v⟩ − β̄∥v∥Z ≤ 0, ∀(u, v) ∈ cl(cone(Ex̄)). (4.6)

Moreover, (µ̄, ᾱ, λ̄, β̄) ∈ Π = Ca♯ ×Da∗, we have

w(u, v; µ̄, ᾱ, λ̄, β̄) = ⟨µ, u⟩ − α∥u∥Y + ⟨λ, v⟩ − β∥v∥Z > 0, ∀(u, v) ∈ H. (4.7)

It follows from (4.6) and (4.7) that cl(cone(Ex̄))∩H = ∅, then the image regularity condition
(3.2) holds.

Next, we prove the second conclusion. Since (µ̄, ᾱ) ∈ Ca♯ and (λ̄, β̄) ∈ Da♯, we get

w(u, v; µ̄, ᾱ, λ̄, β̄) = ⟨µ, u⟩ − α∥u∥Y + ⟨λ, v⟩ − β∥v∥Z > 0, ∀(u, v) ∈ clH\{(0, 0)},

together with (4.6), we obtain (4.4). The proof is complete.

Combining with Theorem 3.2, we immediately obtain the following corollary.

Corollary 4.5. If there exists (µ̄, ᾱ) ∈ Ca♯, such that (P) satisfies the generalized saddle-
point criterion of L at x̄ for (µ̄, ᾱ), then x̄ is the Benson properly efficient solution of (P).

Next, we give an example to explain Corollary 4.5 and Theorem 4.4.

Example 4.1. Let ℓ = 2,m = n = 1, X = R, C = R2
+, and D = R+. Let ∥ · ∥ = ∥ · ∥1 be

the norm in Rℓ and Rm. The mappings f and g are defined as follows,

f(x) :=

{
(x,− 1

2x) if x ≤ 0,
(x,−2x) otherwise,

g(x) := x+ 2.

Obviously, f is nonconvex and the classic Lagrange saddle-point doesn’t exist. Note that
Ca♯ = {(µ, α) ∈ R3

+ : µ1 > α, µ2 > α} and Da∗ = {(λ, β) ∈ R2
+ : λ ≥ β}. Take x̄ = 0,

p = 0, (µ̄, ᾱ) = (2, 2, 1) and (λ̄, β̄) = (2, 2). Then, we can verify that (x̄, λ̄, β̄) = (0, 2, 2) is a
generalized saddle-point of L(x, µ̄, ᾱ, λ, β). Moreover, S = {x ∈ R : x ≥ −2} and

clcone(f(x̄)− f(S)− C) = {(u,−2u) : u ≤ 0} ∪ {(u,−1

2
u) : u > 0} − R2

+.

Then, clcone(f(x̄)−f(S)−C)∩C = {(0, 0)}, which means that x̄ = 0 is the Benson properly
efficient solution of (P). On the other hand,

Ex̄ = {(−u,
1

2
u, u+ 2) : u ≤ 0} ∪ {(−u,−2u, u+ 2) : u ≥ 0} − R3

+,

Hu = (R2
+\{0})× {0}.

Then, cl(cone(Ex̄)) ∩Hu = ∅.

In general, the image regularity condition (3.2) is not sufficient to guarantee the exis-
tence of a generalized saddle point for L. To this aim, we need the condition (4.4). Now,
using the nonconvex separation theorem for conic separation, we establish the existence of
a generalized saddle point for L.
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Theorem 4.6. Let C = Rℓ
+ and D = Rm

+ . Suppose that the norms in Y = Rℓ, Z = Rm,
and Y × Z = Rℓ+m are all l1 norm. Let x̄ ∈ S. If (4.4) holds, then there exist two
pairs (µ̄, ᾱ) ∈ Ca♯ and (λ̄, ᾱ) ∈ Da♯ such that (x̄, λ̄, ᾱ) is a saddle-point of the generalized
Lagrangian function L(x, µ̄, ᾱ, λ, β).

Proof. It follows from Theorem 5.2 in [13] and (4.4) that there exists a closed convex cone
Q with clH\{(0, 0)} ⊂ intQ such that

cl(cone(Ex̄)) ∩Q = {(0, 0)}. (4.8)

Let ϵ > 0 be sufficiently small such that (clH)ϵ ⊂ Q. Then, by Theorem 2.4, there exists a
pair (µ̄, λ̄, ᾱ) ∈ (clH)a♯ such that

−clH\{(0, 0)} ⊂ int{(u, v) ∈ Rℓ × Rm : ⟨(µ̄, λ̄), (u, v)⟩+ ᾱ∥(u, v)∥1 ≤ 0} ⊂ −(clH)ϵ ⊂ −Q.

It follows from these inclusions and (4.8) that

⟨(µ̄, λ̄), (u, v)⟩+ ᾱ∥(u, v)∥1 ≥ 0 for all (u, v) ∈ −cl(cone(Ex̄)),

which implies

⟨µ̄, f(x)− f(x̄)⟩+ ᾱ∥f(x)− f(x̄)∥1 − ⟨λ̄, g(x)⟩+ ᾱ∥g(x)∥1 ≥ 0, ∀x ∈ X,

then, we have

⟨µ̄, f(x)⟩+ ᾱ∥f(x)− f(x̄)∥1 − ⟨λ̄, g(x)⟩+ ᾱ∥g(x)∥1 ≥ ⟨µ̄, f(x̄)⟩, ∀x ∈ X. (4.9)

On the other hand, it is easy to verify that (clH)a♯ = {(µ, λ, α) ∈ (clH)♯ × R+ : (µ, α) ∈
Ca♯, (λ, α) ∈ Da♯}. Therefore, (µ̄, ᾱ) ∈ Ca♯ and (λ̄, ᾱ) ∈ Da♯ ⊂ Da∗.

Letting x = x̄ in (4.9), we get −⟨λ̄, g(x̄)⟩ + ᾱ∥g(x̄)∥1 ≥ 0. Since g(x̄) ∈ D and (λ̄, ᾱ) ∈
Da∗, one has −⟨λ̄, g(x̄)⟩+ ᾱ∥g(x̄)∥1 ≤ 0. Thus,

−⟨λ̄, g(x̄)⟩+ ᾱ∥g(x̄)∥1 = 0. (4.10)

Moreover, again by g(x̄) ∈ D, we have

⟨λ, g(x̄)⟩ − β∥g(x̄)∥1 ≥ 0, ∀(λ, β) ∈ Da∗. (4.11)

It follows from (4.9), (4.10) and (4.11) that (x̄, λ̄, ᾱ) is a saddle-point of the generalized
Lagrangian function L(x, µ̄, ᾱ, λ, β).

The proof is complete.

In [7], Gasimov also obtained the Benson proper efficiency by means of the saddle-point
criterion for a nonlinear Lagrangian function. He only considered a vector optimization
problem with equality constraints. However, our problem is more general. Taking D = 0
and p = 0 in L, then L reduces to the generalized Lagrangian function in [7]. Thus, the
characterization of the Benson proper efficiency in terms of Lagrangian function in [7] is a
special case of our results. Moreover, we give a sufficient condition for the existence of the
generalized saddle-point criterion.
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5 Conclusions

In this paper, we discuss the Benson proper efficiency for a nonconvex vector optimization
problem with cone constraints by ISA method. We have studied the relationships among
the Benson properly efficient solutions, image regularity condition and regular separation.
Furthermore, we introduce a nonlinear Lagrangian function, and investigate the generalized
saddle-point and image regularity condition for the nonconvex vector optimization problem.
Finally, we employ a nonconvex separation theorem to obtain the existence of the generalized
saddle-point criterion.
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