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suitable assumptions for the continuity of the minimal solution mappings to a parametric
set optimization problem via the upper set less order relation. Han and Huang [11] obtained
some characterizations of the generalized l-B-well-posedness and u-B-well-posedness for set
optimization. They also investigated the upper and lower semi-continuity of the minimal
solution mapping for set optimization problems with the upper and lower set less order
relation. Very recently, Khoshkhabar-amiranloo [23] gave some sufficient conditions for
ensuring the upper semi-continuity, lower semi-continuity and compactness of the minimal
solutions to set optimization problems with the lower set less order relation. Han and
Huang [13] established the upper and lower semi-continuity of strongly approximate solutions
for parametric set optimization problems by using the nonlinear scalarizing function. Chen
et al. [6] discussed the upper and lower semi-continuity of the strict l-lower level mappings
and established the continuity of the strict minimal solution mappings to parametric set
optimization problems under some mild conditions. However, to our best knowledge, there
are few papers dealing with the upper and lower semi-continuity of minimal solutions for
parametric set optimization problems with the general pre-order relations. The main purpose
of this paper is to establish the continuity of the minimal solutions mappings of parametric
set optimization problems with the general pre-order relations. Moreover, some applications
to parametric set optimization problems with the order induced by a convex cone are also
given. The results presented in this paper improve and generalize some corresponding ones
in [11,23,36,37].

The rest of this paper is organized as follows: Section 2 gives some necessary definitions
and notations. In Section 3, we give some sufficient conditions for ensuring the continuity
and compactness of the minimal solution mappings of parametric set optimization problems
with the general pre-order relations. As applications, we obtain the stability of minimal
solution mappings for parametric set optimization problems with the order induced by a
convex cone. This paper ends with conclusions and future work in Section 4.

2 Preliminaries

Throughout this paper, assume that X, Y and Z are normed vector spaces. Let P(Y )
denote the family of all nonempty subsets of Y with a binary relation ≼. Moreover, define
a binary relation ≺ on P(Y ) as follows: for any A,B ∈ P(Y ),

A ≺ B ⇔ A ≼ B and A ̸= B.

Definition 2.1. Let A,B,C ∈ P(Y ) be arbitrarily given sets. We say that the relation ≼
is a pre-order if it is

(i) reflexive, that is, A ≼ A;

(ii) transitive, that is, A ≼ B and B ≼ C imply A ≼ C.

We say the pre-order ≼ is a partial order if A,B ∈ P(Y ), A ≼ B and B ≼ A imply that
A = B.

Definition 2.2 ( [20]). Let K ⊂ Y be a convex cone.

(i) The lower set less order relation ≤l on P(Y ) is defined as follows: for any A,B ∈ P(Y ),

A ≤l B ⇔ B ⊂ A+K.
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(ii) The upper set less order relation ≤u on P(Y ) is defined as follows: for any A,B ∈
P(Y ),

A ≤u B ⇔ A ⊂ B −K.

(iii) The set less order relation ≤s on P(Y ) is defined as follows: for any A,B ∈ P(Y ),

A ≤s B ⇔ A ≤l B and A ≤u B.

(iv) The certainly less order relation ≤c on P(Y ) is defined as follows: for any A,B ∈
P(Y ),

A ≤c B ⇔ A = B or A ̸= B,B −A ⊂ K.

It is easy to check that ≤l, ≤u, ≤s and ≤c are pre-order relations, respectively. From
Definition 2.2 , we know that A ≤c B ⇒ A ≤s B ⇒ A ≤l B and A ≤u B.

In what follows, we assume that P(Y ) is a pre-order set with the pre-order relation ≼.

Definition 2.3. Let S be a nonempty subset of P(Y ). A set A ∈ S is said to be

(i) [20] a ≼-minimal set of S if, for B ∈ S, B ≼ A implies A ≼ B. Min(S,≼) denotes
the family of all ≼-minimal sets of S.

(ii) a ≺-minimal set of S if, there is no B ∈ S such that B ≺ A. Min(S,≺) denotes the
family of all ≺-minimal sets of S.

Definition 2.4. Let A,B,C ∈ P(Y ). We say that P(Y ) satisfies condition P if A ≼ B ≺ C
implies that A ≺ C.

Remark 2.5. Clearly, if the pre-order ≼ is a partial order, then P(Y ) satisfies condition P .

Let D be a nonempty subset of X and F : D → P(Y ) a set-valued mapping. Let us
consider the set optimization problem with respect to ≼ as follows:

(SOP) Min≼F (x) subject to x ∈ D.

Definition 2.6. A point x0 ∈ D is said to be

(i) [20] a ≼-minimal solution of (SOP) if, for any x ∈ D, F (x) ≼ F (x0) implies that
F (x0) ≼ F (x). Min(F (D),≼) denotes the family of all ≼-minimal solutions of (SOP).

(ii) a ≺-minimal solution of (SOP) if there is no x ∈ D such that F (x) ≺ F (x0).
Min(F (D),≺) denotes the family of all ≺-minimal solutions of (SOP).

In particular, if K is a convex cone in Y and the pre-order ≼ is one of ≤l,≤u,≤s,≤c,
then Min(F (D),≤l) (resp., Min(F (D),≤u), Min(F (D),≤s), Min(F (D),≤c)) denotes the
family of all ≤l(resp., ≤u, ≤s, ≤c)-minimal solutions of (SOP).

Remark 2.7. Obviously, Min(F (D),≺) ⊂ Min(F (D),≼).

Proposition 2.8. If P(Y ) satisfies condition P , then Min(F (D),≼) = Min(F (D),≺).
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Proof. We only need to prove that Min(F (D),≼) ⊂ Min(F (D),≺). If Min(F (D),≼) = ∅,
then it is easy to see that the conclusion is true. Let x0 ∈ Min(F (D),≼). Suppose that
x0 /∈ Min(F (D),≺). Then there exists x′ ∈ D such that F (x′) ≺ F (x0). This shows that
F (x0) ≼ F (x′) and so F (x0) ≼ F (x′) ≺ F (x0). Since P(Y ) satisfies condition P , we have
F (x0) ≺ F (x0), which is a contraction. Therefore, x0 ∈ Min(F (D),≺). This completes the
proof.

Definition 2.9 ([1, 7, 11, 22, 23]). Let D ⊂ X be a nonempty subset and K ⊂ Y a convex
cone. A set-valued mapping Φ : D → P(Y ) is said to be

(i) upper semi-continuous (for short, u.s.c.) at x0 ∈ D if, for any neighborhood V satis-
fying Φ(x0) ⊂ V , there exists a neighborhood U(x0) of x0 such that

Φ(x) ⊂ V, ∀x ∈ U(x0) ∩D;

(ii) lower semi-continuous (for short, l.s.c.) at x0 ∈ D if, for any neighborhood V satisfying
Φ(x0) ∩ V ̸= ∅, there exists a neighborhood U(x0) of x0 such that

Φ(x) ∩ V ̸= ∅, ∀x ∈ U(x0) ∩D;

(iii) K-upper semi-continuous (for short,K-u.s.c.) at x0 ∈ D if, for any neighborhood V
satisfying Φ(x0) ⊂ V , there exists a neighborhood U(x0) of x0 such that

Φ(x) ⊂ V +K, ∀x ∈ U(x0) ∩D;

(iv) K-lower semi-continuous (for short, K-l.s.c.) at x0 ∈ D if, for any neighborhood V
satisfying Φ(x0) ∩ V ̸= ∅, there exists a neighborhood U(x0) of x0 such that

Φ(x) ∩ (V +K) ̸= ∅, ∀x ∈ U(x0) ∩D.

We say that Φ is u.s.c. (resp., l.s.c., K-u.s.c., K-l.s.c.) on D if Φ is u.s.c. (resp., l.s.c.,
K-u.s.c., K-l.s.c.) at each x0 ∈ D. We say that Φ is continuous on D if Φ is both u.s.c. and
l.s.c. on D.

Remark 2.10. (i) Φ is l.s.c. at x0 ∈ D if and only if for any sequence {xn} ⊂ D with
xn → x0, for any y0 ∈ Φ(x0), there exists yn ∈ Φ(xn) such that yn → y0.

(ii) If Φ has compact-valued at x0 ∈ D, then Φ is u.s.c. at x0 ∈ D if and only if, for any
sequence {xn} ⊂ D with xn → x0 and any yn ∈ Φ(xn), there exist a point y0 ∈ Φ(x0)
and subsequence {ynk

} of {yn} such that ynk
→ y0.

Definition 2.11 ([7, 11, 22, 23]). Let D ⊂ X be a nonempty subset and K ⊂ Y a convex
cone. A set-valued mapping Φ : D → P(Y ) is said to be

(i) Hausdorff upper semi-continuous (for short, H-u.s.c.) at x0 ∈ D if, for any neighbor-
hood V of 0 in Y , there exists a neighborhood U(x0) of x0 such that

Φ(x) ⊂ Φ(x0) + V, ∀x ∈ U(x0) ∩D;

(ii) Hausdorff lower semi-continuous (for short, H-l.s.c.) at x0 ∈ D if, for any neighbor-
hood V of 0 in Y , there exists a neighborhood U(x0) of x0 such that

Φ(x0) ⊂ Φ(x) + V, ∀x ∈ U(x0) ∩D.
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(iii) Hausdorff K-upper semi-continuous (for short, H-K-u.s.c.) at x0 ∈ D if, for any
neighborhood V of 0 in Y , there exists a neighborhood U(x0) of x0 such that

Φ(x) ⊂ Φ(x0) + V +K, ∀x ∈ U(x0) ∩D;

(iv) Hausdorff K-lower semi-continuous (for short, H-K-l.s.c.) at x0 ∈ D if, for any
neighborhood V of 0 in Y , there exists a neighborhood U(x0) of x0 such that

Φ(x0) ⊂ Φ(x) + V +K, ∀x ∈ U(x0) ∩D;

(v) H-u.s.c. (resp., H-l.s.c., H-K-u.s.c. and H-K-l.s.c.) on D if Φ is H-u.s.c. (resp.,
H-l.s.c., H-K-u.s.c. and H-K-l.s.c.) at each x0 ∈ D;

(vi) H-K-continuous on D if Φ is both H-K-u.s.c. and H-K-l.s.c. on D.

Note that

u.s.c. ⇒ K-u.s.c. ⇒ H-K-u.s.c; u.s.c. ⇒ H-u.s.c. ⇒ H-K-u.s.c;

and

H-l.s.c. ⇒ H-K-l.s.c. ⇒ K-l.s.c.; H-l.s.c. ⇒ l.s.c.⇒ K-l.s.c.

As pointed out in [22], Φ is H-K-l.s.c. (resp., H-l.s.c.) at x0 if it is K-l.s.c. (resp., l.s.c.)
and compact-valued at x0. Moreover, Φ is u.s.c. (resp., K-u.s.c.) at x0 if it is H-u.s.c.
(resp., H-K-u.s.c.) and compact-valued at x0.

A set-valued mapping Φ is K-closed-valued on D if Φ(x) +K is closed for each x ∈ D.
It follows from [23] that, if Φ is H-K-u.s.c. and K-closed-valued at x0, then Φ is K-u.s.c.
at x0.

Definition 2.12. Let D ⊂ X be a nonempty subset and F : D → P(Y ) a set-valued
mapping. We say that

(i) F has the ≼-continuous property at x0 ∈ D with respect to y0 ∈ D if, for any sequence
{xn}, {yn} ⊂ D with xn → x0, yn → y0 such that F (yn) ≼ F (xn) for n sufficiently
large, one has F (y0) ≼ F (x0). F has the ≼-continuous property on D if F has the
≼-continuous property at each x0 ∈ D with respect to each y0 ∈ D.

(ii) F has the converse ≼-continuous property at x0 ∈ D with respect to y0 ∈ D if, for
F (y0) ≼ F (x0) and any sequence {xn}, {yn} ⊂ D with xn → x0, yn → y0, one has
F (yn) ≼ F (xn) for n sufficiently large. F has the converse ≼-continuous property on
D if F has the converse ≼-continuous property at each x0 ∈ D with respect to each
y0 ∈ D.

The following example illustrates Definition 2.12.

Example 2.13. Let X = Y = R, D = [1, 2] and K = {x ∈ R : x ≥ 0} with ≼ being the
lower set less order relation ≤l. Define a set-valued mapping F : D → P(Y ) as follows:

F (x) = [−1, x], ∀x ∈ D.

Then, it is easy to check that F has the ≤l-continuous property and converse ≤l-continuous
property on D.
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Proposition 2.14. (i) If K ⊂ Y is a convex cone with intK ̸= ∅ (intK denotes in-
terior of K), ≼ is the lower set less order relation ≤l, F is H-K-continuous and K-
closed-valued on D, then F has the ≤l-continuous property and converse ≤l-continuous
property on D.

(ii) If K ⊂ Y is a convex cone with intK ̸= ∅, ≼ is the upper set less order relation ≤u,
F is H-(−K)-continuous and (−K)-closed-valued on D, then F has the ≤u-continuous
property and converse ≤u-continuous property on D.

Proof. Let e ∈ intK and ε > 0. Then −εe+ intK is an open neighborhood of 0 in Y .
(i) Take two sequences {xn} and {yn} in D with xn → x0 and yn → y0 such that

F (yn) ≤l F (xn) for n sufficiently large. Noting that F is H-K-u.s.c. on D, one has

F (yn) ⊂ F (y0)− εe+ intK +K

for n sufficiently large. Since F is H-K-l.s.c. on D, we have

F (x0) ⊂ F (xn)− εe+ intK +K

for n sufficiently large. Letting ε → 0, by the K-closedness of F , we know that F (y0) ≤l

F (yn) and F (xn) ≤l F (x0) for n sufficiently large. Thus, F (y0) ≤l F (x0) and so F has the
≤l-continuous property on D.

Moreover, for x′
0, y

′
0 ∈ D with F (y′0) ≤l F (x′

0), take two sequences {x′
n}, {y′n} ⊂ D such

that x′
n → x′

0 and y′n → y′0. Since F is H-K-u.s.c. on D, one has

F (x′
n) ⊂ F (x′

0)− εe+ intK +K

for n sufficiently large. Since F is H-K-l.s.c. on D, we have

F (y′0) ⊂ F (y′n)− εe+ intK +K

for n sufficiently large. Letting ε → 0, by the K-closedness of F , we know that F (x′
0) ≤l

F (x′
n) and F (y′n) ≤l F (y′0). Thus, F (y′n) ≤l F (x′

n) for n sufficiently large. This shows that
F has the converse ≤l-continuous property on D.

(ii) Similar to the proof of (i), we can prove that (ii) holds.

Remark 2.15. If K is a closed and convex cone with intK ̸= ∅ and F is a compact-valued
continuous mapping on D, then Proposition 2.14 is also true. Moreover, if ≼ is the set
less order relation ≤s, then F has the ≤s-continuous property and converse ≤s-continuous
property on D.

Proposition 2.14 and Remark 2.15 show that the set-valued mappings satisfying Defini-
tion 2.12 can be found easily.

Definition 2.16 ([20]). Let D ⊂ X be a nonempty subset and F : D → P(Y ) a set-valued
mapping. We say that F is ≼-semi-continuous at x0 ∈ D if, for F (x0) ∈ V , there exists a
neighborhood U(x0) of x0 such that

F (x) ∈ V, ∀x ∈ U(x0) ∩D,

where V = {T ∈ P(Y ) : T ̸≼ Q} for some Q ∈ P(Y ).

We say that F is ≼-semi-continuous on D if it is ≼-semi-continuous at each x0 ∈ D.
Let L(F (x)) = {y ∈ D : F (y) ≼ F (x)} for x ∈ D. Then, for any x ∈ D, L(F (x)) is

closed if and only if F is ≼-semi-continuous on D (see [20]).
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Proposition 2.17. Let D be a nonempty subset of X and F : D → P(Y ) a set-valued
mapping. If F has the ≼-continuous property on D, then L(F (x)) = {y ∈ D : F (y) ≼ F (x)}
is closed for x ∈ D.

Proof. For any given x ∈ D, take a sequence {xn} ⊂ L(F (x)) with xn → x0. Then
F (xn) ≼ F (x). Since F has the ≼-continuity property, it follows that F (x0) ≼ F (x). Thus,
x0 ∈ L(F (x)).

Lemma 2.18 ([20]). Let D be a nonempty compact subset of X. If F : D → P(Y ) is a
≼-semi-continuous set-valued mapping, then (SOP) has a ≼-minimal solution.

From Proposition 2.17 and Lemma 2.18, we can get the following lemma.

Lemma 2.19. Let D ⊂ X be a nonempty and compact subset and F : D → P(Y ) a set-
valued mapping. If F has the ≼-continuous property on D, then (SOP) has a ≼-minimal
solution.

Lemma 2.20 ([2]). Let D ⊂ X be a nonempty compact subset, K ⊂ Y be a closed, pointed
convex cone and ≼ be the lower set less order relation ≤l. If F : D → P(Y ) is K-u.s.c.
set-valued mapping on D, then (SOP) has a ≤l-minimal solution.

From Corollary 24 of [2], we get the following lemma.

Lemma 2.21. Let D ⊂ X be a nonempty compact subset, K ⊂ Y be a closed, pointed
convex cone and ≼ be the upper set less order relation ≤u. If F : D → P(Y ) is K-l.s.c.
set-valued mapping on D with compact values, then (SOP) has a ≤u-minimal solution.

From Remark 2.15, Proposition 2.17 and Lemma 2.18, we can get the following lemma.

Lemma 2.22. Let D ⊂ X be a nonempty compact subset, K ⊂ Y be a closed, pointed and
convex cone with intK ̸= ∅ and ≼ be the set less order relation ≤s. If F : D → P(Y ) is
continuous set-valued mapping on D with compact values, then (SOP) has a ≤s-minimal
solution.

3 Main Results

Let D ⊂ X be a nonempty subset and Λ ⊂ Z a nonempty subset. Assume that Q :
Λ → 2D and F : D × Λ → P(Y ) are two set-valued mappings. We consider the following
parametric set optimization problem (PSOP) with respect to ≼ :

Min≼F (x, λ) subject to x ∈ Q(λ).

Assume that Min(F,Q(·),≼), Min(F,Q(·),≺) : Λ → 2X are solution set mappings of
(PSOP), i.e.,

Min(F,Q(λ),≼) = {x0 ∈ Q(λ) : x ∈ Q(λ), F (x, λ) ≼ F (x0, λ) implies F (x0, λ) ≼ F (x, λ)};

Min(F,Q(λ),≺) = {x0 ∈ Q(λ) : ̸ ∃x ∈ Q(λ) such that F (x, λ) ≺ F (x0, λ)}.

Some special cases of (PSOP) are as follows.
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(I) If K is a closed, pointed and convex cone in Y and ≼ is the lower set less order relation
≤l, then the problem (PSOP) reduces to

Min≤lF (x, λ) subject to x ∈ Q(λ), (3.1)

which was considered by Han and Huang [11] and Khoshkhabar-amiranloo [23].

(II) If K is a closed, pointed and convex cone in Y and ≼ is the upper set less order
relation ≤u, then the problem (PSOP) reduces to

Min≤uF (x, λ) subject to x ∈ Q(λ), (3.2)

which was studied by Xu and Li [36,37].

(III) If K is a closed, pointed and convex cone in Y and ≼ is the set less order relation
≤s, then the problem (PSOP) reduces to

Min≤sF (x, λ) subject to x ∈ Q(λ). (3.3)

(IV) If K is a closed, pointed and convex cone in Y and ≼ is the certainly less order
relation ≤c, then the problem (PSOP) reduces to

Min≤cF (x, λ) subject to x ∈ Q(λ). (3.4)

3.1 The continuity of the minimal solution mapping of a parametric set opti-
mization problem with the general pre-order realation

In this subsection, we establish the continuity and compactness of the minimal solution
mapping for (PSOP) with the general pre-order relation under some suitable conditions.

Theorem 3.1. Let λ0 ∈ Λ. Suppose that the following conditions hold

(i) Q(·) is continuous at λ0 and Q(λ0) is compact;

(ii) F (·, ·) has the ≼-continuous property and converse ≼-continuous property on Q(λ0)×
{λ0}.

Then, Min(F,Q(·),≼) is continuous at λ0 and Min(F,Q(λ0),≼) is compact.

Proof. By Lemma 2.19, we know that Min(F,Q(λ0),≼) ̸= ∅. Now we show that
Min(F,Q(·),≼) is u.s.c. at λ0. Suppose on the contrary that Min(F,Q(·),≼) is not u.s.c.
at λ0. Then, there exist a neighborhood V0 of Min(F,Q(λ0),≼) and a sequence {λn}
with λn → λ0 such that Min(F,Q(λn),≼) ̸⊂ V0 for n = 1, 2, · · · . Thus, there exists
xn ∈ Min(F,Q(λn),≼) such that

xn ̸∈ V0 for n = 1, 2, · · · . (3.5)

Since Q(·) is u.s.c. at λ0, Q(λ0) is compact and xn ∈ Q(λn), by Remark 2.10 (ii), there exist
x0 ∈ Q(λ0) and a subsequence {xnk

} of {xn} such that xnk
→ x0. Without loss of generality,

we can assume that xn → x0. We claim that x0 ∈ Min(F,Q(λ0),≼). In fact, suppose that
x0 ̸∈ Min(F,Q(λ0),≼). Then there exists y0 ∈ Q(λ0) such that F (y0, λ0) ≼ F (x0, λ0)
and F (x0, λ0) ̸≼ F (y0, λ0). By the lower semi-continuity of Q, there exists yn ∈ Q(λn)
such that yn → y0. Since F has the converse ≼-continuous property on Q(λ0) × {λ0} and
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F (y0, λ0) ≼ F (x0, λ0), we have F (yn, λn) ≼ F (xn, λn) for n sufficiently large. It follows from
xn ∈ Min(F,Q(λn),≼) that F (xn, λn) ≼ F (yn, λn). Since F has the ≼-continuity property,
we obtain F (x0, λ0) ≼ F (y0, λ0), which is a contradiction. Thus, x0 ∈ Min(F,Q(λ0),≼) and
so xn ∈ V0 for n sufficiently large, which contradicts (3.5). This shows that Min(F,Q(·),≼)
is u.s.c. at λ0.

Now, we claim that Min(F,Q(·),≼) is l.s.c. at λ0. Suppose on the contrary that
Min(F,Q(·),≼) is not l.s.c. at λ0. Then, there exist y′ ∈ Min(F,Q(λ0),≼), a neighbor-
hood W0 of 0 in X and a sequence {λ′

n} with λ′
n → λ0 such that

(y′ +W0) ∩Min(F,Q(λ′
n),≼) = ∅ for n = 1, 2, · · · . (3.6)

It follows from y′ ∈ Min(F,Q(λ0),≼) that y′ ∈ Q(λ0). Since Q(·) is l.s.c. at λ0, by Remark
2.10 (i), there exists y′n ∈ Q(λ′

n) such that y′n → y′. Let us show that y′n ∈ Min(F,Q(λ′
n),≼)

for n sufficiently large. Indeed, if not, there exist a subsequence {y′nk
} of {y′n} and a

subsequence {λ′
nk
} of {λ′

n} such that y′nk
̸∈ Min(F,Q(λ′

nk
),≼) for k = 1, 2, · · · . Without

loss of generality, we can suppose that y′n ̸∈ Min(F,Q(λ′
n),≼) for n = 1, 2, · · · . Then,

there exists x′
n ∈ Q(λ′

n) such that F (x′
n, λ

′
n) ≼ F (y′n, λ

′
n) and F (y′n, λ

′
n) ̸≼ F (x′

n, λ
′
n).

Noting that Q is u.s.c. at λ0 and Q(λ0) is compact, by Remark 2.10 (ii), there exist a
point x′ ∈ Q(λ0) and a subsequence {x′

nk
} of {x′

n} such that x′
nk

→ x′. Without loss of
generality, we can suppose that x′

n → x′. It follows from F (x′
n, λ

′
n) ≼ F (y′n, λ

′
n) and F (·, ·)

has the ≼-continuous property on Q(λ0) × {λ0} that F (x′, λ0) ≼ F (y′, λ0). Since y′ ∈
Min(F,Q(λ0),≼), we obtain F (y′, λ0) ≼ F (x′, λ0). Since F has the converse ≼-continuity
property, it follows that F (y′n, λ

′
n) ≼ F (x′

n, λ
′
n) for n sufficiently large, which contradicts

the fact that F (y′n, λ
′
n) ̸≼ F (x′

n, λ
′
n). Thus, y′n ∈ Min(F,Q(λ′

n),≼) for n sufficiently large
and so y′n ∈ Min(F,Q(λn),≼) ∩ (y′ + W0) for n sufficiently large, which contradicts (3.6).
This means that Min(F,Q(·),≼) is l.s.c. at λ0. In summary, we show that Min(F,Q(·),≼)
is continuous at λ0.

Next, we prove that Min(F,Q(λ0),≼) is compact. Since Min(F,Q(λ0),≼) ⊂ Q(λ0), we
only need to show that Min(F,Q(λ0),≼) is closed. For this end, let {zn} ⊂ Min(F,Q(λ0),≼)
be a sequence such that zn → z0. If z0 ̸∈ Min(F,Q(λ0),≼), then there exists z ∈ Q(λ0)
such that F (z, λ0) ≼ F (z0, λ0) and F (z0, λ0) ̸≼ F (z, λ0). By the closedness of Q(λ0),
there exists a sequence {zn} ⊂ Q(λ0) such that zn → z. Then, for n sufficiently large,
F (zn, λ0) ≼ F (zn, λ0) due to F (·, ·) has the converse ≼-continuous property on Q(λ0)×{λ0}
and F (z, λ0) ≼ F (z0, λ0). It follows from zn ∈ Min(F,Q(λ0),≼) that F (zn, λ0) ≼ F (zn, λ0).
Since F (·, ·) has the ≼-continuous property on Q(λ0)× {λ0}, we have F (z0, λ0) ≼ F (z, λ0),
which is a contradiction and so z0 ∈ Min(F,Q(λ0),≼). This shows that Min(F,Q(λ0),≼) is
closed and so it is compact.

Corollary 3.2. Let P(Y ) satisfy condition P and λ0 ∈ Λ. Suppose that the following
conditions hold

(i) Q(·) is continuous at λ0 and Q(λ0) is compact;

(ii) F (·, ·) has the ≼-continuous property and converse ≼-continuous property on Q(λ0)×
{λ0};

Then, Min(F,Q(·),≺) is continuous at λ0.

Proof. Since P(Y ) satisfies condition P , it follows from Proposition 2.8 that

Min(F,Q(·),≼) = Min(F,Q(·),≺).
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Since all conditions of Theorem 3.1 are satisfied, we know that Min(F,Q(·),≺) is continuous
at λ0.

We give an example to illustrate Theorem 3.1.

Example 3.3. Let X = Z = R, Y = R2, D = [0, 1], Λ = [0, 1] and

K = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}

with ≼ being the lower set less order relation ≤l. Let Q(λ) = [0, λ] for λ ∈ Λ and

F (x, λ) = [−1, λx]× [0, 1], ∀(x, λ) ∈ D × Λ.

Let λ0 = 1. Then, it is easy to check that all conditions of Theorem 3.1 are satisfied.
Moreover, it follows that

Min(F,Q(λ),≤l) = [0, λ].

Thus, Min(F,Q(·),≤l) is continuous at 1 and so Min(F,Q(λ0),≤l) = [0, 1] is compact.

3.2 Applications to the parametric set optimization problem with the order
induced by a convex cone

In this subsection, as applications of the result presented in previous subsection, we
obtain the continuity and compactness of minimal solution mappings for parametric set
optimization problems with the order induced by a convex cone.

From Proposition 2.14, Lemma 2.20 and Theorem 3.1, we have the following theorem.

Theorem 3.4. Let K be a closed, pointed and convex cone in Y with intK ̸= ∅ and ≼ be
the lower set less order relation ≤l. Suppose that the following conditions hold

(i) Q(·) is continuous at λ0 ∈ Λ and Q(λ0) is compact;

(ii) F (·, ·) is a continuous set-valued mapping on Q(Λ)× Λ with compact values.

Then, Min(F,Q(·),≤l) is continuous at λ0 and Min(F,Q(λ0),≤l) is compact, where
Min(F,Q(·),≤l) is a minimal solution mapping from Λ to 2X .

Remark 3.5. Theorem 3.4 improves Theorems 4.5, 5.4 and 5.6 in [23] and Theorem 5.1
in [11] by removing the cone convexity assumption of F .

From Proposition 2.14, Lemma 2.21 and Theorem 3.1, one has the following theorem.

Theorem 3.6. Let K be a closed, pointed and convex cone in Y with intK ̸= ∅ and ≼ be
the upper set less order relation ≤u. Suppose that the following conditions hold

(i) Q(·) is continuous at λ0 ∈ Λ and Q(λ0) is compact;

(ii) F (·, ·) is a continuous set-valued mapping on Q(Λ)× Λ with compact values.

Then, Min(F,Q(·),≤u) is continuous at λ0 and Min(F,Q(λ0),≤u) is compact, where
Min(F,Q(·),≤u) is a minimal solution mapping from Λ to 2X .

Remark 3.7. Theorem 3.6 improves Theorems 3.2, 3.4 in [36] and Theorems 4.1-4.3 in [37]
by removing the cone convexity assumption of F .
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From Remark 2.15, Lemma 2.22 and Theorem 3.1, we have the following result.

Theorem 3.8. Let K be a closed, pointed and convex cone in Y with intK ̸= ∅ and ≼ be
the set less order relation ≤s. Suppose that the following conditions hold

(i) Q(·) is continuous at λ0 ∈ Λ and Q(λ0) is compact;

(ii) F (·, ·) is a continuous set-valued mapping on Q(Λ)× Λ with compact values.

Then, Min(F,Q(·),≤s) is continuous at λ0 and Min(F,Q(λ0),≤s) is compact, where
Min(F,Q(·),≤s) is a minimal solution mapping from Λ to 2X .

When ≼ is the certainly less order relation ≤c, Theorem 3.1 reduces to the following
theorem.

Theorem 3.9. Let K be a closed, pointed and convex cone in Y and ≼ be the certainly less
order relation ≤c. Suppose that the following conditions hold

(i) Q(·) is continuous at λ0 ∈ Λ and Q(λ0) is compact;

(ii) F (·, ·) has the ≤c-continuous property and converse ≤c-continuous property on Q(λ0)×
{λ0}.

Then, Min(F,Q(·),≤c) is continuous at λ0 and Min(F,Q(λ0),≤c) is compact, where
Min(F,Q(·),≤c) is a minimal solution mapping from Λ to 2X .

4 Conclusions

This paper is devoted to establish the continuity and compactness of minimal solution
mappings to parametric set optimization problems under some mild conditions. This paper
has the following two main contributions: (i) Some new sufficient conditions are obtained
for ensuring the continuity and compactness of the minimal solution mappings of parametric
set optimization problems with the general pre-order relations; (ii) The pre-order method
developed in this paper provides a new tool for the study of set optimization problems.

It is well known that the well-posedness plays an important role in set (vector) opti-
mization problems. Therefore, it would be interesting to study the well-posedness of set
optimization problems with the general pre-order relation. We plan to address such prob-
lems as we continue our research.
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