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of multi-objective optimization problems involving general ordering cones has gained atten-
tion. Precisely stated, in this paper we will be mainly concerned with the multi-objective
optimization problem with cone constraint (MOP) given as

K −Minimize f(x) (MOP)

subject to x ∈ Rn, −g(x) ∈ Q,

where f := (f1, . . . , fp)
T : Rn → Rp and g := (g1, . . . , gm)T : Rn → Rm, are differen-

tiable functions, K and Q are closed convex cones with nonempty interiors in Rp and Rm,
respectively. Let

X := {x ∈ Rn : −g(x) ∈ Q} (1.1)

be the set of all feasible solutions of (MOP). The notation “K − Minimize ”refers to the
weak Pareto minimum (resp. Pareto minimum) with respect to the ordering cone K for the
problem (MOP), namely a point x∗ ∈ X such that for every x ∈ X , f(x∗) − f(x) /∈ intK
(resp. f(x∗)− f(x) /∈ K\{0}).

Recall that a feasible point x∗ ∈ X is said to be a KKT point if there exist multipliers
λ ∈ K∗\{0} and µ ∈ Q∗ such that the following Karush-Kuhn-Tucker (KKT) optimality
conditions hold:

(i) λT∇f(x∗) + µT∇g(x∗) = 0;

(ii) µTg(x∗) = 0,

where K∗, K∗ := {z ∈ Rp : xT z ≥ 0 for all x ∈ K}, stands for the dual (positive polar)
cone of K. In this paper, the above feasible point x∗ is also called a non-trivial KKT point
if the corresponding µ is a non-zero vector.

As far as we know, the search for weak Pareto minimum (resp. Pareto minimum) to
(MOP) has been carried out through the study of the KKT optimality conditions provided
that some constraint qualifications hold, and of the convexity of the functions f and g. In
the current work, with the introduction of the scalar convex optimization problem without
convexity of constraint functions by Lasserre [12], the studies have been done on establishing
KKT optimality conditions for a weak Pareto minimum (resp. a Pareto minimum) of some
classes of multi-objective convex optimization problems. In particular, the authors have
shown in [21] that even if the convex feasible set is not necessarily described by the cone-
convex constraint, the Slater-type cone constraint qualification renders the KKT optimality
conditions both necessary and sufficient.

The classes of scalar convex optimization problems without convexity of constraint func-
tions have been studied in the literature [6,12,14] where apart from [12] in other references
inequality constraints are not assumed to be differentiable. A more recent exhaustive treat-
ment of constraint qualifications can be found in [5, 23]. Recently, Ho [8] went further in
the case of scalar differentiable problems but moreover without the convexity of the feasible
set and of the functions that are involved, and showed that necessary and sufficient KKT
optimality conditions are then considered in relation to the presence of convexity of the level
sets of objective function. It is therefore of interest to investigate KKT optimality conditions
for a weak Pareto minimum and a Pareto minimum of (MOP) without the convexity of the
feasible set X and of the vector-valued functions f and g. The main purpose of this paper
is to make an effort in this direction. Since we now focus our investigations to (MOP) in

The feasible set X defined as in (1.1) is said to satisfy Slater-type cone constraint qualification [9] at
x ∈ X if there exists x̂ ∈ Rn such that g(x) +∇g(x)(x̂− x) ∈ −intQ.
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which the feasible set X is not necessarily convex, we are going to consider the feasible point
x∗ under the question satisfying the following property [8]:

∀x ∈ X , ∃tn → 0+ such that x∗ + tn(x− x∗) ∈ X , (1.2)

which can be seen as a generalized convexity of the feasible set X . Admittedly, some non-
convex sets that satisfy the condition (1.2) will illustrate in Example 3.3 in Section 3. It
is important to note that Slater’s condition together with a mild non-degeneracy condition
on the constraints has been shown to guarantee that the KKT conditions are necessary and
sufficient for optimality of the scalar problems ( [6,8,12,14]). Now, for the problem (MOP),
we will assume only a non-degeneracy condition at the point x∗ under consideration (see As-
sumption 1 in the next section). In what follows the connections among non-degeneracy con-
dition, Slater-type cone constraint qualification, and Slater’s condition for cone-constraint
are also investigated ones. Further, illustrative examples are also provided to demonstrate
that our results generalize and improve the corresponding known results obtained in [21] for
the problem (MOP) in some appropriate situations.

The rest of the paper is organized as follows. In Sect. 2 we recall some basic definitions
and point out important results that will be used later in the paper. Section 3 presents
relationships among constraint qualifications of the multi-objective optimization problem
(MOP) over cone constraint (1.1) and establishes necessary and sufficient KKT optimality
conditions for a feasible point under the question to be a weak Pareto minimum of (MOP).
Finally, sufficient conditions for a Pareto minimum of the problem (MOP) are also provided.

2 Preliminaries

In this section, we briefly overview some notations, basic definitions, and preliminary results
which will be used throughout the paper. All spaces under consideration are n-dimensional
Euclidean space Rn. All vectors are considered to be column vectors which can be transposed
to a row vector by the superscript T . A nonempty subset K of Rp is said to be a cone if
tK ⊆ K for all t ≥ 0. For a set A in Rn, we say A is convex whenever tx1 + (1− t)x2 ∈ A
for all t ∈ [0, 1], x1, x2 ∈ A. By intA (resp. coA) we will denote the interior (resp. convex
hull) of the set A. The normal cone to a closed convex set A at x ∈ A, denoted by

N(A,x) := {u ∈ Rn : uT (y− x) ≤ 0, ∀y ∈ A}.

A set A ⊆ Rn is called strictly convex at x ∈ A if uT (y − x) < 0 for every y ∈ A\{x} and
u ∈ N(A,x)\{0}. It is worth noting that the strict convexity of A at some point x does not
guarantee the convexity of A. For instance, the set A := {(x1, x2)

T ∈ R2 : x2 > 0}∪{(0, 0)T }
is strictly convex at (0, 0)T while A is not convex.

For a closed convex cone K ⊆ Rp, a vector valued function f := (f1, . . . , fp)
T : Rn → Rp

is said to be K-convex (K-pseudoconvex [1, 22]) at a point x∗ ∈ Rn if for every x ∈ Rn

f(x)− f(x∗)−∇f(x∗)(x− x∗) ∈ K

(resp. −∇f(x∗)(x − x∗) /∈ intK ⇒ f(x∗) − f(x) ∈ intK), where ∇f(x∗) :=
(∇f1(x

∗), . . . ,∇fp(x
∗))T is the p×n Jacobian matrix of f at x∗ and for each k = 1, 2, . . . , p,

∇fk(x
∗) :=

(
∂fk(x

∗)
∂x1

, ∂fk(x
∗)

∂x2
, . . . , ∂fk(x

∗)
∂xn

)T

is the n × 1 gradient vector of fk at x∗. If f

The feasible set X defined as in (1.1) is said to satisfy Slater’s condition if there exists x̂ ∈ Rn such that
−g(x̂) ∈ intQ.
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is K-convex (K-pseudoconvex) at every point x∗ ∈ Rn, we also say that f is said to be
K-convex (resp. K-pseudoconvex) on Rn.

Now, let us recall the following results which will be useful in the sequel.

Lemma 2.1 ( [9, Lemma 3.21, p. 77]). Let K be a nonempty convex cone in Rp.

(i) If K is closed, then

K = {x ∈ Rp : xT z ≥ 0 for all z ∈ K∗}.

(ii) If intK ̸= ∅, then

intK = {x ∈ Rp : xT z > 0 for all z ∈ K∗\{0}}.

Lemma 2.2 ( [20, Lemma 1]). Consider the problem (MOP), if x∗ ∈ X is a weak Pareto
minimum of (MOP), then there exist λ ∈ K∗ and µ ∈ Q∗ not both zero such that(

λT∇f(x∗) + µT∇g(x∗)
)
(x− x∗) ≥ 0, ∀x ∈ Rn

and
µTg(x∗) = 0.

Now, we recall the following important result which can be found in [11] and will play
a key role in deriving a feasible point to be a weak Pareto minimum as well as a Pareto
minimum of (MOP).

Proposition 2.3 ( [11, Proposition 2.2.]). Let f : Rn → R be differentiable at x∗ with
∇f(x∗) ̸= 0. Then, the following statements hold:

(i) N(L<
f (x

∗),x∗) = {d ∈ Rn : d = r∇f(x∗), for some r ≥ 0} provided that

L<
f (x

∗) := {x ∈ Rn : f(x) < f(x∗)}

is convex.

(ii) N(Lf (x
∗),x∗) = {d ∈ Rn : d = r∇f(x∗), for some r ≥ 0} provided that

Lf (x
∗) := {x ∈ Rn : f(x) ≤ f(x∗)}

is convex.

We conclude this section by the following useful lemma, which will be crucial in the
sequel.

Lemma 2.4. Let X be defined as in (1.1). Assume that the condition (1.2) is satisfied at
a feasible point x∗ ∈ X . Then for every µ ∈ Q∗\{0} such that µTg(x∗) = 0, one has

µT∇g(x∗)(v− x∗) ≤ 0 for all v ∈ X .

Proof. Suppose on contrary that there exists v ∈ X such that (µT∇g(x∗))(v − x∗) > 0.
Then, by the first order approximation together with the condition (1.2), we can find some
tn small enough such that

µTg(x∗ + tn(v− x∗)) = µTg(x∗) + tnµ
T∇g(x∗)(v− x∗) + o(tn) > 0, (2.1)

where o(t)
t → 0 as t → 0+, and x∗ + tn(v−x∗) ∈ X . The latter means that −g(x∗ + tn(v−

x∗)) ∈ Q and consequently, µTg(x∗ + tn(v− x∗)) ≤ 0, which contradicts to (2.1).
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3 Main Results

In this section, we present the constraint qualifications that are used to derive the KKT
conditions for (MOP) and their connections. Afterward, we will establish necessary and
sufficient KKT optimality conditions for a weak Pareto minimum of (MOP). Moreover, we
also establish sufficient conditions for a Pareto minimum of the problem (MOP).

At first, we recall one of constraint qualifications the so-called non-degeneracy condition
at some feasible point x∗ ∈ X in the vector setting, which has been introduced in [21].

Assumption 1: (Non-degeneracy condition [21]) Consider (MOP), for every µ ∈ Q∗\{0},

µT∇g(x∗) ̸= 0 whenever µTg(x∗) = 0.

Remark 3.1 (Sufficient condition for non-degeneracy condition to be valid). Note that if
the Slater-type cone constraint qualification holds at x∗, then the non-degeneracy condition
is satisfied at x∗. Indeed, if there exists x̂ ∈ Rn such that g(x∗)+∇g(x∗)(x̂−x∗) ∈ −intQ,
then for every µ ∈ Q∗\{0} fulfilling µTg(x∗) = 0, one has µT∇g(x∗)(x̂−x∗) = µTg(x∗) +
µT∇g(x∗)(x̂− x∗) < 0 which implies that µT∇g(x∗) ̸= 0.

Remark 3.2. The Slater’s condition can also be guaranteed by the Slater-type cone con-
straint qualification at some point x∗ as well. To see this, it follows from the Slater-type
cone constraint qualification that ∇g(x∗)(x̂− x∗) ∈ −intQ− g(x∗) for some x̂ ∈ Rn. This
together with the fact that

g(x∗ + t(x̂− x∗))− g(x∗)

t
= ∇g(x∗)(x̂− x∗) + o(t),

where o(t)
t → 0 as t → 0+, for some t0 > 0 sufficiently small, it holds

g(x∗ + t0(x̂− x∗)) ∈ (1− t0)g(x
∗)− t0intQ ⊆ −intQ.

Hence, the Slater’s condition has been justified.

Now, we present some sufficient conditions for the Slater-type cone constraint qualifica-
tion to be valid.

Theorem 3.1. Let X be defined as in (1.1). Assume that the Slater’s condition holds and
the condition (1.2) is satisfied at a feasible point x∗ ∈ X . If the non-degeneracy condition
holds at x∗, then the Slater-type cone constraint qualification also holds at x∗.

Proof. Suppose that the non-degeneracy condition holds at x∗. Assume on contrary that
for every x ∈ Rn, one has g(x∗) +∇g(x∗)(x− x∗) /∈ −intQ, or equivalently,

−[g(x∗) +∇g(x∗)(Rn − x∗)] ∩ intQ = ∅.

So, by the Eidelheit separation theorem, there exists µ ∈ Rm\{0} such that

µTg(x∗) + µT∇g(x∗)(x− x∗) + µTy ≥ 0, ∀x ∈ Rn, ∀y ∈ Q. (3.1)

By taking x = x∗ and y = 0 in (3.1), we would have µTg(x∗) = 0. Hence, with regard to
(3.1) with x = x∗, we get µ ∈ Q. Therefore, in view of (3.1), we find a vector µ ∈ Q∗\{0}
with µTg(x∗) = 0 such that

µT∇g(x∗)(x− x∗) ≥ 0, ∀x ∈ Rn. (3.2)
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On the other hand, by assumption, there exists x̂ ∈ Rn such that −g(x̂) ∈ intQ. Then,by
the continuity of g, there exists r > 0 such that g(x̂ + ru) ∈ −Q for all u ∈ B := {x ∈
Rn : ∥x∥ ≤ 1}. Consequently, x̂+ ru ∈ X for all u ∈ B. So, as x∗ ∈ X and x∗ satisfies the
condition (1.2), we conclude from Lemma 2.4 that

µT∇g(x∗)(x̂+ ru− x∗) ≤ 0, ∀u ∈ B. (3.3)

In particular, put u = 0 ∈ B, one has µT∇g(x∗)(x̂ − x∗) ≤ 0. Thus, with regard to (3.2),
µT∇g(x∗)(x̂− x∗) = 0, and hence we deduce from (3.3) that

µT∇g(x∗)u ≤ 0, ∀u ∈ B.

So, µT∇g(x∗) must ultimately be zero vector, which contradicts to the validity of non-
degeneracy condition at x∗.

Remark 3.3. In the absence of the condition (1.2) at x∗, the validity of both Slater and
the non-degeneracy conditions at x∗ does not guarantee the validity of Slater-type cone
constraint qualification at x∗, for instance, let x := (x1, x2)

T ∈ R2, Q := {x ∈ R2 : x1 ≥
0, x2 ≥ 0} and g(x) := (x3

2 + x2 − x1, x1 − x2)
T . We see that g(−3,−2) = (−7,−1)T ∈

−intQ, that is, Slater’s condition holds. Also, one has ∇g(x) =

(
−1 3x2

2 + 1
1 −1

)
and a short

calculation shows that the non-degeneracy holds at x∗ := (0, 0)T ∈ X , while the condition
(1.2) together with the Slater-type cone constraint qualification is invalid at x∗. In fact,
let us consider x0 := (−2,−1)T ∈ X and arbitrary sequence {tn}n∈N ⊂ (0,+∞) such that
tn → 0 as n → +∞. So, tn0

< 1 for some n0 ∈ N and x∗ + tn0
(x0 − x∗) = tn0

x0 /∈ X .
Otherwise, we have that

tn0
(1− tn0

)(1 + tn0
) = (−tn0

)3 + (−tn0
)− (−2tn0

) ≤ 0,

whence, 1 ≤ tn0 . This contradicts to the fact that tn0 < 1. In addition, we can not find out
x̂ := (x̂1, x̂2)

T ∈ R2 such that(
−x̂1 + x̂2

x̂1 − x̂2

)
=

(
−1 1
1 −1

)(
x̂1

x̂2

)
= g(x∗) +∇g(x∗)(x̂− x∗) ∈ −intQ.

Remark 3.4. (i) It is worth noticing that there is a partial overlapping between Slater’s
condition and non-degeneracy condition at a given point x∗ in general. For example,
it is easy to check that Slater’s condition fails to hold for X := {x ∈ Rn : −g(x) ∈ Q},
where Q := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} and g(x) := (−x1 + x2, x1 − x2)

T for all
x ∈ R2, while non-degeneracy condition holds at x∗ := (0, 0)T . In contrast, redefining
g(x) := (x3

1 −x2 +1,−x2
1 +x2 − 1)T for all x ∈ R2, we get −g(−1, 1) = (1, 1)T ∈ intQ

and so, Slater’s condition holds. Now we see that non-degeneracy does not hold at x∗.
Indeed, taking µ0 := (1, 1)T ∈ Q∗\{0}, one has µT

0 g(x
∗) = 0 and

µT
0 ∇g(x∗) =

(
1 1

)(0 −1
0 1

)
=

(
0
0

)
,

showing that non-degeneracy fails to hold at x∗.

(ii) In addition to the Q-convexity of g at a given point x∗, if Slater’s condition holds, then
non-degeneracy condition is satisfied at x∗. To see this, suppose now by contradiction
that there exists µ0 ∈ Q∗\{0} satisfying µT

0 g(x
∗) = 0 and µT

0 ∇g(x∗) = 0. It then
follows from Q-convexity of g at x∗ that µT

0 g(x̂) − µT
0 g(x

∗) = µT
0 g(x̂) − µT

0 g(x
∗) −

µT
0 ∇g(x∗)(x̂ − x∗) ≥ 0 for a Slater’s point x̂. This contradicts to the fact that

µT
0 g(x̂) < 0 = µT

0 g(x
∗).
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Remark 3.5. In the case of Q = Rm
+ := {(x1, x2, . . . , xm)T ∈ Rm : xi ≥ 0, ∀i = 1, . . . ,m},

non-degeneracy conditions at x∗ can be view as the Mangasarian-Fromovitz constraint qual-
ification at x∗ and non-degeneracy conditions at x∗ in [8, 12] as well. Indeed,

∃v ∈ Rn such that ∇gi(x
∗)Tv < 0, ∀i ∈ I(x∗)

⇔0 /∈ co{∇gi(x
∗) : i ∈ I(x∗)}

⇔∀µ := (µ1, µ2, . . . , µm)T ∈ Rm
+\{0} s.t. µigi(x

∗) = 0, i = 1, 2, . . . ,m,
m∑
i=1

µi∇gi(x
∗) ̸= 0,

and for each i ∈ {1, 2, . . . ,m}, by taking µ := ei, where ei is the unit vector in Rm with the
ith component is 1 and the others are 0, one has ∇gi(x

∗) ̸= 0 whenever i ∈ I(x∗). Note that
Slater-type cone constraint qualification at x∗ is also equivalent to the Robinson constraint
qualification at x∗ [4, Lemma 2.99, p. 69]. Then, as the considered set {x ∈ Rn, gi(x) ≤
0, i = 1, 2, . . . ,m} is not necessarily convex, it seems that Theorem 3.1 extends [5, Theorem
2.1] to non-convex setting on the set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m}.

Now, we are in the position to give necessary and sufficient KKT optimality conditions
for a weak Pareto minimum of (MOP).

Theorem 3.2. Consider the problem (MOP) and let both Assumption 1 and the condition
(1.2) be satisfied at a feasible point x∗.

(i) If x∗ is a weak Pareto minimum of (MOP), then x∗ is a KKT point.

(ii) Conversely, if x∗ is a non-trivial KKT point with multipliers λ and µ, and L<
λT f

(x∗)

is convex then x∗ is a weak Pareto minimum of (MOP).

Proof. (i) Let x∗ ∈ X be a weak Pareto minimum of (MOP). By Lemma 2.2, there exist
λ ∈ K∗ and µ ∈ Q∗ not both zero such that µTg(x∗) = 0 and(

λT∇f(x∗) + µT∇g(x∗)
)
(x− x∗) ≥ 0, ∀x ∈ Rn. (3.4)

As the inequality (3.4) holds for every x ∈ Rn, we conclude that

λT∇f(x∗) + µT∇g(x∗) = 0 and µTg(x∗) = 0.

Moreover, we assert that λ = 0. Otherwise, it follows in turn that µ ̸= 0, which stands in
a contradiction to Assumption 1, and therefore, λ ̸= 0.

(ii) Let x∗ ∈ X be an arbitrary non-trivial KKT point, i.e.,

λT∇f(x∗) + µT∇g(x∗) = 0; µTg(x∗) = 0,

for some non-zero vectors λ ∈ Rp and µ ∈ Rm. This together with Assumption 1 implies
that λT∇f(x∗) must ultimately be non-zero vector. It can be seen that if the set L<

λT f
(x∗)

is empty, then x∗ actually is a weak Pareto minimum of (MOP). In fact, if x∗ is not

The set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} is said to satisfy the Mangasarian-Fromovitz constraint
qualification [4] at x∗ if there exists v ∈ Rn s.t. ∇gi(x

∗)Tv < 0 for each i ∈ I(x∗) := {i ∈ {1, 2, . . . ,m} :
gi(x

∗) = 0}.
One says that the set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} satisfies the Robinson constraint qualification

at x∗ if 0 ∈ int{g(x∗) +∇g(x∗)(Rn − x∗) + Rm
+ } where g(x) := (g1(x), g2(x), . . . , gm(x))T .
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a weak Pareto minimum of (MOP), there exists x ∈ X such that f(x∗) − f(x) ∈ intK.
So, by the virtue of Lemma 2.1, λT f(x∗) > λT f(x), which contradicts to the fact that
L<
λT f

(x∗) = ∅. Let us consider in the case that L<
λT f

(x∗) ̸= ∅. Applying Proposition 2.3(i)

with f(x) := λT f(x), we obtain that

λT∇f(x∗)(u− x∗) ≤ 0, ∀u ∈ L<
λT f

(x∗). (3.5)

Therefore, by Lemma 2.4,

λT∇f(x∗)(v− x∗) = −µT∇g(x∗)(v− x∗) ≥ 0, ∀v ∈ X . (3.6)

Note that,
{y ∈ Rn : f(x∗)− f(y) ∈ intK} ⊆ L<

λT f
(x∗).

Thus, in order to obtain x∗ to be a weak Pareto minimum of (MOP), it suffices to show that
X ⊆ Rn\L<

λT f
(x∗) equivalently, L<

λT f
(x∗) ∩X = ∅. Suppose, ad absurdum, L<

λT f
(x∗) ∩X ̸=

∅. Thus, from (3.5) and (3.6) we get the assertion that λT∇f(x∗)(w − x∗) = 0 for any
w ∈ L<

λT f
(x∗) ∩ X . Furthermore, as the set L<

λT f
(x∗) being open, for each d ∈ Rn we can

find t > 0 small enough such that w+ td ∈ L<
λT f

(x∗). Hence,

tλT∇f(x∗)d = λT∇f(x∗)(w+ td− x∗)− λT∇f(x∗)(w− x∗) ≤ 0,

and consequently, λT∇f(x∗) = 0, a contradiction. Thus, L<
λT f

(x∗) ∩ X = ∅, and x∗ is a
weak Pareto minimum of (MOP) as desired.

Remark 3.6. It is worth mentioning here that Proposition 2.3 plays a significant role in
Theorem 3.2(ii) for ensuring a feasible point x∗ to be a weak Pareto minimum of (MOP).
Beside, non-degeneracy condition (Assumption 1) at x∗ need to be assumed for guaran-
teeing λT∇f(x∗) ̸= 0 with correspond to multiplier vector λ ∈ K∗\{0}. In contrast, it
generally does not need constraint qualification to establish the sufficient optimality con-
ditions. Therefore, it might be reasonably assumed the assertion λT∇f(x∗) ̸= 0 instead
of assuming the non-degeneracy condition at x∗. However, keeping in mind the fact that
we need to justify the convexity of L<

λT f
(x∗) with the same choice λ, and so in this case

the multiplier vector λ turn out to be difficult to determine for satisfying all conditions in
Theorem 3.2(ii) simultaneously. This being a reason why non-degeneracy condition make
used in Theorem 3.2(ii). Another reason is that justifying the non-degeneracy condition is
done before verifying sufficient optimality conditions.

We now demonstrate with the following example to indicate that Theorem 3.2 may be
conveniently applied in some cases however Theorem 3.1 and Theorem 3.2 of [21] cannot be
used even when the feasible set X is convex.

Example 3.1. Consider the following muti-objective optimization problem (MOP) over
cone constraint:

K− Minimize f(x) := (x+ 1, x3 − 5x2 + 8x− 3)T

subject to x ∈ X := {x ∈ R : −g(x) ∈ Q},

where g(x) := (x − 1, x2 − x − 1)T , K := {(x1, x2)
T ∈ R2 : x1 ≥ 0, x2 ≥ 0} and Q :=

{(x1, x2)
T ∈ R2 : x1 ≤ 0, x2 ≤ x1}. A straightforward calculation shows that:

• X = [2,+∞),
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• K∗ = K,

• Q∗ = {(x1, x2)
T ∈ R2 : x2 ≤ 0, x2 ≤ −x1},

• x∗ := 2 satisfies the non-trivial KKT conditions by taking λ := (2, 0)T and µ :=
(1,−1)T ,

• L<
λT f

(x∗) = (−∞, 2) is convex, and

• it is easily to seen that Assumption 1 and the condition (1.2) are satisfied.

Applying Theorem 3.2 (ii), we can conclude that x∗ is a weak Pareto minimum of (MOP).
However, it can be checked that g is not Q-convex, i.e.,

g(1)− g(2)−∇g(2)(1− 2) = (0, 1)T /∈ Q,

but the feasible set X is convex. Furthermore, the function f is not K-pseudoconvex at
x∗ := 2, because if we take x = 0 then

−∇f(x∗)(x− x∗) = (2, 0)T /∈ intK, whereas f(x∗)− f(x) = (2, 4)T ∈ intK.

Hence, the corresponding results [21] is not applicable. 2

Note that the multiplier vector µ is assumed to be non-zero vector (the non-triviality
of the KKT conditions) in order to ensure that λT∇f(x∗) ̸= 0 in Theorem 3.2(ii). The
following example demonstrates that this assumption cannot be dropped.

Example 3.2. Let f(x) := (x+1,−(x−2)3)T , g(x) := (x2−1, 2x−1)T , K := {(x1, x2)
T ∈

R2 : x2 ≥ −x1, x1 ≥ 0} and Q := {(x1, x2)
T ∈ R2 : x1 ≥ x2, x1 ≥ 0}. It is not hard to

check that X = [1, 2], x∗ := 2 is a KKT point with λ := (0,−1)T and µ := (0, 0)T , and
all the conditions in Theorem 3.2 (ii) are fullfilled. However x∗ is not even a weak Pareto
minimum, i.e., if we take x := 3

2 then f(x∗)− f(x) = (3, 0)T − ( 52 ,
1
8 )

T = ( 12 ,−
1
8 )

T ∈ intK.
The main reason is that x∗ is not a non-trivial KKT point. 2

To appreciate Theorem 3.2 we present an example that is applicable while the aforemen-
tioned result in [21] is not.

Example 3.3. Consider the following multi-objective optimization problem (MOP) over
cone constraint:

K− Minimize f(x) := (x2 − 1,−x3 + 5x2 − 8x+ 5)T

subject to x ∈ X := {x ∈ R : −g(x) ∈ Q},

where g(x) := (x3 + x2 + x, x3 + 2x2 − 5x+ 8)T , K := {(x1, x2)
T ∈ R2 : x1 ≥ 0, x2 ≤ x1}

and Q := {(x1, x2)
T ∈ R2 : x1 ≤ 0, x2 ≤ x1}. Evidently, f, and g are not K-convex, and

Q-convex, respectively. Indeed, f(1)− f(0)−∇f(0)(1− 0) = (1, 4)T /∈ K, and g(1)− g(0)−
∇g(0)(1 − 0) = (2, 3)T /∈ Q. It is easy to verify that X = [0, 2] ∪ [4,+∞). Then we have
already seen that the feasible set X is not convex. Therefore, the results in [21] cannot be
applicable. cone constraint: it is not hard to verify that

• K∗ = {(x1, x2)
T ∈ R2 : x2 ≤ 0, x2 ≥ −x1},

• Q∗ = {(x1, x2)
T ∈ R2 : x2 ≤ 0, x2 ≤ −x1},

• x∗ := 0 satisfies the non-trivial KKT conditions by taking λ := (1,−1)T and µ :=
(−8, 0)T ,
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• Assumption 1 and the condition (1.2) are satisfied, and

• L<
λT f

(x∗) = (−∞, 0), which is convex.

Hence, Theorem 3.2(ii) indicates that x∗ is a weak Pareto minimum of (MOP). 2

Next, we will see now how the convexity of LλT f(x
∗) together with the strict convexity

of LλT f(x
∗) at a non-trivial KKT point x∗ possess x∗ to be a Pareto minimum of (MOP).

Theorem 3.3. Consider the problem (MOP) and let both Assumption 1 and the condition
(1.2) be satisfied at a feasible point x∗. If x∗ is a non-trivial KKT point with multipliers λ
and µ, LλT f(x

∗) is convex, and additionally LλT f(x
∗) is strictly convex at x∗, then x∗ is a

Pareto minimum of (MOP).

Proof. In a similar manner of the second argument as the proof of Theorem 3.2, by the KKT
conditions and Proposition 2.3(ii), we arrive at the following assertion

λT∇f(x∗)(v− x∗) ≥ 0 ≥ λT∇f(x∗)(u− x∗), ∀v ∈ X ,∀u ∈ LλT f(x
∗), (3.7)

and λT∇f(x∗) ̸= 0. To establish the desired results, we argue first by using Lemma 2.1 that

{y ∈ Rn : f(x∗)− f(y) ∈ K\{0}} ⊆ LλT f(x
∗)\{x∗}.

Thus, we only need to justify this containment

X ⊆ Rn\(LλT f(x
∗)\{x∗}).

We argue by contradiction that there exists some w ∈ X such that w ̸= x∗ and w ∈
LλT f(x

∗). Taking (3.7) into account we actually have

λT∇f(x∗)(w− x∗) = 0.

Furthermore, as λT∇f(x∗) ∈ N(LλT f(x
∗),x∗)\{0} (by the second inequality in (3.7)) and

LλT f(x
∗) is strictly convex, then λT∇f(x∗)(w−x∗) < 0. This is a contradiction, and thereby

implying that x∗ is a Pareto minimum of (MOP).

Remark 3.7. In Example 3.3 with λ := (1,−1)T , it is evident that LλT f(x
∗) is strictly

convex at x∗ := 0, and hence, by Theorem 3.3, x∗ is a Pareto minimum of (MOP) (see,
Figure 1).

Remark 3.8. It should be noted that to obtain a Pareto minimum in the literature (see
[9, 21] and other references therein), the multiplier vector λ in KKT conditions need to be
taken from the strict positive dual cone of K, Ks∗ , which defined as

Ks∗ := {z ∈ Rn : xT z > 0 for all x ∈ K\{0}}.

However, in this case study the multiplier vector λ is not necessarily to take from the strict
positive dual cone. In fact, as K defined in Example 3.3 and λ := (1,−1)T , Then elementary
calculations give us

Ks∗ = {(x1, x2)
T ∈ R2 : x1 > 0, x2 > −x1}

and so, λ /∈ Ks∗ .



NECESSARY AND SUFFICIENT KKT OPTIMALITY CONDITIONS IN (MOP) 487

Figure 1: In Example 3.3, x∗ := 0 is a Pareto minimum of (MOP).

To this end, we now give an example showing that the strict convexity of LλT f(x
∗) with

corresponding multiplier λ is essential for x∗ under the question to be a Pareto minimum
of (MOP) in Theorem 3.3.

Example 3.4. Let x := (x1, x2)
T ∈ R2, f(x) := (x2

1, x2 − x1)
T , g(x) := (−x3

1 + 3x1 +
x2, x1 − x2)

T and K = Q := {x ∈ R2 : x1 ≤ 0, x2 ≥ 0}. It is easy to check that the feasible
set X is not convex and the condition (1.2) is valid at x∗ := (1, 1)T ∈ X . Then elementary
calculations give us

• K∗ = Q∗ = K,

• g(x∗) = (3, 0)T , ∇g(x∗) =

(
0 1
1 −1

)
, f(x∗) = (1, 0)T , ∇f(x∗) =

(
2 0
−1 1

)
,

• x∗ satisfies Assumption 1 and the non-trivial KKT conditions by taking λ = µ :=
(0, 1)T ,

• L<
λT f

(x∗) = {(x1, x2)
T ∈ R2 : x2 < x1} and LλT f(x

∗) = {(x1, x2)
T ∈ R2 : x2 ≤ x1},

which are convex sets.

By Theorem 3.2 (ii), we can conclude that x∗ is a weak Pareto minimum of (MOP). However,
the set LλT f(x

∗) is not a strictly convex set at x∗, i.e., it is clear that N(LλT f(x
∗),x∗) =

{(−r, r)T ∈ R2 : r ≥ 0}. So, by taking u := (−1, 1)T ∈ N(LλT f(x
∗),x∗)\{(0, 0)T } and

y := (2, 2)T ∈ LλT f(x
∗)\{(0, 0)T }, one has uT (y−x∗) = 0. Actually, a point x∗ is not even

a Pareto minimum, i.e., if we take x̄ := (−2,−2)T ∈ X , one has

f(x∗)− f(x̄) = (−3, 0)T ∈ K\{(0, 0)T }.

Remark 3.9. It is worth noting that the convexity of L<
λT f

(x∗) (resp. LλT f(x
∗)) in Theorem

3.2 (resp. in Theorem 3.3) can be viewed as a generalized quasiconvexity of f at x∗ due to the
notion of ∗-quasiconvexity [10] in the sense that for each λ ∈ K∗ the function λT f : Rn → R
is quasiconvex. It is quite clear from the definition that ∗-quasiconvexity of f guarantees

A function f : Rn → R is said to be quasiconvex if its sublevel set Lf (x) at x is convex for all x ∈ Rn

or, equivalently, the strict sublevel set L<
f (x) at x is convex for all x ∈ Rn.
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the convexity of the level set L<
λT f

(x∗) or of LλT f(x
∗). In fact, the function f in Example

3.4 is not ∗-quasiconvex, i.e., by taking λ := (−1, 1)T ∈ K∗ and x := (1, 1)T , the sublevel
set Lf (x) is not convex. For related conditions for cone quasiconvex mappings we refer the
reader to [3, 13,16].

4 Conclusions

In this paper, we have established necessary and sufficient the Karush-Kuhn-Tucker optimal-
ity conditions for a weak Pareto minimum as well as a Pareto minimum of a differentiable
multi-objective optimization problem (MOP) over cone constraint without the convexity of
the feasible set, and the cone-convexity of objective and constraint functions. We also have
proposed constraint qualifications, and have discussed the relationship among them which
can be summarized in following diagram whenever x∗ ∈ X :
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