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(i) The search direction dk+1 is a sufficient descent direction, namely, there exists a scalar
c > 0 such that

gTk+1dk+1 ≤ −c ∥ gk+1 ∥2 . (1.6)

(ii) The following conjugacy condition holds:

dTk+1yk−i = 0, (1.7)

for i = 0, . . . , k.

(iii) The gradient vector gk+1 is orthogonal to the Krylov subspace of degree k, namely,

gTk+1dk−i = 0, (1.8)

for i = 0, . . . , k.

It is shown in the linear conjugate gradient theory that the method (1.2) and (1.3) with
a search direction satisfying (i)-(iii) terminates in finite iterations. Unfortunately, these
properties can not be guaranteed for the non-linear case.

Recently, Hager and Zhang [15] introduced an efficient non-linear conjugate gradient
method which is a subclass of the Dai-Liao family corresponding to

βDL
k =

gTk+1yk − τgTk+1sk

yTk dk
, (1.9)

where τ = λk
∥yk∥2

sTk yk
. The authors showed the global convergence of a truncated version

of their method similar to PRP+ of Gilbert and Nocedal [12] under mild assumptions.
Numerical results showed that the method is efficient and robust. Now, an implementation
of the method called CG-DESCENT is available from the Hager’s homepage.

In order to design an efficient non-linear conjugate gradient method, we combine (i)-(iii)
and introduce the following optimization problem

min
βk

gTk+1dk+1 +M

m∑
i=0

[
(gTk+2sk−i)

2 + (dTk+1yk−i)
2
]
, (1.10)

where M is the penalty or weight function, and m is an arbitrary constant controlling the
memory size. It is easy to see that the first term in (1.10) contains the information about
(i) and the second term contains the information about (ii) and (iii). A large value of M
increases the chance of dk+1 and gk+2 to satisfy (1.7) and (1.8), respectively, and a small
one increases the effect of sufficient descent property.

Here, we obtain a new expression for βk by solving (1.10). We show that the optimal
Dai-Liao parameter τ must be somewhere in the interval (0, 1). Furthermore, we introduce
the two weight functions M1, corresponding to a generalization of CG-DESCENT, and M2,
and analyze the global convergence of the related algorithms.

The paper is organized as follow: In Section 2, we determine βk by solving (1.10).
Introducing the weight functions M1 and M2 with the related expressions for βk is the
subject of Section 3. The global convergence of the new methods is investigated in Section
4 and the numerical result is reported in Section 5. Finally, conclusions and discussions are
made in last section.
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2 The New Limited Memory Class

In this section, we introduce a new family of conjugate gradient methods by solving (1.10).
In order to solve (1.10), we should replace gk+2 by some of its appropriate estimation,

because it is not available in the current iteration.
Here, we consider the quadratic approximation of the objective function,

Φ(d) = fk+1 + gTk+1d+
1

2
dTBk+1d,

and take ∇Φ(αk+1dk+1) as an estimation of gk+2. It is easy to see that

∇Φ(αk+1dk+1) = αk+1Bk+1dk+1 + gk+1. (2.1)

Unfortunately, αk+1 in (2.1) is not available, because dk+1 is unknown. Thus, we modify
(2.1) and set

gk+2 = tBk+1dk+1 + gk+1, (2.2)

where t > 0 is a suitable approximation of αk+1.
Now, using (1.3) and (2.2), the following expression for βk is obtained by solving (1.10).

βk =
1

X

[
− gTk+1dk + 2Mt2

m∑
i=0

(sTk−iBk+1gk+1)(s
T
k−iBk+1dk) (2.3)

− 2Mt

m∑
i=0

(sTk−igk+1)(s
T
k−iBk+1dk)

+ 2M

m∑
i=0

(yTk−igk+1)(y
T
k−idk)

]
,

where

X = 2Mt2
m∑
i=0

(sTk−iBk+1dk)
2 + 2M

m∑
i=0

(yTk−idk)
2.

To simpilify (2.3), we consider the following assumption as Yuan and Stoer [20].

(A1) The approximation matrix Bk+1 satisfy the extended quasi newton equation

Bk+1sk−i = yk−i,

for i = 0, . . . ,m.

Using (A1), we have

βk =
−1

2MY (1 + t2)
gTk+1dk +

1

Y

m∑
i=0

(yTk−igk+1)(y
T
k−idk) (2.4)

− t

Y (1 + t2)

m∑
i=0

(sTk−igk+1)(y
T
k−idk),

where

Y =

m∑
i=0

(yTk−idk)
2.

We note that (A1) is hold for strongly convex quadratic functions with exact line search and
is called the hereditary property.
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Remark 2.1. If f(x) is a strongly convex quadratic function and the line search is exact,

then, βk converts to βHS
k =

yT
k gk+1

yT
k dk

due to (ii) and (iii), and it is exactly the standard

conjugate gradient method.

In the reminder of this section, we analyze βk when M approaches to infinity.
Indeed, the best choice for the weight function M is M = ∞, because it increases the

probability of satisfying (ii) and (iii).
Approaching M to infinity, we obtain

βk =
1

Y

m∑
i=0

(yTk−igk+1)(y
T
k−idk) (2.5)

− t

Y (1 + t2)

m∑
i=0

(sTk−igk+1)(y
T
k−idk),

It is easy to see that (2.5) is a generalization of the Dai-Liao family. More exactly, setting
m = 0,

βk =
gTk+1yk

yTk dk
− t

1 + t2
gTk+1sk

yTk dk
,

which equals to βDL
k with

τ =
t

1 + t2
.

Note that, τ belongs to (0, 1). As a consequence, we see that the optimal value of the
Dai-Liao parameter τ must be somewhere in (0, 1).

Unfortunately, using standard Wolfe line search, it is impossible to ensure the descent
property of the search direction dk+1 equipped with βk defined by (2.5). In other words, by
approaching M to infinity, we lost the information about the descent property of dk+1. This
difficulty can be overcome if we choose an appropriate weight function M . In next section,
we follow this idea.

3 The Weight Functions and Descent Directions

In this section, we intended to introduce some suitable weight functions and to show that
the corresponding βk’s ensure the sufficient descent property (i).

The first weight function is

M1 =
γ1

2z
∑m

i=0 ∥ yk−i ∥2
, (3.1)

where

z = max(m+ 1,
γ2 ∥ sk ∥

∑m
i=1 ∥ sk−i ∥∑m

i=0 ∥ yk−i ∥2
). (3.2)

Our motivations behind this choice are firstly to design a limited memory conjugate gradient
method which is a generalization of CG-DESCENT, and secondly, to design a method which
satisfies the sufficient descent condition independent of the line search procedure. As we will
show later, βk in (2.4) equipped with M = M1 reduces to CG-DESCENT when m = 0, and
so, the method inherits the good properties of the CG-DESCENT method. Here, we do not
claim that M = M1 is the only possible choice, but, at least our numerical results confirm
the effectiveness of this choice.



A LIMITED MEMORY CLASS OF CONJUGATE GRADIENT METHODS 461

The following lemma indicates that dk+1 with βk as in (2.4) and M = M1 is a sufficient
descent direction.

Lemma 3.1. Assume the method (1.2) and (1.3) with the standard Wolfe line search, where
βk is defined in (2.4) and M = M1. Then, for some positive scalers γ1 and γ2 satisfying
γ1

4 + γ1

2γ2
< 1,

gTk+1dk+1 ≤ −(1− γ1
4

− γ1
2γ2

) ∥ gk+1 ∥2, (3.3)

whenever

t =
γ1y

T
k sk

z
∑m

i=0 ∥ yk−i ∥2
. (3.4)

Proof. We rewrite βk with M = M1 in (2.4) as

βk =
1

Y

m∑
i=0

(yTk−igk+1)(y
T
k−idk)−

A

Y
gTk+1dk (3.5)

− B

Y

m∑
i=1

(sTk−igk+1)(y
T
k−idk),

where

A =
1 + 2M1t(y

T
k sk)

2M1(1 + t2)
,

and

B =
t

1 + t2
.

It is easy to see

gTk+1dk+1 = − ∥ gk+1 ∥2 +
1

Γ

m∑
i=0

(yTk−igk+1)(y
T
k−isk)(g

T
k+1sk)

− A

Γ
(gTk+1sk)

2 − B

Γ

m∑
i=1

(sTk−igk+1)(y
T
k−isk)(g

T
k+1sk), (3.6)

where

Γ =
m∑
i=0

(yTk−isk)
2.

Using inequality

ab ≤ t′

4
a2 +

1

t′
b2,

where a, b and t′ are positive scalers, we have

gTk+1dk+1 ≤ − ∥ gk+1 ∥2 +
t′

4Γ

m∑
i=0

(yTk−igk+1)
2(yTk−isk)

2

+
m+ 1

Γt′
(gTk+1sk)

2 − A

Γ
(gTk+1sk)

2

+
B

Γ

m∑
i=1

|sTk−igk+1||yTk−isk||gTk+1sk|.
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Let t′ = m+1
A , we have

gTk+1dk+1 ≤ − ∥ gk+1 ∥2 +
m+ 1

4A

m∑
i=0

(yTk−igk+1)
2 (3.7)

+
B

2yTk sk

m∑
i=1

|sTk−igk+1||gTk+1sk|.

Here, we use the inequalities
(yTk−isk)

2

Γ
≤ 1, (3.8)

and
2|yTk sk||yTk−isk| ≤ (yTk sk)

2 + (yTk−isk)
2 ≤ Γ, (3.9)

to obtain (3.7). Finally, using the Cauchy-Schwarz inequality, we have

gTk+1dk+1 ≤ −
[
1−m+ 1

4A

m∑
i=0

∥ yk−i ∥2 (3.10)

−
B ∥ sk ∥

∑m
i=1 ∥ sk−i ∥

2yTk sk

]
∥ gk+1 ∥2 .

Note that, using (3.1) and (3.2),

m+ 1

4A
≤ M1(1 + t2)z

2(1 + 2M1t(yTk sk))
=

γ1
4
∑m

i=0 ∥ yk−i ∥2
, (3.11)

and

B ∥ sk ∥
∑m

i=1 ∥ sk−i ∥
2yTk sk

≤
t ∥ sk ∥

∑m
i=1 ∥ sk−i ∥

2yTk sk
(3.12)

≤
γ1 ∥ sk ∥

∑m
i=1 ∥ sk−i ∥

2z
∑m

i=0 ∥ yk−i ∥2

≤ γ1
2γ2

.

Now, the proof is completed using (3.10), (3.11) and (3.12).

If we substitute (3.1) in (3.5), then

β1
k =

1

Y

m∑
i=0

(yTk−igk+1)(y
T
k−idk)−

z

Y γ1

m∑
i=0

∥ yk−i ∥2 (gTk+1dk) (3.13)

− t

Y (1 + t2)

m∑
i=1

(sTk−igk+1)(y
T
k−idk),

where t is defined in (3.4). It is easy to see that setting m = 0, β1
k converts to the Hager

and Zhang choice of βHZ
k with λk = 1

γ1
, see [15]. Therefore, we can see the method (1.2)

and (1.3) with βk = β1
k as a generalization of CG-DESCENT method.

Now, let us to consider the second weight function as

M2 =
2γ3

(m+ 1)(1 + t2)
∑m

i=0 ∥ yk−i ∥2
. (3.14)
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Our motivations behind this choice is firstly to design a new weight parameter with the faster
growing rate than M1, and secondly, to design a method with guaranteeing the sufficient
descent property. We reach to the first goal by finding an appropriate interval of t. More
exactly, we now try to pass some information about M1 to t and introduce a new weight
parameter M2 with the faster growing rate than M1. To see this situation, compare (3.6)
and (3.17), closely. In the end of this section, we will show that M2 grows faster than M1

to infinity.
The following lemma indicates that for a suitable choice of t, dk+1 with βk as in (2.4)

and M = M2 is a sufficient descent direction.

Lemma 3.2. Assume the method (1.2) and (1.3) with the standard Wolfe line search, where
βk is defined in (2.4) and M = M2. Then, for some positive scalers γ3 and γ4 satisfying
γ3 + γ4 < 1,

gTk+1dk+1 ≤ −(1− γ3 − γ4) ∥ gk+1 ∥2, (3.15)

whenever

t ≤ 2γ4(y
T
k sk)

∥ sk ∥
∑m

i=0 ∥ sk−i ∥
. (3.16)

Proof. The proof is essentially similar to the proof of Lemma 3.1.
Using (2.4), we have

gTk+1dk+1 = − ∥ gk+1 ∥2 +
1

Γ

m∑
i=0

(yTk−igk+1)(y
T
k−isk)(g

T
k+1sk)

− 1

2M2Γ(1 + t2)
(gTk+1sk)

2

− t

Γ(1 + t2)

m∑
i=0

(sTk−igk+1)(y
T
k−isk)(g

T
k+1sk), (3.17)

where

Γ =

m∑
i=0

(yTk−isk)
2.

Similar to the proof of Lemma 3.1, we reach to

gTk+1dk+1 ≤ − ∥ gk+1 ∥2 +
t′

4Γ

m∑
i=0

(yTk−igk+1)
2(yTk−isk)

2

+
m+ 1

Γt′
(gTk+1sk)

2 − 1

2M2Γ(1 + t2)
(gTk+1sk)

2

+
t

Γ(1 + t2)

m∑
i=0

|sTk−igk+1||yTk−isk||gTk+1sk|.

Let t′ = 2M2(m+ 1)(1 + t2), we have

gTk+1dk+1 ≤ − ∥ gk+1 ∥2 +
M2(m+ 1)(1 + t2)

2

m∑
i=0

(yTk−igk+1)
2 (3.18)

+
t

2(1 + t2)yTk sk

m∑
i=0

|sTk−igk+1||gTk+1sk|.
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Finally, the Cauchy-Schwarz inequality implies

gTk+1dk+1 ≤ −
[
1−M2(m+ 1)(1 + t2)

2

m∑
i=0

∥ yk−i ∥2 (3.19)

− t

2(1 + t2)sTk yk
∥ sk ∥

m∑
i=0

∥ sk−i ∥
]
∥ gk+1 ∥2 .

Now, the proof is completed using (3.14), (3.16) and (3.19).

Note that, substituting M2 in (2.4), we have

β2
k =

1

Y

m∑
i=0

(yTk−igk+1)(y
T
k−idk)−

m+ 1

4Y γ3

m∑
i=0

∥ yk−i ∥2 (gTk+1dk) (3.20)

− t

Y (1 + t2)

m∑
i=0

(sTk−igk+1)(y
T
k−idk),

where t is a suitable approximation of αk+1 satisfying (3.16).
Lemma 3.2 indicates that there is a degree of freedom in choosing t. In other words, we

are free to choose a value for t between zero and

2γ4(y
T
k sk)

∥ sk ∥
∑m

i=0 ∥ sk−i ∥
.

Since t is an approximation of αk+1, it is reasonable to take

t = min

(
pk,

2γ4(y
T
k sk)

∥ sk ∥
∑m

i=0 ∥ sk−i ∥

)
, (3.21)

where pk is some approximation of αk+1. In our numerical tests, we take pk = αk.
A closer look at M1 and M2 reveals that, for m ≥ 1, M2 can grow faster than M1 to

infinity if we consider the following assumption:

(A2) The gradient g is Lipschitz continuous; namely, there exists a constant L > 0 such
that

∥ ∇f(x)−∇f(y) ∥≤ L ∥ x− y ∥, x, y ∈ Rn.

It is easy to see that

M1 = O

(
1

z
∑m

i=0 ∥ yk−i ∥2

)
, (3.22)

and

M2 = O

(
1∑m

i=0 ∥ yk−i ∥2

)
. (3.23)

Note that, we use (3.16), (A2) and the fact that

t ≤ 2γ4(y
T
k sk)

∥ sk ∥
∑m

i=0 ∥ sk−i ∥
≤ 2γ4L (3.24)

to obtain (3.23).
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For m ≥ 1, it is possible that z to become a large value. Thus, we can expect a larger
value for M2 than M1.

As we explained, a large value for M is desirable. As a consequence, we can expect the
better result of the method (1.2) and (1.3) with βk = β2

k than the method with βk = β1
k.

The numerical results of Section 5 confirm our claim.

4 Global Convergence

We now investigate the global convergence of the method (1.2) and (1.3) for both βk = β1
k

and βk = β2
k. We also assume that the step length αk satisfy the standard Wolfe conditions

(1.4) and (1.5).
The following standard assumptions are considered in this section.

(A3) f(x) is differentiable and bounded below.

(A4) The generated sequence of iterates, xk, is bounded.

The global convergence of descent methods with standard Wolfe line search relies essentially
on the following Zoutendijk condition.

Lemma 4.1. suppose that A2-A4 holds. consider any descent method of the form (1.2)
where αk is determined by standard Wolfe line search. Then we have that

∞∑
k=1

(gTk dk)
2

∥ dk ∥2
< ∞. (4.1)

Our global convergence analysis is similar to that of Hager and Zhang in [15]. Here, we
consider the following modification version of βi

k:

β
(i)
k = max(βi

k, χk), (4.2)

where i ∈ {1, 2} and χk is a real valued function with the following properties:

p1. |χk| ∥ dk ∥ is bounded.

p2. For some 0 < ϵ < 1,

χk ≤ ϵ ∥ gk+1 ∥2

gTk+1dk
,

whenever, gTk+1dk > 0.

Note that, p1 ensures that the search direction dk is bounded and p2 ensures that the
sufficient descent property (1.6) holds.

Lemma 4.2. Suppose the method (1.2) and (1.3) with the choice of βk = β
(i)
k where i

is a fixed value belonging to {1, 2}. Moreover, assume that the standard Wolfe line search
conditions (1.4) and (1.5) are used, then

gTk+1dk+1 ≤ −max(1− ϵ, ξi) ∥ gk+1 ∥2, (4.3)

where

ξi =

{
1− γ1

2 − γ1

2γ2
, i=1;

1− γ3 − γ4, i=2.



466 MASOUD FATEMI

Proof. If βk = βi
k, then (3.3) and (3.15) imply that

gTk+1dk+1 ≤ −ξi ∥ gk+1 ∥2 .

If βk = χk and gTk+1dk < 0, then our previous analysis and the fact that βi
k ≤ χk imply that

gTk+1dk+1 = − ∥ gk+1 ∥2 +χkg
T
k+1dk

≤ − ∥ gk+1 ∥2 +βi
kg

T
k+1dk

≤ −ξi ∥ gk+1 ∥2 .

If βk = χk and gTk+1dk > 0, then property p2 implies

gTk+1dk+1 = − ∥ gk+1 ∥2 +χkg
T
k+1dk

≤ −(1− ϵ) ∥ gk+1 ∥2 .

Now, the proof is completed.

The following lemma is analogue of Lemma 4.3 in [4]

Lemma 4.3. Suppose A1-A4 holds, then for method (1.2) and (1.3) with βk = β
(i)
k where

i is a fixed value belonging to {1, 2}, and a line search satisfying standard Wolfe conditions,
we have

∞∑
k=1

∥ uk − uk−1 ∥2< ∞,

where uk = dk

∥dk∥ , whenever inf ∥ gk ∥≠ 0.

Proof. The proof is basically similar to Lemma 4.3 in [4]. We let

z
(1)
k = max(βi

k − χk, 0),

and
z
(2)
k = χk.

It is easy to see that βk = z
(1)
k + z

(2)
k . Let

wk =
−gk + z

(2)
k−1dk−1

∥ dk ∥
,

and

δk =
z
(1)
k−1 ∥ dk−1 ∥

∥ dk ∥
.

Following the statements of the proof of Lemma 4.3 in [4], we reach to

∥ uk − uk−1 ∥≤ 2 ∥ wk ∥,

Since we assumed that |χk| ∥ dk ∥ is bounded, there exists a constant ϵ > 0 such that

∥ −gk + z
(2)
k−1dk−1 ∥≤∥ gk ∥ +|χk−1| ∥ dk−1 ∥≤ ϵ.

Thus,

∥ uk − uk−1 ∥≤ 2ϵ

∥ dk ∥
.

Now, the proof is completed using (4.3) and the Zoutendijk condition.
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There are some special choices of χk in literatures. For example, the Hager and Zhang
choice of

χk =
−1

∥ dk ∥ min(η, ∥ gk ∥)
, (4.4)

and the Dai and Kon choice of

χk = η
gTk+1dk

∥ dk ∥2
.

We now state the main result.

Theorem 4.4. Suppose that assumptions A1-A4 hold. If the method (1.2) and (1.3) with
βk = βi

k where i is a fixed value belonging to {1, 2}, is implemented on f and the standard
Wolfe line search conditions (1.4) and (1.5) are used, then

lim inf
k→∞

∥ gk ∥= 0.

Proof. Assume that there exists η1 such that ∥ gk ∥> η1 for all k.
If there exists a subsequence kj such that βkj = χkj , then, using p1, we have for some

ϵ > 0,

∥ dkj+1 ∥ =∥ −gkj+1 + βkj
dkj

∥
≤∥ gkj+1 ∥ +|χkj

| ∥ dkj
∥

≤ ϵ.

This bound for dkj+1 and (4.3) yield a contradiction using Zoutendijk condition.
We now assume that βk = βi

k for sufficiently large k. Following the statements of the
proof of Theorem 3.2 in [15], we only address the changes in the parts of the proof.

Part I. (A bound for βk) Using inequalities

yTk dk ≥ (1− c2)max(1− ϵ, ξi)η
2
1 , (4.5)

and
|gTk+1dk|
|yTk dk|

≤ max(
c2

1− c2
, 1), (4.6)

see [15], we show that there exists a constant C > 0 such that

|βk| ≤ C

m∑
i=0

∥ sk−i ∥ . (4.7)

It is easy to see using (3.13) and (3.20) that

|βk| ≤
1

Y

m∑
i=0

|yTk−igk+1||yTk−idk|+ γ5
m+ 1 + γk

6

Y

m∑
i=0

∥ yk−i ∥2 |gTk+1dk|

+
t

Y (1 + t2)

m∑
i=0

|sTk−igk+1||yTk−idk|,

where

γ5 = max(
1

4γ3
,
1

γ1
),
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and

γk
6 =

γ2 ∥ sk ∥
∑m

i=1 ∥ sk−i ∥∑m
i=0 ∥ yk−i ∥2

.

Now, (3.8), (3.9) and the fact that t
1+t2 < 1 imply

|βk| ≤
1

yTk dk

[
1

2

m∑
i=0

|yTk−igk+1|+ γ5(m+ 1 + γk
6 )

m∑
i=0

∥ yk−i ∥2
|gTk+1dk|
yTk dk

+
1

2

m∑
i=0

|sTk−igk+1|
]
.

Using cauchy-Schwarz inequality,

|βk| ≤
1

yTk dk

[
η2
2

m∑
i=0

∥ yk−i ∥ +γ5(m+ 1)

m∑
i=0

∥ yk−i ∥2
|gTk+1dk|
yTk dk

(4.8)

+ γ5γ2 ∥ sk ∥
m∑
i=1

∥ sk−i ∥
|gTk+1dk|
yTk dk

+
η2
2

m∑
i=0

∥ sk−i ∥
]
,

where η2 is an upper bound on ∥ gk ∥.
Now, it is easy to see from (4.8) that using (A2), (A4), (4.5) and (4.6), there exist a

constant C > 0 such that (4.7) holds.
Part II. (A bound on steps) Following the statements of the proof of Part II of Theorem

3.2 in [15], we let ∆ to be a positive integer such that

∆ ≥ 4(m+ 1)CD +m, (4.9)

where D is the diameter of {xk | k ∈ N}. Choose k0 large enough that∑
i≥k0

∥ ui+1 − ui ∥2≤
1

4∆
.

Note that, k0 is well defined due to Lemma 4.3. Following the statements of the proof of
part II of Theorem 3.2 in [15], we have

l−1∑
j=k

∥ sj ∥≤ 2D, (4.10)

when l > k > k0 and l − k ≤ ∆.
Part III. (A bound on the directions) Using (4.7), we have

∥ dl ∥2≤ (∥ gl ∥ +|βl−1| ∥ dl−1 ∥)2 ≤ 2η22 + 2C2(

m∑
i=0

∥ sl−i−1 ∥)2 ∥ dl−1 ∥2 .

Let

Sj = 2C2(

m∑
i=0

∥ sj−i ∥)2.

Thus, for l > k0 +m,

∥ dl ∥2≤ 2η22
( l∑
i=k0+m+1

l−1∏
j=i

Sj

)
+
( l−1∏
j=k0+m

Sj

)
∥ dk0+m ∥ . (4.11)
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Let us focus on the product of ∆−m consecutive Sj , where k ≥ k0 +m:

k+∆−m−1∏
j=k

Sj =

k+∆−m−1∏
j=k

2C2(

m∑
i=0

∥ sj−i ∥)2

=

( k+∆−m−1∏
j=k

√
2C

m∑
i=0

∥ sj−i ∥
)2

≤
(∑k+∆−m−1

j=k (
√
2C

∑m
i=0 ∥ sj−i ∥)

∆−m

)2(∆−m)

≤
(
m
√
2C

∑k+∆−m−1
j=k−m ∥ sj ∥
∆−m

)2(∆−m)

≤
(
2
√
2(m+ 1)CD

∆−m

)2(∆−m)

≤ (
1

2
)∆−m (4.12)

The first inequality is the arithmetic geometric mean inequality and the second and third
inequalities comes from (4.10) and (4.9). Since (4.12) is independent of l, we can deduce
similar to Part III of Theorem 3.2 in [15] that ∥ dl ∥ is bounded independent of l > k0. This
is a contradiction using Zoutendijk condition.

5 Numerical Results

We now investigate the numerical behavior of the two algorithms presented in the previous
sections. The first algorithm is based on the method (1.2) and (1.3) with βk = β1

k (based on
the weight functionM1) and is called M1Cgm, wherem is a specific memory size. The second
algorithm is based on the method (1.2) and (1.3) with βk = β2

k (based on the weight function
M2) and t as in (3.21) with pk = αk. This algorithm is called M2Cgm. In our numerical tests,
we consider the fourth versions of the algorithms corresponding to the choices of m = 0, 1, 3
and 5. Moreover, we note again that M1Cg0 is actually CG-DESCENT with λk = 1

γ1
. The

reported results of M1Cg0 was obtained by downloading and running CG-DESCENT code
obtained from its web page. We compare all versions of the algorithms on unconstrained
problems of CUTEr collection [13]. All runs were performed in MATLAB 2007 on a 2.4
Intel Core 2Duo processor computer with 2GB of RAM. The performance profile of Dolan
and Moré [7] is used to compare the efficiency of the algorithms. Furthermore, We used the
CG-DESCENT line search procedure with the initialization parameters reported in [15] in
our implementations. As in the CG-DESCENT, the algorithms terminate if either

∥ ∇f(xk) ∥∞≤ max(10−6, 10−12 ∥ ∇f(x1) ∥∞),

our the number of iteration exceed 50000. In our algorithms, we used the following initial
parameters:

γ1 = 1, γ2 = 2, γ3 = 0.98 and γ4 = 0.01.

Our rational for these choices was the following: The chosen values γ1 = 1 and γ2 = 2 ensure
that the method converts to CG-DESCENT with the best reported parameter λk = 1, when
m = 0. It is easy to see that the sufficient descent condition (1.6) holds with c = 1

2 . The
chosen values γ3 = 0.98 and γ4 = 0.01 ensure that the weight function M2 in (3.14) is as
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large as possible. Note that, using (3.24), a small choice of γ4 implies that the term 1 + t2

appeared in the denominator of (3.14) is as small as possible. It is easy to see that the
sufficient descent condition (1.6) holds with c = 0.01.

In figures 1-4, we compare M1Cgm with M2Cgm for the same values of m. these figures
give the performance profile for the number of iteration, the number of function and gradient
evaluations. Part (a) of figures 1, 2 and 4 indicate that M2Cg0 have a better performance
than M1Cg0 (CG-DESCENT), specially, in the terms of function and gradient evaluations.
Their efficiency are approximately the same for number of iterations. In practice, we ob-
served that choosing a good approximation pk of αk+1 can strongly improve the efficiency of
M2Cgm. For m ≥ 1, figures 1-4 also indicate that M2Cgm strongly dominate M1Cgm for
all terms. The domination increases by growing m. In the end of Section 3, we claim that
for m ≥ 1, the algorithm based on the weight function M2 can produce the better result
than the algorithm based on the weight function M1. We showed that M2 can grow faster
than M1 to infinity. Figures 1-4 confirm our claim.

In figures 1(d), 3(b) and 4(d), we also show the performance profile of the method when
βk is defined by (2.5) in comparison with the best of all the algorithms, more exactly,
M2Cg5 and M1Cg5 . We denote the corresponding method by MCg∞. We also consider
the following simple truncation strategy to guarantee the sufficient descent property.

βk =

{
β∞
k as defined by (2.5), gTk+1dk+1 ≤ −0.1||gk+1||2;

0, O.W.

As the figures indicated, M2Cg5 and M1Cg5 wins MCg∞. It seems the reason of the poor
efficiency is due to our truncation strategy. In this case, a suitable truncation strategy needs
more investigation.

Figures 5 and 6 give the performance profile of M1Cgm and M2Cgm, for m = 0, 1, 3
and 5. It is easy to see that the efficiency of the algorithms increase by growing m. This
confirms the effectiveness of the memory structure.

6 Conclusions

We have presented a new limited memory class of nonlinear conjugate gradient methods. We
showed that this class contains Dai-Liao family as a subclass. As a consequence, we obtained
a bound for the optimal Dai-Liao parameter. The global convergence of the new method
was investigated under mild assumptions. The numerical comparing results indicated that
the new method is efficient and competitive with CG-DESCENT.
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Figure 1: Iteration performance profile.

Figure 2: Number of function evaluation performance profile.
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Figure 3: Number of function evaluation performance profile (Continued).

Figure 4: Number of gradient evaluation performance profile.
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Figure 5: M1Cgm: (a) Iteration performance profile. (b) Number of function evaluation
performance profile. (c) Number of gradient evaluation performance profile.

Figure 6: M2Cgm: (a) Iteration performance profile. (b) Number of function evaluation
performance profile. (c) Number of gradient evaluation performance profile.
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