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Abstract: We combine the good properties of the linear conjugate gradient algorithm using an optimization
problem, and introduce a new limited memory class of nonlinear conjugate gradient methods. This new
class contains Dai-Liao family as a subclass. Using this idea, we propose a bound for the optimal Dai-
Liao parameter. The global convergence of the new method is investigated under mild assumptions. The
numerical comparing results indicate that the new method is efficient and competitive with CG-DESCENT.
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Introduction
We consider the following unconstrained optimization problem,

min f(z), (1.1)
where f is a smooth function. Conjugate gradient algorithms are a class of efficient algo-
rithms for solving (1.1), specially, when n is large [1,2,5,6,8-11,15,16,18,19]. This class
of methods were originally invented by Hestenes and Stiefel [16] for solving a symmetric
and positive definite linear system of equations and then extended by many authors to han-
dle general optimization problems [3,14]. In a conjugate gradient algorithm, a sequence of
iterates, k11, is generated by the following scheme,

Try1 = T + ardp, (12)

where dj; is a search direction satisfying,

di+1 = —Gk+1 + Brdr,  do = —go. (1.3)

and, o > 0 is a step-length to fulfill the Wolfe conditions,
f(@rgn) — f(xn) < crangf di, (1.4)
Ghi1di > cagph di, (1.5)

where 0 < ¢; < ¢ < 1 are some arbitrary constants and g := V f(xy).
In the linear conjugate gradient method, the scalars f; and oy are so chosen that the
following properties hold:
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458 MASOUD FATEMI

(i) The search direction dj41 is a sufficient descent direction, namely, there exists a scalar
¢ > 0 such that

Giprdiar < = | g |17 (1.6)
(ii) The following conjugacy condition holds:
iy 1yp—i =0, (1.7)
fori=0,...,k.
(iii) The gradient vector gg41 is orthogonal to the Krylov subspace of degree k, namely,

fori=0,...,k.

Tt is shown in the linear conjugate gradient theory that the method (1.2) and (1.3) with
a search direction satisfying (i)-(iii) terminates in finite iterations. Unfortunately, these
properties can not be guaranteed for the non-linear case.

Recently, Hager and Zhang [15] introduced an efficient non-linear conjugate gradient
method which is a subclass of the Dai-Liao family corresponding to

T T
DL _ k+1Yk = TOk415k
ko T
Y dy,

(1.9)

where 7 = )\k%. The authors showed the global convergence of a truncated version
Typ
of their method similar to PRP' of Gilbert and Nocedal [12] under mild assumptions.
Numerical results showed that the method is efficient and robust. Now, an implementation
of the method called CG-DESCENT is available from the Hager’s homepage.
In order to design an efficient non-linear conjugate gradient method, we combine (i)-(iii)

and introduce the following optimization problem

Irﬁlingg+1dk+l + M [(ghose—i)” + (diye—i)?], (1.10)
i=0

where M is the penalty or weight function, and m is an arbitrary constant controlling the
memory size. It is easy to see that the first term in (1.10) contains the information about
(i) and the second term contains the information about (i) and (iii). A large value of M
increases the chance of diy1 and gr42 to satisfy (1.7) and (1.8), respectively, and a small
one increases the effect of sufficient descent property.

Here, we obtain a new expression for 8 by solving (1.10). We show that the optimal
Dai-Liao parameter 7 must be somewhere in the interval (0,1). Furthermore, we introduce
the two weight functions Mj, corresponding to a generalization of CG-DESCENT, and Ma,
and analyze the global convergence of the related algorithms.

The paper is organized as follow: In Section 2, we determine (; by solving (1.10).
Introducing the weight functions M; and M, with the related expressions for [ is the
subject of Section 3. The global convergence of the new methods is investigated in Section
4 and the numerical result is reported in Section 5. Finally, conclusions and discussions are
made in last section.
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The New Limited Memory Class

In this section, we introduce a new family of conjugate gradient methods by solving (1.10).
In order to solve (1.10), we should replace git2 by some of its appropriate estimation,
because it is not available in the current iteration.
Here, we consider the quadratic approximation of the objective function,

1
®(d) = foy1+ gld+ idTBk+1d7
and take V®(ay41di+1) as an estimation of gxyo. It is easy to see that

VO (opt1dit1) = app1Brr1ditr + grt1- (2.1)

Unfortunately, agy1 in (2.1) is not available, because diy;1 is unknown. Thus, we modify
(2.1) and set

Gk+2 = tBrr1di+1 + g1, (2.2)
where ¢ > 0 is a suitable approximation of ay41.
Now, using (1.3) and (2.2), the following expression for 8y is obtained by solving (1.10).

1

=% [ = g+ 2M12 Y (5i;Bri1gi)(si-i Brridy) (2.3)
=0

—2Mt Y (5§ ;gk41)(sh_ i Bry1di)
=0

oM Z@z_igkm(y{_idk)] ,
1=0

where . .
X =2Mt* (s{_;Bryad)® +2M > (yi_de)*.
i=0 i=0
To simpilify (2.3), we consider the following assumption as Yuan and Stoer [20].

(A1) The approximation matrix By, satisfy the extended quasi newton equation

Brt18k—i = Yk—is

fori=0,...,m.

Using (A1), we have
—1 1

T T -
=y ety : d 2.4
Bk 2My(1+t2)gk+1 K+ Y;(yk—zglwrl)(yk,z %) (2.4)

B ﬁ Z(S;{_igkﬂ)(y{_idk),
where i
Y = Z(y{_idk)?
i=0

We note that (A1) is hold for strongly convex quadratic functions with exact line search and
is called the hereditary property.
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Remark 2.1. If f(z) is a strongly convex quadratic function and the line search is exact,

S _ y{ng

e due to (ii) and (iii), and it is exactly the standard

then, (8, converts to B,f
conjugate gradient method.

In the reminder of this section, we analyze 8, when M approaches to infinity.

Indeed, the best choice for the weight function M is M = oo, because it increases the
probability of satisfying (ii) and (iii).

Approaching M to infinity, we obtain

m

B = 3 D gns)wh) (25)
=0

m
+t2 Z sk zgk+1 yk zdk)
=0

It is easy to see that (2.5) is a generalization of the Dai-Liao family. More exactly, setting
m =0,
gl{+1yk t 9{+15k

B = y,{dk B 1+ ¢2 ygdk ’

which equals to SPL with
t
IR
Note that, 7 belongs to (0,1). As a consequence, we see that the optimal value of the
Dai-Liao parameter 7 must be somewhere in (0,1).

Unfortunately, using standard Wolfe line search, it is impossible to ensure the descent
property of the search direction dj.; equipped with Sj defined by (2.5). In other words, by
approaching M to infinity, we lost the information about the descent property of di41. This
difficulty can be overcome if we choose an appropriate weight function M. In next section,
we follow this idea.

The Weight Functions and Descent Directions

In this section, we intended to introduce some suitable weight functions and to show that
the corresponding Sj’s ensure the sufficient descent property (i).
The first weight function is

Al

Ml = ’
223770 lyk—i |12

(3.1)

where

’YQH k”21 1||5'If Z”) (32)
2ico lye—i |12

Our motivations behind this choice are firstly to design a limited memory conjugate gradient
method which is a generalization of CG-DESCENT, and secondly, to design a method which
satisfies the sufficient descent condition independent of the line search procedure. As we will
show later, 8k in (2.4) equipped with M = M; reduces to CG-DESCENT when m = 0, and
so, the method inherits the good properties of the CG-DESCENT method. Here, we do not
claim that M = M is the only possible choice, but, at least our numerical results confirm
the effectiveness of this choice.

z = max(m + 1,
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The following lemma indicates that dy; with Sy as in (2.4) and M = M is a sufficient
descent direction.

Lemma 3.1. Assume the method (1.2) and (1.3) with the standard Wolfe line search, where
B is defined in (2.4) and M = M. Then, for some positive scalers 1 and o satisfying

Fri<
T 4!
d < —(1—-——-—— 3.3
idin < == 2 = 25 g | (33)
whenever -
t= 1Yk (3.4)

D FTE
Proof. We rewrite 8 with M = M in (2.4) as

A
yk iGk+1) yk idi) — ngT+1dk (3.5)

Sk k1) (Y ik,

i

*<I\UU *<\

where
1+ 2Mt(yf sk)

A= ——— k0
2My (1 +¢2) 7

and

It is easy to see

m

1
Gierdier == | grer I° +5 D0k i0841) (Uh—i58) (97 115%)
=0

A
- )’ - ¢ Z St—ih+1) (Wi—isk) (94 158), (3.6)

=1

where

Using inequality

t/2 12
abéza +?b7

where a, b and t' are positive scalers, we have

/ m

t
Gherdirr < = | grer [P+ D Wi-ige41)* (0i-isn)?
=0
m—+1 A
+ T (9k+15k)2—f(ng+1Sk)2

B m
+ 7 D Isk—sgn |l sskllgi s sk
=1
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Let t' = mA +1 we have

m+ 1 —
girdir < = |l ge |2 TIA (Yi—igrt1)?

i=0

B
+ Z| Sh—iGk 11|98 415k
ka
Here, we use the inequalities
T 2
'S
(yk—]:: k)) S 17

and
2yi sullye—ssul < (yi s6)® + (a_sse)® < T,
to obtain (3.7). Finally, using the Cauchy-Schwarz inequality, we have

m+1
i < — [— §]wkw

_B sk I iy Il Sk—i w | gest |12

2yl sk
Note that, using (3.1) and (3.2),

m+1l_ Mi(1+t*)z 8!
44 T 21+ 2Mat(yse) A0 lyk—i |17

and

B skl iy sk Il _ sk 1 3252 1 sk |
ka Sk - ngsk.
< sk ll 22550 Il sk |
250 s IP
<o
T 27
Now, the proof is completed using (3.10), (3.11) and (3.12).

If we substitute (3.1) in (3.5), then

m

m

z
Z Y igk1) (Wi sdi) — Yo >l ve—i 1P (9F1dn)
1=0 =0

m
1+t2 Z Sk: zngrl yk zdk)
i=1

(3.11)

(3.12)

(3.13)

where ¢ is defined in (3.4). It is easy to see that setting m = 0, 3} converts to the Hager
and Zhang choice of % with A\, = %, see [15]. Therefore, we can see the method (1.2)

and (1.3) with 8, = 3} as a generalization of CG-DESCENT method.
Now, let us to consider the second weight function as

273
(m+ 1)1 +2) 3200 [y |12

My =

(3.14)



A LIMITED MEMORY CLASS OF CONJUGATE GRADIENT METHODS 463

Our motivations behind this choice is firstly to design a new weight parameter with the faster
growing rate than Mj, and secondly, to design a method with guaranteeing the sufficient
descent property. We reach to the first goal by finding an appropriate interval of . More
exactly, we now try to pass some information about M; to ¢t and introduce a new weight
parameter My with the faster growing rate than M;. To see this situation, compare (3.6)
and (3.17), closely. In the end of this section, we will show that My grows faster than M;
to infinity.

The following lemma indicates that for a suitable choice of ¢, dxy1 with Sy as in (2.4)
and M = M, is a sufficient descent direction.

Lemma 3.2. Assume the method (1.2) and (1.3) with the standard Wolfe line search, where
Br is defined in (2.4) and M = Ms. Then, for some positive scalers v3 and vy satisfying
Y3+ va < 17 T )
Gir1drr1 < —(L—v3 —74) || grt1 |17, (3.15)
whenever ’
2
< Yl se) (3.16)
s 1 22520 Il st |

Proof. The proof is essentially similar to the proof of Lemma 3.1.
Using (2.4), we have

1 m
ng+1dk+1 =— || ges1 |I? +f Z Yi—irr1)( yk—isk)(ngHSk)
i=0

1 T 2
LTI+ ) k1)

t m

T4 D (St_igkr ) (Wh_isk) (G158, (3.17)
1=0

where .
I'= Z(ygﬂsla)Q
i=0

Similar to the proof of Lemma 3.1, we reach to
T AT, 2/, T 2
Je+1dr+1 < = | grr 17 75 D (Yk—igk+1)” (Ye—isk)
i=0
m+1 1 T 9
+ T (Ghi1sK)? — LTI+ 2) (Gr+15k)

t T T T
+ INGERE) ; |8k —i Gkt 1Yk —iSk||Ght15k |-

Let ' = 2My(m + 1)(1 + t?), we have

m

Ms(m + 1)(1 +¢2)
Fadinr < — | grn |12+ 220 LS ) (3.18)
1=0

m

t
Z |5k iGk+1] |gk+15k|

_|_ N,
2(1+t2)yf sp
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Finally, the Cauchy-Schwarz inequality implies

Moy(m +1)(1+12) &
Gordir < |1 RO DLEEL N7 e (3.19)
=0

t
a/1 0 2o\ T S
s 0 o] o I

Now, the proof is completed using (3.14), (3.16) and (3.19). O

Note that, substituting My in (2.4), we have

m m+1
Z i igren) (Yi_sdy) — Z | yr—i 1 (974 1d) (3.20)
=0

m
1+t2 > (sh_igra) (Wi—sd),
=0

where ¢ is a suitable approximation of a1 satisfying (3.16).
Lemma 3.2 indicates that there is a degree of freedom in choosing ¢. In other words, we
are free to choose a value for ¢ between zero and

274 (i sk)

(7 Dy 7Sy

Since t is an approximation of a1, it is reasonable to take

) 274 (y{ sk) )
t = min | pg, 3.21
( Ton 2o oni | (32)

where pj, is some approximation of ajy1. In our numerical tests, we take py = a.
A closer look at My and Ms reveals that, for m > 1, My can grow faster than M; to
infinity if we consider the following assumption:

(A2) The gradient g is Lipschitz continuous; namely, there exists a constant L > 0 such
that
IVf@)=Viy)l<Llz-yl, xyeR™

It is easy to see that

1
M, = O( m )7 (322>
22 im0 | yr—i |17
and )
M, = 0<m>. (3.23)
Dico lye—i 12
Note that, we use (3.16), (A2) and the fact that
2 T
t< Valy 5k) < 2L (3.24)
Fse 11 3250 Il sk |

to obtain (3.23).
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For m > 1, it is possible that z to become a large value. Thus, we can expect a larger
value for My than M.

As we explained, a large value for M is desirable. As a consequence, we can expect the
better result of the method (1.2) and (1.3) with 3, = 7 than the method with 8, = S}.
The numerical results of Section 5 confirm our claim.

Global Convergence

We now investigate the global convergence of the method (1.2) and (1.3) for both 8 = 3}
and (), = B7. We also assume that the step length y, satisfy the standard Wolfe conditions
(1.4) and (1.5).

The following standard assumptions are considered in this section.

(A3) f(x) is differentiable and bounded below.

(A4) The generated sequence of iterates, xy, is bounded.
The global convergence of descent methods with standard Wolfe line search relies essentially
on the following Zoutendijk condition.
Lemma 4.1. suppose that A2-Aj holds. consider any descent method of the form (1.2)

where ay, is determined by standard Wolfe line search. Then we have that

i (g di)* < 00. (4.1)

2
2 dy |

Our global convergence analysis is similar to that of Hager and Zhang in [15]. Here, we
consider the following modification version of 3 :

where i € {1,2} and xj is a real valued function with the following properties:

pl. |xx| || di || is bounded.

p2. For some 0 <€ < 1,
el gr+a |

<
gg+1dk

)

whenever, ng+1dk > 0.
Note that, pl ensures that the search direction d is bounded and p2 ensures that the
sufficient descent property (1.6) holds.

Lemma 4.2. Suppose the method (1.2) and (1.8) with the choice of B = B,(j) where i
is a fized value belonging to {1,2}. Moreover, assume that the standard Wolfe line search
conditions (1.4) and (1.5) are used, then

Gip1diy1 < —max(l —€,&) || grr1 || (4.3)

_ 1 m i—1-
&= { 2 2y Z._J’
1 — 73— V4, i=2.

where
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Proof. 1f B, = B, then (3.3) and (3.15) imply that

Ge1di1 < =& || gesr |1

If B = xr and ggﬂdk < 0, then our previous analysis and the fact that 8; < xj imply that

91{+1dk+1 =— || grt1 ||2 +ngg+ldk
< — [l grgr I” +Bigiy1dn
< =& | grsr |7

If By = xx and ng+1dk > 0, then property p2 implies

9{+1dk+1 =— |l grs1 ||2 +ngg+1dk
<S—(1=¢) [l grsr |7
Now, the proof is completed. O

The following lemma is analogue of Lemma 4.3 in [4]

Lemma 4.3. Suppose A1-A4 holds, then for method (1.2) and (1.3) with By = B,(:) where
i is a fized value belonging to {1,2}, and a line search satisfying standard Wolfe conditions,
we have

o0
>l uk —uk—q < o0,
k=1

di

where up = T

whenever inf || g || 0.

Proof. The proof is basically similar to Lemma 4.3 in [4]. We let

21(61) = max (B} — Xk, 0),

and )
Zl(c ) = Xk-
It is easy to see that B = z,(cl) + z,?). Let
w —gk + Z]izjldk—l
E= o
| d ||

and "
5 = 22y | di—1 ||
| d ||

Following the statements of the proof of Lemma 4.3 in [4], we reach to
|k —wp—y <2 we ],

Since we assumed that |xx| || di || is bounded, there exists a constant € > 0 such that

2
I =g+ 2 di 1<) gk |l +lxna | dir 1< e

Thus,

2¢
[ uk —ugp—1 |< 75—

I di I
Now, the proof is completed using (4.3) and the Zoutendijk condition. O
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There are some special choices of xj in literatures. For example, the Hager and Zhang

choice of
-1

|y [ min(n, [ gi 1)’

Xk (4.4)
and the Dai and Kon choice of

i = n.‘]l{+1dk
| d |12

‘We now state the main result.

Theorem 4.4. Suppose that assumptions A1-A4 hold. If the method (1.2) and (1.3) with
Bx = Bi where i is a fized value belonging to {1,2}, is implemented on f and the standard
Wolfe line search conditions (1.4) and (1.5) are used, then

liminf || g5 ||= 0.
k—o0

Proof. Assume that there exists n; such that || gi ||> n for all k.
If there exists a subsequence k; such that S, = xx,, then, using pl, we have for some
€ >0,

| di;+1 | =Il =gk, +1 + Br,di, |
<II gr,+1 [ +Ixw, | di; |
<e.

This bound for dy, 1 and (4.3) yield a contradiction using Zoutendijk condition.

We now assume that 8, = 3 for sufficiently large k. Following the statements of the
proof of Theorem 3.2 in [15], we only address the changes in the parts of the proof.

Part I. (A bound for §;) Using inequalities

yi di. > (1 = ez) max(1 — €, &), (4.5)
and o |
Jr419k

—=——— < max , 1), 4.6

i =" o)

see [15], we show that there exists a constant C' > 0 such that

Bl O3 lsnss |- (4.7)

=0

It is easy to see using (3.13) and (3.20) that

‘Bk| < ? Z |ylz—29k+1||y{,zdk| + ’}/5#6 Z || Vi ||2 \gg+1dk|
=0 =0
t m
e DRIL ST T
1=0

where
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and -
k2 llsk D0 [l sk ||
’ o e IP
Now, (3.8), (3.9) and the fact that 14-% < 1 imply

|Br| < 1{1in Gh1] +75(m+1+7’“)i i |2 19710k |

v 2¢:0 e ’ i=0 B Vi di

1 m
t3 > |Sf—¢9k+1|] :

i=0
Using cauchy-Schwarz inequality,
1 [ - o 1971k

Bl < [ Yk—i || +ys(m +1 Ye—i I© —7— 4.8
901 < | 5 2 et om0 X Nt P 20 (48)

= |9kT+1dk| 2 u
+ 572 | sk |l Z | sk—i | “Ta T ?Z I se—i Il |
i=1 Yy Ok i=0

where 75 is an upper bound on || g |-

Now, it is easy to see from (4.8) that using (A2), (A4), (4.5) and (4.6), there exist a
constant C' > 0 such that (4.7) holds.

Part II. (A bound on steps) Following the statements of the proof of Part IT of Theorem
3.2 in [15], we let A to be a positive integer such that

A >4(m+1)CD +m, (4.9)
where D is the diameter of {z), | k € N}. Choose ko large enough that
1
Z | iy —wi [?< A
ZZko

Note that, ko is well defined due to Lemma 4.3. Following the statements of the proof of
part IT of Theorem 3.2 in [15], we have

-1
> i sjlI< 2D, (4.10)
i=k

when | > k > kg and [ — k < A.
Part III. (A bound on the directions) Using (4.7), we have

ldi IP< (1 gu | +1Bi-a] 1T i1 1D)* < 205 + 262 |l simim1 ) [l dia |-
=0

Let -
S; =207 |l s5-i D™
i=0
Thus, for [ > kg + m,

l -1 -1
P P<203( > TIS)+C II S0 I digsem |- (4.11)

i=ko+m+1 j=i j=ko+m
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Let us focus on the product of A —m consecutive S;, where k > kg + m:

k+A—m—1 k+A—m—1

H 2C2Z”SJZH
H cgnsm)

=
o
I

iA fczz ol sj- z)>2<ﬂ ™)

(

(=5
<

(

meZerkA T sy N\ 2AT™
A—m

(4.12)

The first inequality is the arithmetic geometric mean inequality and the second and third
inequalities comes from (4.10) and (4.9). Since (4.12) is independent of I, we can deduce
similar to Part IIT of Theorem 3.2 in [15] that || d; || is bounded independent of [ > kg. This
is a contradiction using Zoutendijk condition. O

Numerical Results

We now investigate the numerical behavior of the two algorithms presented in the previous
sections. The first algorithm is based on the method (1.2) and (1.3) with 8, = 3}, (based on
the weight function M) and is called M1Cgm, where m is a specific memory size. The second
algorithm is based on the method (1.2) and (1.3) with 3, = 7 (based on the weight function
Ms) and t as in (3.21) with py = ay. This algorithm is called M2Cgm. In our numerical tests,
we consider the fourth versions of the algorithms corresponding to the choices of m = O, 1,3
and 5. Moreover, we note again that M1Cg0 is actually CG-DESCENT with Ay = 7 . The
reported results of M1Cg0 was obtained by downloading and running CG- DESCENT code
obtained from its web page. We compare all versions of the algorithms on unconstrained
problems of CUTEr collection [13]. All runs were performed in MATLAB 2007 on a 2.4
Intel Core 2Duo processor computer with 2GB of RAM. The performance profile of Dolan
and Moré [7] is used to compare the efficiency of the algorithms. Furthermore, We used the
CG-DESCENT line search procedure with the initialization parameters reported in [15] in
our implementations. As in the CG-DESCENT, the algorithms terminate if either

I Vf (k) lloo < max(107%,1072 || Vf(21) [|oo),

our the number of iteration exceed 50000. In our algorithms, we used the following initial
parameters:
1 =1, v2 =2, v3 = 0.98 and 74 = 0.01.

Our rational for these choices was the following: The chosen values y; = 1 and 72 = 2 ensure
that the method converts to CG-DESCENT with the best reported parameter A\ = 1, when
m = 0. It is easy to see that the sufficient descent condition (1.6) holds with ¢ = % The
chosen values 73 = 0.98 and v4 = 0.01 ensure that the weight function M in (3.14) is as
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large as possible. Note that, using (3.24), a small choice of 4 implies that the term 1 + 2
appeared in the denominator of (3.14) is as small as possible. It is easy to see that the
sufficient descent condition (1.6) holds with ¢ = 0.01.

In figures 1-4, we compare M1Cgm with M2Cgm for the same values of m. these figures
give the performance profile for the number of iteration, the number of function and gradient
evaluations. Part (a) of figures 1, 2 and 4 indicate that M2Cg0 have a better performance
than M1Cg0 (CG-DESCENT), specially, in the terms of function and gradient evaluations.
Their efficiency are approximately the same for number of iterations. In practice, we ob-
served that choosing a good approximation py of a1 can strongly improve the efficiency of
M2Cgm. For m > 1, figures 1-4 also indicate that M2Cgm strongly dominate M1Cgm for
all terms. The domination increases by growing m. In the end of Section 3, we claim that
for m > 1, the algorithm based on the weight function M2 can produce the better result
than the algorithm based on the weight function M1. We showed that M2 can grow faster
than M1 to infinity. Figures 1-4 confirm our claim.

In figures 1(d), 3(b) and 4(d), we also show the performance profile of the method when
Br is defined by (2.5) in comparison with the best of all the algorithms, more exactly,
M2Cgh and M1Cgh . We denote the corresponding method by MCgoo. We also consider
the following simple truncation strategy to guarantee the sufficient descent property.

B = B as defined by (2.5), gg+1dk+1 < —0.1|gra1 %
k 0, O.W.

As the figures indicated, M2Cg5 and M1Cgh wins MCgoo. It seems the reason of the poor
efficiency is due to our truncation strategy. In this case, a suitable truncation strategy needs
more investigation.

Figures 5 and 6 give the performance profile of M1Cgm and M2Cgm, for m = 0,1,3
and 5. It is easy to see that the efficiency of the algorithms increase by growing m. This
confirms the effectiveness of the memory structure.

@ Conclusions

We have presented a new limited memory class of nonlinear conjugate gradient methods. We
showed that this class contains Dai-Liao family as a subclass. As a consequence, we obtained
a bound for the optimal Dai-Liao parameter. The global convergence of the new method
was investigated under mild assumptions. The numerical comparing results indicated that
the new method is efficient and competitive with CG-DESCENT.
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Figure 1: Iteration performance profile.

Figure 2: Number of function

evaluation performance profile.
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Figure 3: Number of function evaluation performance profile (Continued).

Figure 4: Number of gradient evaluation performance profile.
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Figure 5: M1Cgm: (a) Iteration performance profile. (b) Number of function evaluation
performance profile. (¢) Number of gradient evaluation performance profile.
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Figure 6: M2Cgm: (a) Iteration performance profile. (b) Number of function evaluation
performance profile. (¢) Number of gradient evaluation performance profile.
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