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The system of multi-linear equations is related to the tensor complementarity problem
denoted by TCP, which is to find a vector x ∈ Rn such that

x ≥ 0, Axm−1 − b ≥ 0, x⊤(Axm−1 − b) = 0, (1.2)

where A ∈ Tm,n and b ∈ Rn are given. The TCP has been studied extensively in recent
years [1–3, 6–8, 12, 13, 18, 19, 22–26, 29, 30]. It is obvious that every nonnegative solution of
multi-linear equations (1.1) is a solution of the TCP (1.2).

Recently, the system of multi-linear equations has been attracting a lot of attention and
has been a new topic emerged from the tensor community. Li and Ng [15] proposed some
iterative methods for solving a set of sparse nonnegative multi-linear equations arising from
data mining applications and obtained the linear convergence of the Jacobi and Gauss-Seidel
methods under suitable conditions. Ding and Wei [5] proposed several iterative algorithms
for solving multi-linear nonsingular M-equations. Han [9] proposed a homotopy method for
solving multi-linear equations with M-tensors. Xie, Jin and Wei [27] defined the generalized
circulant tensors and considered solving multi-linear equations with a circulant tensor by a
fast algorithm based on the fast Fourier transform. Xie, Jin and Wei [28] proposed a new
tensor method for multi-linear equations based on the rank-1 approximation of the coefficient
tensor which is a strong M-tensor. Li, Xie and Xu [14] proposed a Newton-Gauss-Seidel
method for multi-linear equations, and the proposed method can be extended to solve a
general system of symmetric tensor equations. Liu, Li, and Vong [17] proposed some tensor
splitting algorithms for multi-linear equations. More recently, He, Ling, Qi and Zhou [10]
proved that solving multilinear systems with M -tensors is equivalent to solving systems of
nonlinear equations where the involving functions are P -functions, by which the authors
proposed a globally and quadratically convergent algorithm for solving multilinear systems
with M -tensors.

As previously mentioned, the research on the system of multi-linear equations mainly
focuses on how to design effective methods to solve it. There are also two papers to study
properties of the solution set of multi-linear equations. Ding and Wei [5] proved that the sys-
tem of nonsingular M-equations has a unique positive solution for any positive right-hand-
side vector b; and Liu, Li, and Vong [17] discussed the existence and uniqueness conditions of
solution to multi-linear equations. Motivated by the papers mentioned above, we investigate
properties of the nonnegative solution set of multi-linear equations. More specifically, we
investigate the existence and uniqueness, and the non-existence of nonnegative solution of
multi-linear equations and the boundedness of the nonnegative solution set of multi-linear
equations, where the associated tensors are some triangular tensors or B (B0) tensors or
strictly diagonally dominant tensors.

The rest of this paper is organized as follows. In Section 2, we recall some basic definitions
and results which will be used in the sequel. In Section 3, we discuss the existence and
uniqueness of nonnegative (positive) solution to multi-linear equations with some triangular
tensors and extend the obtained results to the case of a more general form of multi-linear
equations. Several non-existence results for multi-linear equations with some structured
tensors are also included in this section. In Section 4, we discuss the boundedness of the
solution set of multi-linear equations with some structured tensors. The final conclusions
are given in Section 5.

2 Preliminaries

Given A = (ai1i2···im) ∈ Tm,n. A is called a nonnegative tensor if all of its entries are
nonnegative. The entries of A are said to be diagonal entries if and only if i1 = i2 = · · · = im;
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and A is said to be a unit tensor if its diagonal entries aii···i = 1 for all i ∈ [n] and other
entries are all zeros. We use the definition of triangular part of a tensor given in [5], i.e., the
lower triangular part of A contains the entries ai1i2···im with i1 ∈ [n] and i2, i3, . . . , im ≤ i1;
and other entries are said to be the off-lower triangular entries. The strictly lower triangular
part consists of the entries ai1i2···im with i1 ∈ [n]\{1} and i2, i3, . . . , im < i1. Similarly, the
upper triangular part of A contains the entries ai1i2···im with i1 ∈ [n] and i2, i3, . . . , im ≥ i1;
and other entries are said to be off-upper triangular entries. The strictly upper triangular
part consists of the entries ai1i2···im with i1 ∈ [n− 1] and i2, i3, . . . , im > i1.

Definition 2.1. A tensor A = (ai1i2···im) ∈ Tm,n is called a lower (an upper) triangular
tensor if its entries in the off-lower(off-upper) triangular part are zeros.

In the last few years, many classes of structured tensors have been introduced and stud-
ied, see the excellent monograph by Qi and Luo [21]. In the following, we recall some
structured tensors and related results which will be used in this paper.

The eigenvalues of tensors are initially introduced and studied by Qi [20] and Lim [16].
If a scalar λ and a nonzero vector x ∈ Rn satisfy

Axm−1 = λx[m−1],

where A ∈ Tm,n and x[m−1] := (xm−1
1 , xm−1

2 , . . . , xm−1
n )⊤, then λ is said to be an H-

eigenvalue of A and x is said to be a corresponding H-eigenvector. The spectral radius of
A is defined by

ρ(A) = max{|λ| : λ is an H-eigenvalue of A}.
A tensor which can be expressed by A = sI − B is called an M-tensor, where B is a
nonnegative tensor and s ≥ ρ(B). Furthermore, if s > ρ(B), A is said to be a nonsingular
M-tensor.

The following definition and result about strong P tensors were given by Bai, Huang and
Wang [1].

Definition 2.2. A ∈ Tm,n is a strong P tensor if and only if

max
i∈[n]

{(xi − yi)[(Axm−1)i − (Aym−1)i]} > 0 for any x, y ∈ Rn with x ̸= y.

Theorem 2.1. If A ∈ Tm,n is a strong P tensor, then the TCP (1.2) has a unique solution
for any b ∈ Rn.

The following definition and result about B (B0) tensors were given by Song and Qi [23].

Definition 2.3. A = (ai1i2···im) ∈ Tm,n is said to be a B tensor if and only if
n∑

i2,i3,...,im=1

aii2···im > 0, ∀i ∈ [n],

1

nm−1

(
n∑

i2,i3,...,im=1

aii2···im

)
> aij2···jm , ∀(j2, j3, . . . , jm) ̸= (i, i, . . . , i);

and a B0 tensor if and only if
n∑

i2,i3,...,im=1

aii2···im ≥ 0, ∀i ∈ [n],

1

nm−1

(
n∑

i2,i3,....,im=1

aii2...im

)
≥ aij2···jm , ∀(j2, j3, . . . , jm) ̸= (i, i, . . . , i).
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Theorem 2.2. Let A = (ai1i2···im) ∈ Tm,n. If A is a B tensor, then

aii···i >
∑

aii2···im<0

|aii2···im |, ∀i ∈ [n];

and if A is a B0 tensor, then

aii···i ≥
∑

aii2···im<0

|aii2···im |, ∀i ∈ [n].

The following definition about (strictly) diagonally dominant tensors were given by Ding,
Luo and Qi [3].

Definition 2.4. A = (ai1i2···im) ∈ Tm,n is called a diagonally dominant tensor if and only
if

|aii···i| −
∑

(i2,i3,...,im )̸=(i,i,...,i)

|aii2···im | ≥ 0, ∀i ∈ [n];

and a strictly diagonally dominant tensor if and only if

|aii···i| −
∑

(i2,i3,...,im )̸=(i,i,...,i)

|aii2···im | > 0, ∀i ∈ [n].

In the following two sections, we also use the following notations: Rn
+ := {x ∈ Rn : xi ≥

0 for all i ∈ [n]} and Rn
++ := {x ∈ Rn : xi > 0 for all i ∈ [n]}.

3 Existence, Uniqueness and Non-existence of Nonnegative Solu-
tion to Multi-linear Equations

In this section, we main study the existence and uniqueness of nonnegative (positive) solution
to multi-linear equations (1.1) with some triangular tensors, and extend the obtained results
to a class of multi-linear equations which contains (1.1) as a special case. In addition, we also
give several results on the non-existence of nonnegative solution to multi-linear equations
(1.1) with a B tensor or a diagonally dominant tensor.

Theorem 3.1. Let b ∈ Rn and A = (ai1i2···im) ∈ Tm,n be a lower triangular tensor with
positive diagonal entries. If

(C1) all entries in the strictly lower triangular part are nonpositive,

then, Axm−1 = b has at least one nonnegative solution if b ∈ Rn
+; and Axm−1 = b has at

least one positive solution if b ∈ Rn
++.

Furthermore, if one of the following conditions is met:

(C2) all entries in the lower triangular part, which are neither in the strictly lower trian-
gular part nor in the diagonal part, are nonnegative;

(C3) A is a strong P tensor,

then, Axm−1 = b has a unique nonnegative solution if b ∈ Rn
+; and Axm−1 = b has a unique

positive solution if b ∈ Rn
++.
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Proof. Denote F (x) := Axm−1 − b with Fi(x) := (Axm−1)i − bi for all i ∈ [n]. We divide
the proof into the following four parts.

(i) We assume that b ∈ Rn
+ and Condition (C1) holds. Since A is a lower triangular

tensor, it follows that

F1(x) = a11···1x
m−1
1 − b1,

F2(x) =
2∑

i2,...,im=1

a2i2···imxi2 · · ·xim − b2,

· · · · · ·

Fi(x) =
i∑

i2,...,im=1

aii2···imxi2 · · ·xim − bi,

· · · · · ·

Fn(x) =
n∑

i2,...,im=1

ani2···imxi2 · · ·xim − bn.

(3.1)

It is easy to see that Fi(x) is a function of variables x1, . . . , xi for any i ∈ [n]. Thus, we can
consider successively Fi(x) = 0 for i ∈ [n] to construct a nonnegative (positive) solution of
F (x) = 0.

For F1(x) = 0, we define a real-valued function f1 : R → R by

f1(x1) := a11···1x
m−1
1 − b1. (3.2)

Then, f1(x1) = 0 has a nonnegative solution x̄1 =

(
b1

a11···1

) 1
m−1

since a11···1 > 0 and b1 ≥ 0.

For F2(x) = 0, we define a real-valued function f2 : R → R by

f2(x2) :=

2∑
i2,...,im=1

a2i2···imzi2 · · · zim − b2 (3.3)

where zij (j = 2, . . . ,m) are defined by

zij :=

{
x2, ij = 2,
x̄1, ij = 1.

Clearly, f2(0) = a211···1x̄
m−1
1 − b2 ≤ 0 since a211···1 ≤ 0 and b2 ≥ 0. If f2(0) = 0, we take

x̄2 = 0. If f2(0) < 0, there exists x̂2 > 0 such that f2(x̂2) > 0 because of a22···2 > 0. Then
there exists x̄2 ∈ (0, x̂2) such that f2(x̄2) = 0 from zero point theorem.

Now, we show the result by mathematical induction. For any k ∈ {3, . . . , n}, we assume
that, for any i ∈ {3, . . . , k − 1}, by Fi(x) = 0 we define fi : R → R (similar to (3.3)) and
obtain that there exists x̄i ∈ Rn

+ such that fi(x̄i) = 0. We show that the result holds when
i = k. In this case, we define real-valued functions fk : R → R by

fk(xk) :=

k∑
i2,...,im=1

aki2···imzi2 · · · zim − bk (3.4)

where zij (j = 2, . . . ,m) are defined by

zij :=

{
xk, ij = k,
x̄i, ij = i with i ∈ {1, 2, 3, . . . , k − 1}.
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Since bk ≥ 0 and aki2···im ≤ 0 for all i2, . . . , im ∈ [k − 1], it follows that

fk(0) =

k−1∑
i2,...,im=1

aki2···im x̄i2 · · · x̄im − bk ≤ 0.

If fk(0) = 0, we take x̄k = 0. If fk(0) < 0, there exists x̂k > 0 such that fk(x̂k) > 0 because
of aki···i > 0. Then there exists x̄k ∈ (0, x̂k) such that fk(x̄k) = 0 from zero point theorem.
Thus, we can obtain recursively nonnegative real numbers x̄1, x̄2, . . . , x̄n with fi(x̄i) = 0 for
all i ∈ [n]. Denote x̄ = (x̄1, x̄2, . . . , x̄n)

⊤. Then, by definitions of Fi(x) and fi(xi) (i.e.,
(3.1), (3.2) and (3.4)), it is easy to see that x̄ ∈ Rn

+ and Fi(x̄) = 0 for all i ∈ [n]. Thus,
Axm−1 = b has at least one nonnegative solution if b ∈ Rn

+.
(ii) We assume that b ∈ Rn

++ and Condition (C1) holds. In this case, it is easy to see
that fi(0) < 0 for any i ∈ {2, 3, . . . , n} where fi is defined by (3.2) and (3.4); and hence,
similar to the proof given in (i), we can obtain that Axm−1 = b has at least one positive
solution if b ∈ Rn

++.
(iii) We assume that Conditions (C1) and (C2) hold. Based on the proof given in (i),

we further show that each real-valued function fi defined by (3.2) and (3.4) is strictly
monotonically increasing on R+.

First, it is easy to show that the function f1 defined by (3.2) is strictly monotonically
increasing on R+ since a11···1 > 0.

Second, for any fixed i ∈ {2, 3, . . . , n} and k ∈ {0, 1, . . . ,m− 1}, we define

Ω
(i)
k :=

{
(i2, . . . , im) :

there are k indices ij satisfying ij = i; and
other indices ij belong to {1, 2, . . . , i− 1}

}
and

p
(i)
k :=

∑
(i2,...,im)∈Ω

(i)
k

aii2···imzi2 · · · zim

where zij (j = 2, . . . ,m) are defined by

zij :=

{
1, ij = i,
x̄l, ij = l with l ∈ {1, 2, 3, . . . , i− 1}.

Then, the real-valued function fi defined by (3.4) can be re-written as

fi(xi) = p
(i)
m−1x

m−1
i + p

(i)
m−2x

m−2
i + · · ·+ p

(i)
2 x2

i + p
(i)
1 xi + p

(i)
0 − bi,

and hence,

f ′
i(xi) = (m− 1)p

(i)
m−1x

m−2
i + (m− 2)p

(i)
m−2x

m−3
i + · · ·+ 2p

(i)
2 xi + p

(i)
1 .

It is easy to see that p
(i)
m−1 = aii···i > 0. In addition, by Condition (C2), it is easy to see that

aii2···im ≥ 0 for all (i2, . . . , im) ∈ Ω
(i)
k with k ̸= 0. This, together with (x̄1, . . . , x̄i−1)

⊤ ∈ Ri−1
+

and the definition of p
(i)
k , implies that p

(i)
k ≥ 0 for all k ∈ {1, . . . ,m− 2}. Thus,

f ′
i(xi) > 0 ∀xi ∈ (0,+∞),

which implies that for any i ∈ {2, 3, . . . , n}, the function fi is strictly monotonically increas-
ing on R+.
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Therefore, for any i ∈ {1, 2, . . . , n}, the function fi is strictly monotonically increasing
on R+. This, together with (i) and (ii), implies that Axm−1 = b has a unique nonnegative
solution for any b ∈ Rn

+ and Axm−1 = b has a unique positive solution if b ∈ Rn
++.

(iv) We assume that Conditions (C1) and (C3) hold. Since every nonnegative solution
of Axm−1 = b must be a solution of the TCP (1.2), and by Theorem 2.1, the TCP has a
unique solution when Condition (C3) holds, it follows from the results obtained in (i) and
(ii) that Axm−1 = b has a unique nonnegative solution for any b ∈ Rn

+ and Axm−1 = b has
a unique positive solution if b ∈ Rn

++.
Combining (i)-(iv), we complete the proof.

In [5], Ding and Wei obtained the following results:

• Let A ∈ Tm,n be a lower triangular nonsingular M-tensor. Then, Axm−1 = b has
at least one nonnegative solution if b is a nonnegative vector, and Axm−1 = b has a
unique positive solution if b is a positive vector.

It is known that for any lower triangular nonsingular M-tensor, its diagonal entries are
positive [4], and its off-diagonal entries in the lower triangular part are nonpositive [4,5]. It
is easy to see that it is possible that a lower triangular tensor, which has positive entries
and satisfies condition (C1), is not a nonsingular M-tensor. In particular, if this tensor
additionally satisfies condition (C2), then it must not be a nonsingular M-tensor.

In addition, for any lower triangular tensor A ∈ Tm,n with positive diagonal entries, a
natural question is whether condition (C1) and condition (C3) are compatible or not. The
following example can answer this question.

Example 3.2. Let A = (ai1i2i3i4) ∈ T4,3 with a1111 = a2222 = a3333 = a3311 = 1, a3131 =
−1, and others being zeros; and b = (1, 2, 3)T .

Obviously, A is a lower triangular tensor with positive diagonal entries and satisfies
Condition (C1), and it is easy to see that

max
i∈{1,2,3}

(xi − yi)(Ax3 −Ay3)i = max
i∈{1,2,3}

(xi − yi)(x
3
i − y3i ) > 0

for any x, y ∈ R3 with x ̸= y, which implies that A is a strong P tensor, i.e., Condition (C3)
holds. Thus, the concerned tensor satisfies conditions given in Theorem 3.1. Since the given
b is a positive vector, by Theorem 3.1, Axm−1 = b has a unique positive solution. Indeed, it
is easy to check that (1, 3

√
2, 3

√
3)T is the unique positive solution of Axm−1 = b. In addition,

it should be pointed that the tensor concerned in this example is not a nonsingular M-tensor
since the off-diagonal entry a3311 is positive.

Therefore, the results given in Theorem 3.1 can be viewed as some supplements of the
above results by Ding and Wei.

In the same way as the proof of Theorem 3.1, we can obtain the following result.

Corollary 3.3. Let A ∈ Tm,n be a lower triangular tensor with positive diagonal entries
and Condition (C1) in Theorem 3.1 be satisfied. Suppose that, for any k ∈ {2, . . . ,m− 1},
Bk ∈ Tk,n are given lower triangular tensors whose entries in strictly lower triangular part
are nonpositive. Then, the system

Axm−1 + Bm−1x
m−2 + · · ·+ B2x = b

has at least one nonnegative (positive) solution if b ∈ Rn
+ (b ∈ Rn

++).
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Furthermore, if each Bk (k ∈ {2, 3, . . . ,m− 1}) has positive diagonal entries; and for A
and each Bk (k ∈ {2, 3, . . . ,m − 1}), if all entries in the lower triangular part, which are
neither in the strictly lower triangular part nor in the diagonal part, are nonnegative, then
the above system has a unique nonnegative (positive) solution if b ∈ Rn

+ (b ∈ Rn
++).

In Theorem 3.1 and Corollary 3.3, we considered the existence of nonnegative (positive)
solution to multi-linear equations (1.1) with a lower triangular tensor. If the lower triangular
tensor is replaced by an upper triangular tensor, then similar results can be obtained, which
are given in the following.

Theorem 3.4. Let A ∈ Tm,n be an upper triangular tensor with positive diagonal entries.
If all entries in the strictly upper triangular part are nonpositive, then Axm−1 = b has at
least one nonnegative solution for any b ∈ Rn

+; and Axm−1 = b has at least one positive
solution if b ∈ Rn

++.
Furthermore, if one of the following conditions is met:

• all entries in the upper triangular part, which are neither in the strictly upper triangular
part nor in the diagonal part, are nonnegative;

• A is a strong P tensor,

then, Axm−1 = b has a unique nonnegative solution if b ∈ Rn
+; and Axm−1 = b has a unique

positive solution if b ∈ Rn
++.

Corollary 3.5. Let A ∈ Tm,n be an upper triangular tensor with positive diagonal entries,
and all entries in the strictly upper triangular part be nonpositive. Suppose that, for any
k ∈ {2, . . . ,m − 1}, Bk ∈ Tk,n are given upper triangular tensors whose entries in strictly
upper triangular part are nonpositive. Then, the system

Axm−1 + Bm−1x
m−2 + · · ·+ B2x = b

has at least one nonnegative (positive) solution if b ∈ Rn
+ (b ∈ Rn

++).
Furthermore, if each Bk (k ∈ {2, 3, . . . ,m− 1}) has positive diagonal entries; and for A

and each Bk (k ∈ {2, 3, . . . ,m − 1}), if all entries in the upper triangular part, which are
neither in the strictly upper triangular part nor in the diagonal part, are nonnegative, then
the above system has a unique nonnegative (positive) solution if b ∈ Rn

+ (b ∈ Rn
++).

Remark 3.1. As a byproduct, every condition on the existence of nonnegative (positive)
solution to multi-linear equations (1.1) is also the condition on the existence of solution to
the corresponding TCP (1.2).

In the following, we consider the non-existence of nonnegative solution to multi-linear
equations (1.1) which is induced by B (B0) tensors or diagonally dominant tensors.

Theorem 3.6. Let A = (ai1i2···im) ∈ Tm,n be a B tensor and b ∈ Rn satisfies b ≤ 0 and
b ̸= 0. Then, Axm−1 = b has no nonnegative solution.

Proof. Suppose that there exists x̄ ≥ 0 satisfying Ax̄m−1 = b, then x̄ ̸= 0 since b ̸= 0. Thus,
if we denote |x̄i0 | := ∥x̄∥∞, then x̄i0 = |x̄i0 | > 0. Furthermore, we have

(Ax̄m−1)i0
x̄m−1
i0

=

n∑
i2,...,im=1

ai0i2···im
x̄i2 · · · x̄im

x̄m−1
i0
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= ai0i0···i0 +
∑

(i2,...,im )̸=(i0,...,i0)

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

≥ ai0i0···i0 −
∑

ai1i2···im<0

|ai1i2···im |

> 0

≥ bi0
x̄m−1
i0

,

where the second inequality holds by Theorem 2.2. This contradicts the assumption that x̄
solves Axm−1 = b. So, Axm−1 = b has no nonnegative solution.

In the same way as the proof of Theorem 3.6, we can show the following result.

Corollary 3.7. If A is a B0 tensor and b ∈ Rn satisfies b < 0, then Axm−1 = b has no
nonnegative solution.

Theorem 3.8. Let A = (ai1i2···im) ∈ Tm,n be a strictly diagonally dominant tensor with
aii···i > 0 for all i ∈ [n] and b ∈ Rn satisfies b ≤ 0 and b ̸= 0. Then, Axm−1 = b has no
nonnegative solution. In addition, if m is odd, then Axm−1 = b has no real solution.

Proof. Suppose that there exists x̂ ≥ 0 satisfying Ax̂m−1 = b, then x̂ ̸= 0 since b ̸= 0. Thus,
if we denote |x̂i0 | := ∥x̂∥∞, then x̂i0 = |x̂i0 | > 0. Furthermore, we have

(Ax̂m−1)i0
∥x̂∥m−1

∞
= A

(
x̂

∥x̂∥∞

)m−1

i0

=

n∑
i2,i3,...,im=1

ai0i2···im
x̂i2 · · · x̂im

∥x̂∥m−1
∞

= ai0i0···i0
x̂m−1
i0

∥x̂∥m−1
∞

+
∑

(i2,...,im )̸=(i0,...,i0)

ai0i2···im
x̂i2 · · · x̂im

∥x̂∥m−1
∞

= ai0i0···i0 +
∑

(i2,...,im) ̸=(i0,...,i0)

ai0i2···im
x̂i2 · · · x̂im

∥x̂∥m−1
∞

≥ ai0i0···i0 −
∑

(i2,...,im) ̸=(i0,...,i0)

|ai0i2···im |

> 0

≥ bi0
∥x̂∥m−1

∞
,

where the first inequality holds by the triangle inequality and x̂m−1
i0

= ∥x̂∥m−1
∞ , the second

inequality holds by Definition 2.4. This contradicts the assumption that x̂ solves Axm−1 = b.
So, Axm−1 = b has no nonnegative solution.

Since m is odd, it follows that xm−1
i = |xi|m−1 for all i ∈ [n]. Thus, the second result of

this theorem can be proved in a similar way as the proof above.

Similar to Theorem 3.6, the following results can be obtained easily.

Theorem 3.9. Let A = (ai1i2···im) ∈ Tm,n be a diagonally dominant tensor with aii···i ≥ 0
for all i ∈ [n] and b ∈ Rn satisfies b < 0. Then, Axm−1 = b has no nonnegative solution.
In addition, if m is odd, then Axm−1 = b has no real solution.
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4 Boundedness of the Solution Set of Multi-linear Equations

In this section, we discuss the boundedness of the nonnegative solution set of Axm−1 = b
where A is nonnegative tensor or B tensor. We also show that an arbitrary real solution
of Axm−1 = b with A being a strictly diagonally tensor can be bounded. All bounds we
obtained in this section only depend on entries of A and components of b.

The class of nonnegative tensors is an important class of tensors. If a nonnegative tensor
has all positive diagonal entries, then it is possible that the nonnegative solution set of the
corresponding Axm−1 = b is nonempty. For example, suppose that A = (ai1i2i3i4) ∈ T4,3

with a1111 = a1112 = a2222 = a3333 = 1 and others being zeros, and b = (2, 1, 1)⊤, then
it is easy to show that x̄ = (1, 1, 1)⊤ is a solution of Axm−1 = b. The following theorem
demonstrates that the nonnegative solution set of Axm−1 = b is bounded if A lies in this
class of tensors.

Theorem 4.1. Let A = (ai1i2···im) ∈ Tm,n be a nonnegative tensor with positive diagonal
entries and b ∈ Rn

+. If x̄ is a nonnegative solution of Axm−1 = b, then

∥x̄∥∞ ≤
(

∥b∥∞
min {aii···i : i ∈ [n]}

) 1
m−1

.

Proof. Clearly, x̄ = 0 is a unique nonnegative solution of Axm−1 = b if and only if b = 0,
since A is a nonnegative tensor and aii···i > 0 for all i ∈ [n]. This implies the result holds if
b = 0. While b ̸= 0, there must be x̄ ̸= 0. Denote x̄i0 := ∥x̄∥∞, then x̄i0 > 0. Thus,

∥b∥∞
∥x̄∥m−1

∞
≥ bi0

∥x̄∥m−1
∞

=
(Ax̄m−1)i0
∥x̄∥m−1

∞

=

n∑
i2,...,im=1

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

= ai0i0···i0 +
∑

(i2,i3,...,im) ̸=(i0,i0,...,i0)

ai0i2···im
x̄i2 x̄i3 · · · x̄im

∥x̄∥m−1
∞

≥ ai0i0···i0

> 0.

So, the desired result holds.

Remark 4.1. In Theorem 4.1, the condition “positive diagonal entries” cannot be weakened.
Recall that a nonnegative tensor A ∈ Tm,n is strictly nonnegative if Axm−1 > 0 for any
x ∈ Rn

++ [11]. It is obvious that a nonnegative tensor with positive diagonal entries must
be a strictly nonnegative tensor, but the inverse is not true. If the nonnegative tensor A
has at least a diagonal entry being zero, then it is possible that the nonnegative solution
set of Axm−1 = b is unbounded even if A is strictly nonnegative. This can be seen in the
following example.

Example 4.2. Let A = (ai1i2i3i4) ∈ T4,3, where a1111 = a1222 = a2222 = a3122 = 1 and
others are zeros, and b = (1, 1, 0)⊤.

Obviously,

Ax3 =

 x3
1 + x3

2

x3
2

x1x
2
2

 =

 1
1
0

 = b. (4.1)
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It is easy to see that the concerned tensor A is a strictly nonnegative tensor. However, it is
also easy to show that (0, 1, k)⊤ is a solution of (4.1) for any k ∈ R, which implies that the
nonnegative set of this system of multi-linear equations is unbounded.

B tensors have been studied extensively in the literature. If A is a B tensor, then it is
possible that Axm−1 = b has one nonnegative solution. For example, let A = (ai1i2i3i4) ∈
T4,3 with a1111 = 28, a1333 = 1, a2222 = 2, a2333 = −1, a3333 = 1, and others being zeros,
and b = (56,−25, 27)⊤. Then, it is easy to see that (1, 1, 3)⊤ is a solution of Axm−1 = b. In
the following, we show that the nonnegative solution set of Axm−1 = b is bounded when A
is a B tensor.

Lemma 4.3. If A = (ai1i2···im) ∈ Tm,n is a B tensor, then x̄ = 0 is the unique nonnegative
solution of Axm−1 = 0.

Proof. Obviously, 0 is a solution of Axm−1 = 0. We only need to show that Axm−1 = 0 has
no nonzero nonnegative solution. Suppose that there exists x̄ ∈ Rn

+ with x̄ ̸= 0 such that
Ax̄m−1 = 0, then x̄i0 := ∥x̄∥∞ > 0. Thus, we have

(Ax̄m−1)i0
x̄m−1
i0

= A
(

x̄

∥x̄∥∞

)m−1

i0

=

n∑
i2,...,im=1

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

=
∑

ai0i2···im≥0

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

+
∑

ai0i2···im<0

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

≥ ai0i0···i0 +
∑

ai0i2···im<0

ai0i2···im

> 0,

where the last inequality holds sinceA is aB tensor. This contracts that x̄ solvesAxm−1 = 0.
So, the desired result holds.

Theorem 4.4. Let A = (ai1i2···im) ∈ Tm,n be a B tensor and b ∈ Rn. If x̄ is a nonnegative
solution of Axm−1 = b, then

∥x̄∥∞ ≤

 ∥b∥∞
min{aii,...,i +

∑
aii2···im<0

aii2···im : i ∈ [n]}


1

m−1

.

Proof. If b = 0, it follows from Lemma 4.3 that x̄ = 0 is the unique nonnegative solution of
(1.1), which implies that the desired result holds trivially. In the following, we assume that
b ̸= 0. Then, x̄ ̸= 0, and hence, x̄i0 := ∥x̄∥∞ > 0. So, we have

∥b∥∞
∥x̄∥m−1

∞
≥ |bi0 |

∥x̄∥m−1
∞

=
|(Ax̄m−1)i0 |
∥x̄∥m−1

∞

=

∣∣∣∣∣∣
n∑

i2,...,im=1

ai0i2...im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣∣∣∣
≥

∑
ai0i2···im≥0

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

+
∑

ai0i2···im<0

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

≥ ai0i0···i0 +
∑

ai0i2···im<0

ai0i2···im
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> 0.

The desired result holds.

Remark 4.2. In Theorem 4.4, if the condition “B tensor” is replaced by “B0 tensor”, then
it is possible that the nonnegative solution set of Axm−1 = b is unbounded. This can be
seen in the following example.

Example 4.5. Let A = (ai1i2i3i4) ∈ T4,4, where a1111 = a2222 = a3333 = 1, a1222 = a2333 =
a3444 = −1, and others are zeros, and b = (1, 1, 1, 0)⊤.

It is easy to show that A is a B0 tensor; and ( 3
√
k3 + 3, 3

√
k3 + 2, 3

√
k3 + 1, k)⊤ is a solution

of the system of equations

Axm−1 =


x3
1 − x3

2

x3
2 − x3

3

x3
3 − x3

4

0

 =


1
1
1
0

 = b

for any k ∈ R.

Remark 4.3. In [22], the authors discussed the boundedness of the solution set of the
TCP with a B tensor in terms of two operator norms. Generally, it is difficult to compute
these two norms. In Theorem 4.4, we obtained a bound of the nonnegative solution set of
Axm−1 = b with a B tensor, which is also a bound of a subset set of the solution set of
the corresponding TCP. However, the bound we obtained in Theorem 4.4 only depends on
entries of A and right-hand-side vector b, which is easy to be computed.

In the following, we discuss the boundedness of the solution set of multi-linear equations
(1.1).

Theorem 4.6. Given nonzero tensor A = (ai1i2···im) ∈ Tm,n and b ∈ Rn. If x̄ is an
arbitrarily real solution of Axm−1 = b, then

∥x̄∥∞ ≥

(
∥b∥∞∑n

i2,...,im=1 |ai0i2···im |

) 1
m−1

,

where i0 := argmax
i∈[n]

|bi|.

Proof. If b = 0, then it is clear that the desired result holds. In the following, we assume
that b ̸= 0. Thus, it follows that x̄ ̸= 0, which implies that ∥x̄∥∞ > 0. Since |bi0 | = ∥b∥∞
and b ̸= 0, it follows that |bi0 | > 0. Thus,

0 <
∥b∥∞

∥x̄∥m−1
∞

=
|bi0 |

∥x̄∥m−1
∞

=
|(Ax̄m−1)i0 |
∥x̄∥m−1

∞
=
∣∣∣A( x̄

∥x̄∥∞

)m−1

i0

∣∣∣
=

∣∣∣ n∑
i2,...,im=1

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣
≤

n∑
i2,...,im=1

∣∣∣ai0i2···im x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣
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=

n∑
i2,...,im=1

|ai0i2···im |
∣∣∣ x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣
≤

n∑
i2,...,im=1

|ai0i2···im |,

which implies that the desired result holds.

Now, we discuss the boundedness of the solution set of multi-linear equations where the
associated tensor is a strictly diagonally dominant tensor.

Lemma 4.7. If A = (ai1i2···im) ∈ Tm,n is a strictly diagonally dominant tensor, then x̄ = 0
is a unique real solution of Axm−1 = 0.

Proof. Obviously, 0 is a solution of Axm−1 = 0. In the following, we show that Axm−1 = 0
has no nonzero real solution. Suppose that x̂ ̸= 0 is a real solution of Axm−1 = 0. Then,
|x̂i0 | := ∥x̂∥∞ > 0. Thus, we have

∣∣∣∣ (Ax̂m−1)i0
∥x̂∥m−1

∞

∣∣∣∣ =

∣∣∣∣∣∣
n∑

i2,i3,...,im=1

ai0i2···im
x̂i2 · · · x̂im

∥x̂∥m−1
∞

∣∣∣∣∣∣
=

∣∣∣∣∣∣ai0i0···i0 x̂m−1
i0

∥x̂∥m−1
∞

+
∑

(i2,i3,...,im) ̸=(i0,i0,...,i0)

ai0i2···im
x̂i2 · · · x̂im

∥x̂∥m−1
∞

∣∣∣∣∣∣
≥

∣∣∣∣∣ai0i0···i0 x̂m−1
i0

∥x̂∥m−1
∞

∣∣∣∣∣−
∣∣∣∣∣∣

∑
(i2,i3,...,im )̸=(i0,i0,...,i0)

ai0i2···im
x̂i2 · · · x̂im

∥x̂∥m−1
∞

∣∣∣∣∣∣
≥ |ai0i0···i0 | −

∑
(i2,i3,...,im )̸=(i0,i0,...,i0)

|ai0i2···im |

> 0,

which contradicts that x̂ solves Axm−1 = 0. So, the desired result holds.

Theorem 4.8. Let A = (ai1i2···im) ∈ Tm,n be a strictly diagonally dominant tensor and
b ∈ Rn. If x̄ is a real solution of Axm−1 = b, then

∥x̄∥∞ ≤

 ∥b∥∞
min{|aii···i| −

∑
(i2,i3,...,im )̸=(i,i,...,i)

|aii2···im | : i ∈ [n]}


1

m−1

.

Proof. When b = 0, the desired result holds by Lemma 4.7. In the following, we assume
that b ̸= 0. Then, x̄ ̸= 0, which implies that |x̄i0 | := ∥x̄∥∞ > 0. So, we have

∥b∥∞
∥x̄∥m−1

∞
≥ |bi0 |

∥x̄∥m−1
∞

=
|(Ax̄m−1)i0 |
∥x̄∥m−1

∞
=

∣∣∣∣∣A
(

x̄

∥x̄∥m−1
∞

)
i0

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i2,i3,...,im=1

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣∣∣∣
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≥

∣∣∣∣∣ai0i0···i0 x̄m−1
i0

∥x̄∥m−1
∞

∣∣∣∣∣−
∣∣∣∣∣∣

∑
(i2,i3,...,im )̸=(i0,i0,...,i0)

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣∣∣∣
= |ai0i0···i0 | −

∣∣∣∣∣∣
∑

(i2,i3,...,im )̸=(i0,i0,...,i0)

ai0i2···im
x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣∣∣∣
≥ |ai0i0···i0 | −

∑
(i2,i3,...,im )̸=(i0,i0,...,i0)

|ai0i2···im |
∣∣∣∣ x̄i2 · · · x̄im

∥x̄∥m−1
∞

∣∣∣∣
≥ |ai0i0···i0 | −

∑
(i2,i3,...,im )̸=(i0,i0,...,i0)

|ai0i2···im |.

Thus, the desired result holds.

Remark 4.4. In Theorem 4.8, if “strictly diagonally dominant tensor” is replaced by “di-
agonally dominant tensor”, then it is possible that the result of Theorem 4.8 does not hold.
This can be seen in the following example.

Example 4.9. Let A = (ai1i2i3i4) ∈ T4,4, where a1111 = 2, a1333 = −1, a2222 = 3, a2333 =
−1, a3333 = a4444 = 1, a3444 = a4333 = −1, and others are zeros. Let b = (1, 3, 0, 0)⊤.

Obviously, the concerned tensor is a diagonally dominant tensor, but not a strictly diag-

onally dominant tensor. It is easy to show that for any k ∈ R, ( 3

√
1+k3

2 , 3

√
3+k3

3 , k, k)⊤ is a

solution of the system of equations

Axm−1 =


2x3

1 − x3
3

3x3
2 − x3

3

x3
3 − x3

4

x3
4 − x3

3

 =


1
3
0
0

 = b, (4.2)

which implies that the set of real solutions to (4.2) is unbounded.

5 Conclusions

In this paper, we proved that the nonnegative (positive) solution set of multi-linear equations
(1.1) which induced by a lower (an upper) triangular tensor with positive diagonal entries
and non-positive strictly lower(upper) part is nonempty for any nonnegative (positive) right-
hand-side vector. We also investigated the uniqueness of nonnegative (positive) solution to
these multi-linear equations if the associated tensors satisfy some additional assumptions.
Meanwhile, we investigated the non-existence of nonnegative solution to multi-linear equa-
tions induced by B (B0) tensors or strictly diagonally dominant tensors. In addition, we
also discussed the boundedness of the nonnegative solution set of multi-linear equations with
some structured tensors including nonnegative tensors and B tensors.

In recent years, various kinds of structured tensors have been studied well. In this pa-
per, we just discussed the existence and uniqueness of nonnegative (positive) solution to
multi-linear equations with associated tensors being some triangular tensors. It is wor-
thy of investigating the existence and uniqueness of solution to multi-linear equations with
associated tensors being other structured tensors.
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