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Here K∗ = {Y ∈ V : ⟨X, Y ⟩ ≥ 0 for every X ∈ K} (the dual of K). Let F (K) denote the

feasible region
{
X ∈ K, ⟨H0, X⟩ = 1, ⟨Qk, X⟩ = 0 (k = 1, 2, . . . ,m)

}
of the primal COP

(1.1). As a basic assumption, we impose Condition (I): F (K) ̸= ∅, H0 ∈ K∗ and Qk ∈ K∗

(k = 1, 2, . . . ,m).
From a theoretical viewpoint, this framework is intended to unify and generalize the

existing results on the completely positive programming (CPP) relaxation of QOPs [1, 9,
10, 17] and its extension to POPs, which was called a moment cone (MC) relaxation in [3].
From a practical viewpoint, the Lagrangian-conic relaxation is proposed to solve large-scale
COPs obtained from effective conic relaxations, including doubly nonnegative (DNN) and
semidefinite programming (SDP) relaxations of QOPs and POPs. In particular, the CPP
relaxation and the sparse DNN relaxation for QOPs in Part I [4] were discussed from these
viewpoints.

We consider a general class of POPs of the following form:

ζ∗ := inf
{
f0(x)

∣∣ x ∈ J, fk(x) = 0 (k = 1, 2, . . . ,m)
}
, (1.3)

where J denotes a closed (but not necessarily convex) cone in the n-dimensional Euclidean
space Rn, and fk(x) a real valued polynomial in x = (x1, x2, . . . , xn) ∈ Rn (k = 0, 1, 2, . . . ,m).
In practical applications, J can be Rn or Rn

+ (the nonnegative orthant of Rn). We note that
even when J = Rn, any inequality constraint h(x) ≤ 0 can be incorporated into POP (1.3)
if it is converted to an equivalent equality constraint h(x) + u2 = 0 with a slack variable
u ∈ R.

1.1 Contribution

As the first application of the framework to POP (1.3), we derive a COP of the form (1.1)
with a closed convex cone K, which was introduced by Arima, Kim and Kojima [3], as the
MC relaxation of POP. The main emphasis of our discussion here is on a unified treatment of
the CPP relaxation of QOPs and their MC relaxation of POPs. More precisely, we construct
a nonconvex cone Γ in the space V of symmetric matrices with an appropriate dimension,
and symmetric matrices H0, Qk ∈ V (k = 0, 1, 2, . . . ,m) so that COP (1.1) represents POP
(1.3), i.e., ζ∗ = ζp(Γ). Then, we apply the convexification procedure discussed in Part I
[4] to COP (1.1) with K = Γ and derive COP (1.1) with K = co Γ for the MC relaxation
of POP (1.3). We provide a necessary and sufficient condition for the equivalence the two
COPs, i.e., ζ∗ = ζp(Γ) = ζp(co Γ), under Condition (I). This is one of the main theoretical
contribution of the paper.

The other contribution of the paper is to propose a hierarchy of Lagrangian-SDP relax-
ations for POP (1.3) with J = Rn by combining Lasserre’s hierarchy of SDP relaxations
[20] for POPs and Lagrangian-conic relaxation in the framework. We construct a hierar-
chy of primal-dual pairs of COPs (1.1) and (1.2) with K = Kω ⊂ Vω, Q

0 = Q0
ω ∈ Vω,

H0 = H0
ω ∈ K∗

ω and Qk = Qk
ω ∈ K∗

ω (k = 1, 2, . . . ,m). Here ω denotes a positive in-
teger parameter describing the hierarchy, Vω the space of symmetric matrices with some
dimension which monotonically diverges to ∞ as ω → ∞, and Kω the intersection of a
positive semidefinite matrix cone in Vω and a linear subspace of Vω. Under the so-called
Archimedean condition, which requires that the feasible region of POP (1.3) is nonempty
and bounded, the optimal value ζdω(Kω) of the dual COP in the hierarchy monotonically
converges to the optimal value ζ∗ of POP (1.3) from below as ω → ∞. (Since the optimal
value ζpω(Kω) of the primal COP satisfies ζdω(Kω) ≤ ζpω(Kω) ≤ ζ∗, it also converges to ζ∗ of
POP (1.3) from below as ω → ∞.)
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A fundamental difference between Lasserre’s hierarchy of SDP relaxations and ours lies
on Condition (I), which is satisfied by ours, but not by Lasserre’s. Thus, the entire theory
of the unified framework can be applied to ours. In particular, we derive the following
primal-dual pair of Lagrangian-SDP relaxation problems:

ζpω(λ,Kω) := inf
{
⟨Q0

ω + λH1
ω, X⟩

∣∣ X ∈ Kω, ⟨H0
ω, X⟩ = 1

}
,

ζdω(λ,Kω) := sup
{
y0
∣∣ y0 ∈ R, Q0

ω −H0
ωy0 + λH1

ω ∈ K∗
ω

}
,

where H1
ω =

∑m
k=1 Q

k
ω, and λ ∈ R denotes a Lagrangian multiplier prescribed for the

problems. The simplicity of these primal-dual COPs enables us to design efficient first-
order algorithms for solving the problems. In fact, the dual problem involves only one
variable, which makes it possible to effectively utilize the bisection and the 1-dimensional
Newton methods proposed in Part I [4]; see also [17]. Moreover, the common optimal value
ζpω(λ,Kω) = ζdω(λ,Kω) bounds ζ

d
ω(Kω) from below, and it monotonically converges to ζdω(Kω)

as λ → ∞. Therefore, under the Archimedean condition, the lower bound ζpω(λ,Kω) =
ζdω(λ,Kω) for the optimal value ζ∗ of POP (1.3) satisfies ζ∗ − ϵ < ζdω(λ,Kω) ≤ ζ∗ for any
ϵ > 0 if sufficiently large ω and λ are taken.

1.2 Related results

In addition to the nonemptiness of the feasible region of the primal COP (1.1), Condition
(I) requires the copositivity of H0 ∈ V and Qk ∈ V (k = 1, 2, . . . ,m), i.e., H0 ∈ K∗

and Qk ∈ K∗ (k = 1, 2, . . . ,m). The copositivity condition is originated from a property
shared by nonconvex QOPs, including QOPs over the unit simplex [8] and QOPs with linear,
binary and complementarity constraints [1, 9], which can be converted to the equivalent CPP
problems.

The MC relaxation (1.3) is related to a canonical convexification procedure for POPs
by Peña, Vera and Zuluaga [22]. The essential difference lies on the way of convexification
(see Section 3 and Theorem 3.2). Furthermore two conditions assumed for the equivalence
of a given POP to its convexification are different. The first condition, a hierarchy of
copositivity, is weaker than the simple copositivity condition, Condition (I). We need the
stronger condition, Condition (I), for consistently deriving the Lagrangian-conic relaxation
from (1.1). However, the second condition, zeros at infinity, is stronger than Condition
(IV) assumed for the equivalence of POP (3) to its MC relaxation in this paper. When
the optimal value ζ∗ of POP (1.3) is finite and Condition (I) is satisfied, Condition (IV)
provides a necessary and sufficient condition for the equivalence, while the zeros at infinity
condition is merely a sufficient condition. See Section 6 of [3] and Section 3 of Part I [4] for
more details.

The MC relaxation was first proposed in [3] by Arima, Kim and Kojima for a homoge-
neous POP of the form (1.3) where all fk(x) (k = 0, 1, . . . ,m) are homogeneous polynomials
with a common degree. A general inhomogeneous POP of the form (1.3) can always be
transformed to a homogeneous POP by introducing an auxiliary variable x0 fixed to 1, and
their MC relaxation can be applied to the homogenized POP. The MC relaxation obtained
this way is equivalent to our MC relaxation applied directly to the original POP using the
unified framework. We note, however, that the unified framework not only simplifies the
derivation of the MC relaxation of a general POP (1.3) but also relaxes the zeros at infinity
condition, which was assumed in [3, 22] for the equivalence of a POP to its MC relaxation
(or convexification), into Condition (IV).
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Lasserre’s hierarchy of SDP relaxation method [20] for a POP is very powerful in theory.
The optimal value of each SDP in the hierarchy parameterized by a positive integer ω pro-
vides a lower bound for the optimal value of the POP, and the lower bound monotonically
converges to the optimal value under the Archimedean condition. Software packages imple-
menting Lasserre’s method [15, 28] apply the primal-dual interior-point method [13, 24, 25]
to the generated SDP. Numerical efficiency suffers in this implementation: the size of the
SDP to be solved grows very rapidly, as the degree of polynomials involved in the POP
becomes larger and/or a value for ω is increased to obtain a tighter lower bound for the
optimal value of the POP.

As a result, exploiting sparsity is essential to solve large scale POPs. In fact, a sparse
version of Lasserre’s hierarchy of SDP relaxation method was proposed in [26], and it con-
siderably improves the performance in terms of the speed and the size of POPs to be solved.
In practical applications, however, POPs that Lasserre’s method and its sparse version can
solve are still limited to small-medium scale, except for very sparse POPs [26]. As men-
tioned in Section 1.1, the hierarchy of Lagrangian-SDP relaxations proposed for POPs in
this paper inherits the nice theoretical properties from Lasserre’s method. But it is designed
to solve large scale POPs effectively and efficiently by using first order methods instead of
the primal-dual interior-point method.

For simplicity of notation and enumerate, we will describe the hierarchy of Lagrangian-
SDP relaxation method for POP (1.3) without taking account of any possible sparsity in
polynomials involved there. Exploiting sparsity [14, 16, 19, 21, 26] in the method is necessary
to tackle larger scale POPs. We refer to the original version [5] of this paper for a sparse
version of the method.

1.3 Paper outline

In Section 2, we review the results shown in Part I [4] and describe the notation and symbols
used in this paper. We also present how to represent polynomials with symmetric matrices
of monomials, and introduce sum of squares (SOS) of polynomials. Section 3 includes the
discussion on the MC relaxation of POP (1.3), and Section 4 presents the hierarchy of
Lagrangian-SDP relaxations of POP (1.3) with J = Rn.

2 Preliminaries

2.1 Conic and Lagrangian-conic optimization problems

The results in Part I [4] are summarized in this subsection. We first list some notation used
in Part I. Let V be a finite dimensional vector space endowed with an inner product ⟨·, ·⟩
and its induced norm ∥ · ∥, and K a nonempty (but not necessarily convex nor closed) cone
in V. We denote the dual of K by K∗, i.e., K∗ = {Y ∈ V : ⟨X, Y ⟩ ≥ 0 for every X ∈ K},
and the convex hull of K by co K.

For H0, Qk ∈ V (k = 0, , 2, . . . ,m), H1 =
∑m

k=1 Q
k, let

F (K) =
{
X ∈ V

∣∣ X ∈ K, ⟨H0, X⟩ = 1, ⟨Qk, X⟩ = 0 (k = 1, 2, . . . ,m)
}

(the feasible region of (1.1)),

F0(K) =
{
X ∈ V

∣∣ X ∈ K, ⟨H0, X⟩ = 0, ⟨Qk, X⟩ = 0 (k = 1, 2, . . . ,m)
}
.

In Part I, we introduced the following conditions:
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Condition (I) F (K) ̸= ∅, O ̸= H0 ∈ K∗ and Qk ∈ K∗ (k = 1, 2, . . . ,m).

Condition (II) K is closed and convex.

Condition (III)
{
X ∈ F (K) : ⟨Q0, X⟩ ≤ ζ̃

}
is nonempty and bounded for some ζ̃ ∈ R.

Condition (IV) ⟨Q0, X⟩ ≥ 0 for every X ∈ F0(K).

For the primal-dual pair (1.1) - (1.2) and the following pair

ηp(λ,K) := inf
{
⟨(Q0 + λH1), X⟩

∣∣ X ∈ K, ⟨H0, X⟩ = 1
}
, (2.1)

ηd(λ,K) := sup
{
y0
∣∣ Q0 + λH1 −H0y0 ∈ K∗ }

, (2.2)

the following results are shown.

Theorem 2.1.

(i) ηd(λ,K)↑λ = ζd(K) ≤ ζp(K) and
(
ηd(λ,K) ≤ ηp(λ,K)

)
↑λ ≤ ζp(K) under Condition

(I). Here ( )↑λ means a monotonic increase as λ → ∞, satisfying the equality or
inequality inside the parenthesis if it exists. (Lemmas 2.1 and 2.2 of [4]).

(ii) Suppose that Conditions (I) and (II) hold. Then
(
ηd(λ,K) = ηp(λ,K)

)
↑λ = ζd(K) ≤

ζp(K). If in addition ηp(λ,K) is finite, (2.2) has an optimal solution with the objective
value ηd(λ,K) = ηp(λ,K). (Lemma 2.3 of [4]).

(iii)
(
ηd(λ,K) = ηp(λ,K)

)
↑λ = ζd(K) = ζp(K) under Conditions (I), (II) and (III).

(Lemma 2.5 of [4]).

1. (iv) Assume that Condition (I) holds. Then

ζp(K) =

{
ζp(co K) if Condition (IV) holds,
−∞ otherwise.

(Lemma 3.1 of [4]).

2.2 Notation and symbols

For the application of the unified framework to POPs, we use the following notation: Let
R denote the set of real numbers, R+ the set of nonnegative real numbers, and Z+ the
set of nonnegative integers. Let |α| =

∑n
i=1 αi for each α ∈ Zn

+, where αi denotes the
i-th element of α ∈ Zn

+. R[x] is the set of real-valued multivariate polynomials in xi ∈ R
(i = 1, . . . , n), where x = (x1, . . . , xn) ∈ Rn. Each polynomial f(x) ∈ R[x] is represented as
f(x) =

∑
α∈F fαx

α, where F ⊂ Zn
+ is a nonempty finite set, fα (α ∈ F) real coefficients,

xα = xα1
1 xα2

2 · · ·xαn
n and α = (α1, α2, . . . , αn) ∈ Zn

+. We assume that x0i = 1 even if xi = 0,
in particular, x0 = 1 for any x ∈ Rn. The support of f(x) is defined by supp(f(x)) = {α ∈
F : fα ̸= 0} ⊂ Zn

+, and the degree of f(x) ∈ R[x] is defined by deg(f(x)) = max{|α| : α ∈
supp(f(x))}. For each nonempty subsets F and G of Zn

+, let F + G denote their Minkowski
sum {α+ β : α ∈ F , β ∈ G}, and let R[x,F ] = {f(x) ∈ R[x] : supp(f(x)) ⊂ F}.

Let F be a nonempty finite subset of Zn
+. |F| stands for the number of elements of

F . Let RF denote the |F|-dimensional Euclidean space whose coordinate are indexed by
α ∈ F . Each vector of RF with elements wα (α ∈ F) is denoted by (wα : α ∈ F) or
simply (wα : F). We assume that (wα : F) is a column vector when it is multiplied by
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a matrix. For every x ∈ Rn, xF = (xα : F) denotes the |F|-dimensional (column) vector
of monomials xα ∈ R[x] (α ∈ F). Hence each polynomial f(x) ∈ R[x,F ] is represented
as f(x) = ⟨(fα : F), xF ⟩. SF denotes the linear space of |F| × |F| symmetric matrices
with elements ξαβ (α ∈ F , β ∈ F). We use the notation □F for the set F × F =
{(α,β) : α, β ∈ F}.

Each matrix of SF is written as (ξαβ : (α, β) ∈ □F) or simply (ξαβ : □F). For x ∈ Rn,
xF (xF )T = (xα : F)(xα : F)T = (xα+β : (α, β) ∈ □F) is a rank-1 symmetric matrix of
monomials xα+β ∈ R[x] ((α,β) ∈ □F), which is denoted by x□F . (xF )T means the row
vector obtained by taking the transpose of the column vector xF .

For every pair of Q = (Qαβ : □F) and X = (Xαβ : □F) ∈ SF , ⟨Q, X⟩ denotes

the matrix inner product, i.e., ⟨Q, X⟩ = trace(QTX) =
∑

(α,β)∈□F Qαβξαβ. With this

notation, we often write the quadratic form (xF )TQxF as ⟨Q, x□F ⟩ to indicate that x□F =
xF (xF )T will be replaced by X = (Xαβ : □F) ∈ SF .

Let

SF+ = the cone of positive semidefinite matrices in SF

=

{
(ξαβ : □F) ∈ SF :

(wα : F)T (ξαβ : □F)(wα : F) ≥ 0

for every (wα : F) ∈ RF

}
,

LF =
{
(ξαβ : □F) ∈ SF : ξαβ = ξγδ if α+ β = γ + δ

}
.

Then SF+ forms a closed convex cone in SF , and LF a linear subspace of SF . We also see

that x□F ∈ SF+ ∩ LF for every x ∈ Rn. This relation is used repeatedly in the subsequent
discussions.

2.3 Representing polynomials with symmetric matrices of monomials and sums
of squares of polynomials

For a nonempty finite subset G of Zn
+, a given polynomial f(x) ∈ R[x,G] is usually repre-

sented as the inner product of its coefficient vector (fα : G) and the vector xG = (xα : G)
of monomials in the polynomial, i.e., g(x) = ⟨(fα : G), xG⟩. However, representing a
polynomial with a symmetric matrix of monomials is more convenient in the subsequent
discussions, in particular, when discussing sum of squares (SOS) of polynomials and conic
and Lagrangian-conic relaxations. For the representation of a polynomial f(x) ∈ R[x,G]
using a symmetric matrix of monomials, we need to choose a finite subset F of Zn

+ satisfying
the property G ⊂ F +F . In fact, a smaller-sized F satisfying this property is preferable for
numerical efficiency. See [19] for details of choosing such an F . See also [3].

Let F be a nonempty subset of Zn
+ and f(x) ∈ R[x,F +F ]. Then we can represent the

polynomial f(x) using the rank-1 symmetric matrix x□F = xF (xF )T of monomials xα+β

((α,β) ∈ □F) and some Q ∈ SF such that f(x) = ⟨Q, x□F ⟩. Note that x□F contains all
monomials xα (α ∈ F + F), and that the choice of such a Q ∈ SF is not unique as shown
in the following example.

Example 2.2. Consider the polynomial f1(x) = f1(x1, x2) in two real variables such that

f1(x) = 1− 2x1 − 2x2 + x21 + x22 + 2x21x2 + 2x1x
2
2 + x21x

2
2.

Let

G = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2)},
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(f1α : G) = (1,−2,−2, 1, 1, 2, 2, 1),

xG = (xα : G) = (1, x1, x2, x
2
1, x

2
2, x

2
1x2, x

2
2.x

2
1x

2
2).

Then R[x,G] ∋ f1(x) = ⟨(f1α : G), xG⟩. To represent f1(x) using a symmetric matrix of
monomials, we can take F = {(0, 0), (1, 0), (0, 1), (1, 1)} so that

G ⊂ F + F = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1), (2, 1), (1, 2), (2, 2)}.

Let

Q =


1 −1 −1 0

−1 1 0 1
−1 0 1 1
0 1 1 1

 ∈ SF , P =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ∈ SF ,

x□F =


1 x1 x2 x1x2
x1 x21 x1x2 x21x2
x2 x1x2 x22 x1x

2
2

x1x2 x21x2 x1x
2
2 x21x

2
2

 .

Then, R[x,F + F ] ∋ f1(x) = ⟨Q+ µP , x□F ⟩ for every µ ∈ R.

Lemma 2.3. Let F be a nonempty finite subset of Zn
+, Q ∈ SF and P ∈ SF . Then,

R[x,F + F ] ∋ ⟨Q, x□F ⟩ = ⟨Q+ P , x□F ⟩ if and only if P ∈
(
LF
)⊥

. (2.3)

Proof. We first show that the linear subspace of SF generated by
{
x□F : x ∈ Rn

}
, i.e.,

L =
{
λx□F + µy□F : x, y ∈ Rn, λ, µ ∈ R

}
, coincides with LF . By the definition of LF ,

we know that
{
x□F : x ∈ Rn

}
⊂ LF , hence L ⊂ LF . It suffices to show that dim(L) =

dim(LF ). Let ℓ = dim(LF ), which is equivalent to the number of distinct elements in F+F .
Let M be the linear subspace of Rℓ generated by the set {xF+F = (xγ : γ ∈ F +F)} ⊂ Rℓ.
Then we can identify the linear space L as the linear space M since each matrix X =
λx□F + µy□F ∈ L corresponds to a vector λxF+F + µyF+F ∈ M and vice versa. As a
result, dim(L) = dim(M). On the other hand, we see that dim(M) = ℓ since there is no
nonzero (gα : F + F) such that ⟨(gα : F + F), xF+F ⟩ = 0 for all x ∈ Rn. Therefore, we
obtain that dim(L) = dim(LF ) = ℓ. Thus we have shown that LF = L. Now assume that
R[x,F + F ] ∋ ⟨Q, x□F ⟩ = ⟨Q + P , x□F ⟩. Then ⟨P , X⟩ = 0 for all X ∈ L = LF , which

implies that P ∈
(
LF
)⊥

. Conversely, if P ∈
(
LF
)⊥

, then R[x,F + F ] ∋ ⟨Q, x□F ⟩ =

⟨Q+ P , x□F ⟩ holds from x□F ∈ LF for every x ∈ Rn.

Lemma 2.3 implies that, for each Q ∈ SF , {Q+P : P ∈
(
LF
)⊥

} forms an equivalent class

in SF represented by the common polynomial f(x) = ⟨Q, x□F ⟩.
We introduce some additional notation for SOS of polynomials. Let

SOS[x,F ] =

{
r∑

i=1

(φi(x))2 : φi(x) ∈ R[x,F ] (i = 1, . . . , r) ∃r ∈ Z+

}
for every F ⊂ Zn

+,

SOS[x] = SOS[x,Zn
+].

We call SOS[x] the cone of SOS of polynomials, and each f(x) ∈ SOS[x] an SOS polynomial.
The following lemma provides a characterization of SOS polynomials.
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Lemma 2.4 ([11]). Let F be a nonempty finite subset of Zn
+. Then

SOS[x,F ] =
{
⟨Q, x□F ⟩ : Q ∈ SF+

}
.

In Example 2.2, the matrix Q ∈ SF itself is not positive semidefinite. But if we choose
µ = 1, then the matrix Q1 = Q + µP ∈ SF is positive semidefinite. Hence f1(x) =
⟨Q1, x□F ⟩ ∈ SOS[x,F ] by the lemma above. In fact, we see that

SOS[x,F ] ∋ f1(x) = ⟨Q1, x□F ⟩ = (x1 + x2 + x1x2 − 1)2, (2.4)

where

F = {(0, 0), (1, 0), (0, 1), (1, 1)}, Q1 =


1 −1 −1 −1

−1 1 1 1
−1 1 1 1
−1 1 1 1

 ∈ SF+. (2.5)

The following lemmas will be used in Sections 3 and 4.

Lemma 2.5. Let F be a nonempty finite subset of Zn
+ and Q ∈ SF . Then ⟨Q, x□F ⟩ ∈

SOS[x,F ] if Q ∈ SF+ +
(
LF
)⊥

.

Proof. By Lemma 2.4, ⟨Q, x□F ⟩ ∈ SOS[x,F ] if and only if the identity ⟨Q, x□F ⟩ =
⟨V , x□F ⟩ holds for some V ∈ SF+. Hence, by Lemma 2.3, ⟨Q, x□F ⟩ ∈ SOS[x,F ] if and

only if Q = V + P for some V ∈ SF+ and P ∈
(
LF
)⊥

. Therefore, the desired result

follows.

Lemma 2.6. Let F be a nonempty finite subset of Zn
+ and M a linear subspace of SF .

(i) SF+ ∩
(
LF
)⊥

= {O}.

(ii) The set {X ∈ SF : X +Y ∈ B, X ∈ SF+, Y ∈
(
LF
)⊥

} is bounded for every bounded

subset B of SF .

(iii) (SF+ ∩M) + (
(
LF
)⊥

∩M) is closed.

Proof. (i) Let q = |F|. Since the set of monomials xα (α ∈ F) is independent, i.e., there is
no nonzero (gα : F) such that (gα : F)T (xα : F) is identically zero for all x ∈ Rn, there exist
xj ∈ Rn (j = 1, . . . , q) such that the q × q matrix A =

(
(xα

1 : F), (xα
2 : F), . . . , (xα

q : F)
)
is

nonsingular. Let X ∈ SF+ ∩
(
LF
)⊥

. Then ⟨AAT , X⟩ = ⟨
∑q

j=1(x
α
j : F)(xα

j : F)T , X⟩ =∑q
j=1⟨(xα

j : F)(xα
j : F)T , X⟩ = 0. Since AAT is a q × q positive definite matrix and

X ∈ SF+, the identity ⟨AAT , X⟩ = 0 implies that X = O.

(ii) For some bounded subset B of SF , assume on the contrary that there exists a
sequence {Zp = Xp + Y p : p = 1, 2, . . . } satisfying Zp = Xp + Y p ∈ B, Xp ∈ SF+, Y p ∈(
LF
)⊥

(p = 1, 2, . . . ) and ∥Xp∥ → ∞ as p→ ∞.Wemay assume without loss of generality

that SF+ ∋ Xp/∥Xp∥ converges to some nonzero X ∈ SF+ as p → ∞. Hence
(
LF
)⊥

∋
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Y p/∥Xp∥ = Zp/∥Xp∥ −Xp/∥Xp∥ converges to −X as p → ∞. Since
(
LF
)⊥

is a linear

subspace of SF , we obtain that X ∈ SF+ ∩
(
LF
)⊥

. By (i), we know that X = O. This is a

contradiction.

(iii) Suppose that Zp = Xp + Y p, Xp ∈ SF+ ∩M, Y p ∈
(
LF
)⊥

∩M (p = 1, 2, . . . ) and

Zp → Z for some Z ∈ SF as p→ ∞. Since the sequence {Zp = Xp+Y p : p = 1, 2, . . . , } is

bounded and Xp ∈ SF+, Y
p ∈

(
LF
)⊥

(p = 1, 2, . . . ), the sequence {Xp ∈ SF+ : p = 1, 2, . . . }
is bounded. Hence we may assume that it converges to some X ∈ SF+. It follows that(
LF
)⊥

∩ M ∋ Y p = Zp − Xp → Z − X ∈ SF as p → ∞. Since both SF+ ∩ M and(
LF
)⊥

∩M are closed subsets of SF , we know that X ∈ SF+ ∩M and Z−X ∈
(
LF
)⊥

∩M.

Therefore, we have shown that Z = X + (Z −X) ∈ (SF+ ∩M) + (
(
LF
)⊥

∩M).

3 A Class of POPs and their Covexification

Consider a class of POPs of the form (1.3). Assume that J is a nonempty closed (but not
necessarily convex) cone in Rn, and fk(x) ∈ R[x,F + F ] (k = 0, 1, . . . ,m) for a nonempty
finite subset F of Zn

+ including 0 ∈ Zn
+. For practical applications, we focus on Rn, Rn

+ and

Rℓ × Rn−ℓ
+ with 1 ≤ ℓ ≤ n− 1 for the cone J, but the theoretical results in this section are

valid for any closed cone in Rn. We also assume throughout this section that the feasible
region of (1.3) is nonempty.

We transform POP (1.3) into the COP of the form (1.1) to present the moment cone (MC)
relaxation of POPs. Let us take SF for the underlying linear space V, and represent each
polynomial fk(x) ∈ R[x,F + F ] as fk(x) = ⟨Qk, x□F ⟩ (k = 0, 1, . . . ,m), where Qk ∈ SF .
Let ∆F

1 =
{
x□F ∈ SF : x ∈ J} . Then, POP (1.3) can be rewritten as

ζ∗ := inf
{
⟨Q0, X⟩

∣∣ X ∈ ∆F
1 , ⟨Q

k, X⟩ = 0 (k = 1, 2, . . . ,m)
}
. (3.1)

We consider the following illustrative example:

Example 3.1. As in Example 2.2, we take n = 2 and F = {(0, 0), (1, 0), (0, 1), (1, 1)}. Let
m = 1, R[x,F+F ] ∋ f0(x) = ⟨Q0, x□F ⟩ for some Q0 ∈ SF , and let f1(x) ∈ R[x,F+F ] be
a sum of squares of polynomial given in (2.4). Let J = R2

+. In this case, it is obvious that the
feasible region of POP (1.3) is bounded and contains two points x = (1, 0) and x = (0, 1),
thus, its finite minimum value ζ∗ is attained at some feasible solution. By definition, we see
that ∆F

1 = {x□F ∈ SF : x ∈ R2
+}.

The problem (3.1) is in a form similar to COP (1.1), but we still need to embed ∆F
1 in

a cone K ⊂ SF and introduce an inhomogeneous equality constraint ⟨H0, X⟩ = 1 such that
∆F

1 = {X ∈ K : ⟨H0, X⟩ = 1}. This can be achieved by two methods. The first method is
to take the conic hull of ∆F

1 such that

∆F =
{
µX ∈ SF : µ ≥ 0, X ∈ ∆F

1

}
=
{
µx□F ∈ SF : µ ≥ 0, x ∈ J

}
.

The second method is to homogenize ∆F
1 such that

ΓF =
{
(x

τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T ∈ SF : (x0,x) ∈ R+ × J

}
,
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where τ = max{|α| : α ∈ F}. We note that, for x0 = 0 and x ∈ Rn,

x
τ−|α|
0 xα =

{
0 if τ > |α|
xα otherwise, i.e., if τ = |α|. (3.2)

Both ∆F and ΓF are cones in SF . The first construction of the cone ∆F was (implicitly)
employed in [22], while the construction of the second cone ΓF is an extension of the one
discussed in Section 5 of Part I [4] for a class of linearly constrained QOPs with complemen-
tarity constraints. We are mainly interested in the second one.

Let H0 be a matrix in SF with 1 in the (0,0)-th element and 0 elsewhere. Then, we
see that ⟨H0, x□F ⟩ = ⟨H0, (xα : F)(xα : F)T ⟩ = x0x0 = 1 for every x ∈ Rn, and that

⟨H0, X⟩ = X00 = x2τ0 for every X = (x
τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T ∈ ΓF . It follows that{

X ∈ ∆F : ⟨H0, X⟩ = 1
}

=
{
µx□F ∈ SF : x ∈ J, µ ≥ 0, ⟨H0, µx□F ⟩ = 1

}
= ∆F

1 ,{
X ∈ ΓF : ⟨H0, X⟩ = 1

}
=
{
(x

τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T : (x0,x) ∈ R+ × J, x0 = 1

}
= ∆F

1 .

(3.3)

Therefore, both COP (1.1) with K = ∆F and COP (1.1) with K = ΓF are equivalent to
POP (3.1), and ζp(∆F ) = ζp(ΓF ) = ζ∗. In both cases, F (K) ̸= ∅ since we have assumed
that the feasible region of POP (1.3) is nonempty.

For Example 3.1, we see that

∆F =




µ µx1 µx2 µx1x2
µx1 µx21 µx1x2 µx21x2
µx2 µx1x2 µx22 µx1x

2
2

µx1x2 µx21x2 µx1x
2
2 µx21x

2
2

 ∈ SF+ :

 µ
x1
x2

 ∈ R3
+

 ,

ΓF =




x40 x30x1 x30x2 x20x1x2
x30x1 x20x

2
1 x20x1x2 x0x

2
1x2

x30x2 x20x1x2 x20x
2
2 x0x1x

2
2

x20x1x2 x0x
2
1x2 x0x1x

2
2 x21x

2
2

 ∈ SF+ :

 x0
x1
x2

 ∈ R3
+

 . (3.4)

It can be easily verified that ∆F ∩ ΓF coincides with the union of


µ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ SF+ : µ ∈ R+


and 


1 x1 x2 x1x2
x1 x21 x1x2 x21x2
x2 x1x2 x22 x1x

2
2

x1x2 x21x2 x1x
2
2 x21x

2
2

 ∈ SF+ :

(
x1
x2

)
∈ R2

+


Hence they are different.

Now, we are ready to present the main theorem of this section.
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Theorem 3.2. Suppose that Condition (I) holds for K = ΓF and K = ∆F . Then,

(i) ζp(co ∆F ) = ζ∗.

(ii) Assume that ζ∗ is finite, we have that

ζp(co ΓF ) =

{
ζ∗ if Condition (IV) holds for K = ΓF ,
−∞ otherwise.

Proof. We observe that

F0(∆
F ) =

{
X ∈ SF | X ∈ ∆F , ⟨H0, X⟩ = 0,

⟨Qk, X⟩ = 0 (k = 1, 2, . . . ,m)

}
= {O} .

Therefore Condition (IV) holds for K = ∆F , and both assertions (i) and (ii) follow from
(iv) of Theorem 2.1.

We note that COP (1.1) with K = co ∆F is similar (essentially equivalent) to the one
obtained by applying the canonical convexification procedure [22] to POP (1.3). Next, we
investigate Conditions (I) in detail for K = ΓF and K = ∆F in cases where J = Rn and
J = Rn

+. First, suppose that J = Rn. Then both ∆F and ΓF are included in SF+∩LF . Hence

their duals
(
∆F

)∗
and

(
ΓF
)∗

include cl

(
SF+ +

(
LF
)⊥)

= SF+ +
(
LF
)⊥

(see Lemma 2.6).

Therefore, ifQk ∈ SF++
(
LF
)⊥

, or, equivalently, if fk(x) = ⟨Qk, x□F ⟩ is an SOS polynomial

(k = 1, 2, . . . ,m) (see Lemma 2.3 and 2.4), then Condition (I) is satisfied for K = ΓF and

K = ∆F . If a polynomial equation g(x) = 0 is given, it is equivalent to have (g(x))
2
= 0.

Thus, Condition (I) for K = ΓF and K = ∆F is not a strong assumption.
Suppose that J = Rn

+. Then,

∆F =
{
µx□F : x ∈ Rn

+, µ ≥ 0
}
⊂ (CF )∗ ∩ LF ⊂ SF+ ∩ NF ∩ LF ,(

∆F
)∗

⊃ cl
(
CF + (LF )⊥

)
⊃ cl

(
SF+ + NF + (LF )⊥

)
,

where

CF =

{
Y ∈ SF :

(ξα : F)TY (ξα : F) ≥ 0
for every (ξα : F) ≥ 0

}
(the copositive cone),

(CF )∗ =
{
X ∈ SF : ⟨X, Y ⟩ ≥ 0 for every Y ∈ CF

}
= co

{
(ξα : F)(ξα : F)T ∈ SF : (ξα : F) ≥ 0

}
(the completely positive cone),

NF =
{
X ∈ SF : Xαβ ≥ 0 ((α,β) ∈ □F)

}
(the cone of nonnegative matrices).

Similarly,

ΓF =
{
µx□F : x ∈ Rn

+, µ ≥ 0
}
⊂ (CF )∗ ∩ LF ⊂ SF+ ∩ NF ∩ LF ,(

ΓF
)∗

⊃ cl
(
CF + (LF )⊥

)
⊃ cl

(
SF+ + NF + (LF )⊥

)
.
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Therefore, if Qk ∈ SF+ + NF + (LF )⊥ (or, less restrictively, if Qk ∈ CF + (LF )⊥) (k =

1, 2, . . . ,m), then Condition (I) is satisfied for K = ∆F and K = ΓF .
Now we focus on Condition (IV) with K = ΓF . Recall that τ = max{|α| : α ∈ F}. Let

F = {α ∈ F : |α| = τ}, and define Q
k
= (Q

k

αβ : □F) ∈ SF and f̄k(x) ∈ R[x,F + F ] such
that

Q
k

αβ =

{
Qk

αβ if α, β ∈ F
0 otherwise

and f̄k(x) = ⟨Qk
, x□F ⟩

(k = 0, 1, . . . ,m).

Lemma 3.3. Condition (IV) with K = ΓF holds if and only if

f̄0(x) ≥ 0 if x ∈ J and f̄k(x) = 0 (k = 1, 2, . . . ,m). (3.5)

Proof. (i) “If part”: Suppose that (3.5) holds. Let X ∈ F0(Γ
F ). By the definition of

F0(Γ
F ), there is an (x0,x) ∈ R+ × J such that

X = (x
τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T ,

0 = ⟨H0, X⟩ = X00 = x20, i.e., x0 = 0,

0 = ⟨Qk, X⟩ =
⟨
Qk, (x

τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T

⟩
(k = 1, 2, . . . ,m).

If follows from (3.2), x0 = 0 and the first identity above that

Xαβ =

{
xα+β if α, β ∈ F ,
0 otherwise.

(3.6)

Hence we obtain that

⟨Qk, X⟩ =
⟨
Q

k
, x□F

⟩
= f̄k(x) (k = 0, 1, 2, . . . ,m). (3.7)

Therefore (3.5) implies Condition (IV) with K = ΓF .
(ii) “Only if part”: Suppose that Condition (IV) with K = ΓF holds. For an arbitrary

chosen x ∈ J such that f̄k(x) = 0 (k = 1, 2, . . . ,m), let x0 = 0 and X = (x
τ−|α|
0 xα :

F)(x
τ−|α|
0 xα : F)T . Then (3.6) and (3.7) follows. Therefore Condition (IV) with K = ΓF

implies (3.5).

The condition (3.5) holds in the following cases:

(a) Q
0
= O ∈ SF or f̄0(x) is an identically zero polynomial, i.e., deg(f0(x)) < 2τ .

(b)
{
x ∈ J : f̄k(x) = 0 (k = 1, 2, . . . ,m)

}
= {0}.

We note that (a) can be always satisfied by choosing a nonempty finite subset F of Zn
+ such

that fk(x) ∈ R[x,F + F ] (k = 0, 1, 2, . . . ,m) and deg(f0(x)) < 2τ = 2max{|α| : α ∈ F},
and that (b) implies that the feasible region of POP (1.3) is bounded.

For Example 3.1, we observe that F0(Γ
F ) =X =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 x21x

2
2

 ∈ SF+ :
(x1, x2) ∈ R2

+,

⟨Q1, X⟩ = Q1
(1,1)(1,1)X(1,1)(1,1) = 0

 = {O},
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where Q1 is given as in (2.5). Thus, Condition (IV) is satisfied for K = ΓF .
If the cone co Γ is closed, i.e., Condition (II) is satisfied for K = co Γ in addition to

Condition (I), then we can introduce the primal-dual pair of Lagrangian-conic relaxation
problems (2.1) and (2.2) for K = co Γ, and the relation

(
ηd(λ,K) = ηp(λ,K)

)
↑λ = ζd(K) ≤

ζp(K) follows by (ii) of Theorem 2.1. Here ( )↑λ means a monotonic increase as λ → ∞,
satisfying the equality in the parenthesis. The cone ΓF as well as its convex hull co ΓF ,
however, are not necessarily closed. In fact, ΓF given in (3.4) is not closed. To see this, let

X =


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 .

Then X ̸∈ ΓF , but the matrix (x
τ−|α|
0 xα : α ∈ F)(x

τ−|α|
0 xα : α ∈ F)T ∈ ΓF with

(x0, x1, x2) = (ϵ, ϵ, 1/ϵ) converges to X as ϵ→ 0+.

Lemma 3.4. Assume that 0 ∈ F and τei ∈ F (i = 1, 2, . . . , n), where ei denotes the i-th
unit coordinate vector in Rn. Then, ΓF and co ΓF are closed.

Proof. Let {Xp : p = 1, 2, . . . } be a sequence in ΓF converging to X ∈ SF . By Xp ∈
ΓF , there exists (xp0,x

p) ∈ R+ × J such that Xp
αβ = (xp0)

τ−|α|(xp)α(xp0)
τ−|β|(xp)β, which

converges to Xαβ as p→ ∞ for ((α,β) ∈ □F). Specifically, (xp0)
τ−|α|(xp)α(xp0)

τ−|α|(xp)α

converges to Xαα for α = 0 ∈ F and α = τei ∈ F (i = 1, 2, . . . , n). Thus, (xp0)
2τ and (xpi )

2τ

(i = 1, 2, . . . , n) converge to X00 and X(τei)(τei) (i = 1, 2, . . . , n), respectively. This implies
that the sequence {(xp0,xp) : p = 1, 2, . . . } is bounded, and we can take a subsequence which
converges to (x̄0, x̄) ∈ R+ × J. Therefore,

X = ((x̄0)
τ−|α|(x̄)α : F)((x̄0)

τ−|α|(x̄)α : F)T ∈ ΓF ,

and we have shown that ΓF is closed. The closedness of co ΓF follows from Lemma 3.1 of
[3].

Without loss of generality, the assumption of the previous lemma can be satisfied by
adding 0 ∈ Zn

+ and τei ∈ Zn
+ (i = 1, 2, . . . , n) to F if necessary. For Example 3.1, one can

add (2, 0) and (0, 2) to F to satisfy the assumption.
The MC relaxation problem proposed in [3] as an extension of the CPP relaxation for

QOPs to POPs is essentially equivalent to COP (1.1) with K = co ΓF . A hierarchy of
copositivity conditions assumed there is weaker than Condition (I) and can be regarded as a
generalization of Condition (I). We have assumed a stronger condition here, Condition (I),
to consistently derive the Lagrangian-conic relaxation (2.1) in the unified framework. On
the other hand, the additional condition on zeros at infinity assumed in Lemma 3.1 of [4],
which was also assumed in [22] for a canonical convexification procedure for a class of POPs,
is stronger than Condition (IV).

If F =
{
α ∈ Zn

+ : |α| ≤ 1
}
, then POP (1.3) becomes a QOP. In this case, LF = SF

and (LF )⊥ = {0}, and the previous discussions correspond to Section 4.2 of Part I [4],
where the convexification of a linearly constrained QOP with complementarity condition
was discussed.

4 A Hierarchy of Lagrangian-SDP Relaxations for POPs

In this section, we propose a hierarchy of Lagrangian-SDP relaxations for POPs by com-
bining the approach in [2, 4, 17] for deriving the Lagrangian-CPP and Lagrangian-DNN
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relaxations for a class of QOPs with the hierarchy of SDP relaxations proposed by [20] for
POPs. The motivation for combining these two approaches, which have been studied almost
independently, is to develop efficient and effective numerical methods for POPs.

Fixing J = Rn in POP (1.3), we consider a POP of the form

ζ∗ := inf
{
f0(x)

∣∣ x ∈ Rn, fk(x) = 0 (k = 1, 2, . . . ,m)
}

(4.1)

throughout this section. Then an SOS relaxation of POP (4.1) is given by

ζ̄d∞ := sup

{
z0 ∈ R

∣∣∣∣∣ f0(x)− z0 ∈ SOS[x] +
m∑

k=1

R[x]fk(x)
}
. (4.2)

For main theoretical results which we will establish, we introduce

Condition (VI) (Archimedean condition) The feasible region
{
x ∈ Rn : fk(x) = 0

(k = 1, 2, . . . ,m)} is nonempty and bounded, and the set {x : p(x) ≥ 0} is bounded
for some p(x) ∈ SOS[x] +

∑m
k=1 R[x]fk(x).

Lemma 4.1.

(i) ζ̄d∞ ≤ ζ∗.

(ii) If Condition (VI) holds, then ζ̄d∞ = ζ∗.

Proof. (i) If x is a feasible solution of POP (4.1) and z0 is a feasible solution of (4.2), then
f0(x)− z0 ∈ SOS[x], which implies z0 ≤ f0(x). Thus ζ̄d∞ ≤ ζ∗ follows.

(ii) We know that the feasible region of POP (4.1) can be written as{
x ∈ Rn : fk(x) ≥ 0, −fk(x) ≥ 0 (k = 1, 2, . . . ,m)

}
and that SOS[x] − SOS[x] = Rn[x]. Then the lemma follows directly from Lemma 4.1 of
[23]. See also Section 4 of [20].

4.1 Reducing SOS problem (4.2) to a simpler SOS problem

In this subsection, we establish the equivalence between SOS problem (4.2) and the following
simpler SOS problem

ζd∞ := sup

y0 ∈ R

∣∣∣∣∣∣∣
f0(x)− y0 ∈ SOS[x]−

m∑
k=1

ykΘ[x](fk(x))2,

(y0, y1, . . . , ym) ∈ R1+m

 , (4.3)

where

Aτ =
{
α ∈ Zn

+ : |α| ≤ τ
}

(τ ∈ Z+), θτ (x) =
∑

α∈Aτ

x2α ∈ SOS[x,Aτ ],

Θ[x] = {θτ (x) : τ ∈ Z+} ⊂ SOS[x] ⊂ R[x].
(4.4)

The last relation in (4.4) implies that
{
ykΘ[x]fk(x) : yk ∈ R

}
⊂ R[x] (k = 1, 2, . . . ,m);

hence (4.3) can be regarded as a subproblem of (4.2).The following lemma shows their
equivalence.

Theorem 4.2. ζ̄d∞ = ζd∞.
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Proof. (i) Proof of ζd∞ ≤ ζ̄d∞. We know that R[x] ⊃ −ykΘ[x]fk(x) for every yk ∈ R (k =
1, . . . ,m). This implies that if (y0, y1, . . . , ym) is a feasible solution of (4.3), then z0 = y0 is
a feasible solution of (4.2). Therefore, the inequality ζd∞ ≤ ζ̄d∞ follows.

(ii) Proof of ζd∞ ≥ ζ̄d∞. Let z0 be a feasible solution of (4.2) and ϵ an arbitrary positive
number. We show that there is a feasible solution (y0, y1, . . . , ym) of (4.3) with objective
value y0 = z0 − ϵ. Since z0 is feasible solution of (4.2), we see that

SOS[x] ∋ f0(x)− z0 −
m∑

k=1

ψk(x)fk(x) (4.5)

for some ψk(x) ∈ R[x] (k = 1, . . . ,m). Let τk = deg(ψk(x)), so that ψk(x) ∈ R[x,Aτk ]
(k = 1, . . . ,m). Then, each polynomial ψk(x) ∈ R[x,Aτk ] can be represented as

ψk(x) =
∑

α∈A
τk

ψk
αx

α (k = 1, . . . ,m).

Substituting these identities into the relation (4.5), we get

SOS[x] ∋ f0(x)− z0 −
m∑

k=1

∑
α∈A

τk

ψk
αx

αfk(x). (4.6)

Choose a ρ > 0 such that ϵ − (
∑m

k=1 |Aτk |) (1/(2ρ))2 > 0, and let yk = max{(ρψk
α)

2 : α ∈
Aτk} (k = 1, . . . ,m). Then,

SOS[x] ∋

(
ϵ−

(
m∑

k=1

|Aτk |

)
(1/(2ρ))2

)

+

m∑
k=1

∑
α∈A

τk

(
ρψk

αx
αfk(x) + 1/(2ρ)

)2
+

m∑
k=1

∑
α∈A

τk

(
yk − (ρψk

α)
2
)
(xαf i(x))2

= ϵ+

m∑
k=1

∑
α∈A

τk

ψi
αx

αfk(x) +

m∑
k=1

∑
α∈A

τk

yk
(
xαfk(x)

)2
.

It follows from (4.6) that

SOS[x] ∋ f0(x)− z0 −
m∑

k=1

∑
α∈A

τk

ψk
αx

αfk(x)

+ ϵ+

m∑
k=1

∑
α∈A

τk

ψk
αx

αfk(x) +

m∑
k=1

∑
α∈A

τk

yk
(
xαfk(x)

)2
= f0(x)− (z0 − ϵ) +

m∑
k=1

∑
α∈A

τk

yk
(
xαfk(x)

)2
= f0(x)− (z0 − ϵ) +

m∑
k=1

ykθτk(x)
(
fk(x)

)2
.
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Therefore, we have shown that

f0(x)− (z0 − ϵ) ∈ SOS[x]−
m∑

k=1

ykθτk(x)
(
fk(x)

)2
⊂ SOS[x]−

m∑
k=1

ykΘ[x]
(
fk(x)

)2
,

and that (y0, y1) = (z0 − ϵ, z1) is a feasible solution of SOS problem (4.3). Thus we have
ζd∞ ≥ y0 = z0 − ϵ for all ϵ > 0. This implies that ζd∞ ≥ z0 for any feasible z0 of (4.2). Hence
ζd∞ ≥ ζ̄d∞.

4.2 A hierarchy of finite SOS subproblems of (4.3) for numerical computation

The SOS problem (4.3) that attains the exact optimal value ζ∗ of POP (4.1) under the
assumption of Lemma 4.1 cannot be solved numerically because the degree of sum of squares
of polynomials involved is not bounded. For numerical computation of lower bounds of ζ∗

which converges to ζ∗, we introduce a hierarchy of SOS subproblems of (4.3) by bounding
the degree of the SOS polynomials to be used with an increasing sequence of finite integers
as in a similar way to the hierarchy of Lasserre’s SDP relaxation [20] for POPs.

Let ωmin = max{⌈deg(f0(x))/2⌉, deg(fk(x)) (k = 1, 2, . . . ,m)}. For every ω ∈ Z+ not
less than ωmin, we consider the following SOS problem:

ζdω := sup

y0 ∈ R

∣∣∣∣∣∣∣
f0(x)− y0 +

m∑
k=1

ykθτk(x)(fk(x))2 ∈ SOS[x,Aω],

(y0, y1, . . . , ym) ∈ R1+m

 , (4.7)

where

τk(ω) = ω − deg(fk(x)) (k = 1, . . . ,m). (4.8)

We note that

f0(x) ∈ R[x,Aωmin
+Aωmin

] ⊂ R[x,Aω +Aω],

θτk(ω)(x)(f
k(x))2 ∈ SOS[x,Aω] ⊂ R[x,Aω +Aω] (k = 1, 2, . . . ,m),

(4.9)

Therefore, the degree of polynomials in the SOS problem (4.7) is bounded by 2ω. This SOS
problem can be solved as an SDP (4.16), as shown in the next subsection.

Lemma 4.3. Suppose that (y0, y1, . . . , ym) is a feasible solution of (4.7). Then (y0, y
′
1, . . . , y

′
m)

is a feasible solution of (4.7) with the same objective value if y′k ≥ yk (k = 1, 2, . . . ,m).

Proof. The assertion follows from θτk(ω)(x)(f
k(x))2 ∈ SOS[x,Aω] (k = 1, 2, . . . ,m).

Lemma 4.4. Let ωmin ≤ ω ∈ Z+. Then ζdω ≤ ζd∞ and ζdω converges to ζd∞ monotonically
from below as ω → ∞.

The inequality ζdω ≤ ζd∞ follows from the definitions of θτ (x) and Θ[x] in (4.4). Letting
ωmin ≤ ω1 < ω2, we show that ζdω1

≤ ζdω2
. Suppose that (y0, y1, . . . , ym) is a feasible solution

of (4.7) with ω = ω1. By Lemma 4.3, we may assume that yk ≥ 0 (k = 1, 2, . . . ,m). Then,

SOS[x,Aω1
] ∋ f0(x)− y0 +

m∑
k=1

ykθτk(ω1)(x)(f
k(x))2, (4.10)
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τk(ω2) > τk(ω1) (k = 1, . . . ,m),

θτk(ω2)(x)
(
fk(x)

)2 − θτk(ω1)(x)
(
fk(x)

)2
=

 ∑
α∈Fk

x2α

(fk(x))2
∈ SOS[x,Aω2

] (k = 1, . . . ,m), (4.11)

where Fk = Aτk(ω2)\Aτk(ω1) =
{
α ∈ Aτk(ω2) : α ̸∈ Aτk(ω1)

}
=
{
α ∈ Aτk(ω2) : |α| > τk1

}
(k =

1, . . . ,m). It follows from yk ≥ 0 (k = 1, 2, . . . ,m), (4.10) and (4.11) that

SOS[x,Aω2
] ⊃ SOS[x,Aω1

] + SOS[x,Aω2
]

∋ f0(x)− y0 +

m∑
k=1

ykθτk(ω1)(x)(f
k(x))2

+

m∑
k=1

yk

(
θτk(ω2)(x)

(
fk(x)

)2 − θτk(ω1)(x)
(
fk(x)

)2)
= f0(x)− y0 +

m∑
k=1

ykθτk(ω2)(x)(f
k(x))2. (4.12)

Hence, (y0, y1, . . . , ym) remains a feasible solution of SOS problem (4.7) with ω = ω2. We
have shown that ζdω1

≤ ζdω2
.

Finally, we show that ζdω converges to ζd∞ as ω → ∞. Let ϵ > 0. Then there exists a
feasible solution (y0, y1, . . . , ym) of (4.3) such that y0 ≥ ζd∞ − ϵ. Thus,

SOS[x,Aω] ∋ f0(x)− y0 +

m∑
k=1

ykθσk(x)(fk(x))2

for some σk ∈ Z+ (k = 1, 2, . . . ,m) and some ω ≥ max
{
σk + deg

(
fk(x)

)
: k = 1, 2, . . . ,m

}
.

Now, define τk(ω) (k = 1, 2, . . . ,m) by (4.8). Then τk(ω) ≥ σk (k = 1, 2, . . . ,m). Assuming
yk ≥ 0 (k = 1, 2, . . . ,m) without loss of generality by Lemma 4.3, we can prove that

SOS[x,Aω] ∋ f0(x)− y0 +

m∑
k=1

ykθτk(ω)(x)(f
k(x))2

by the same way as (4.12) has been derived from (4.10). As a result, (y0, y1, . . . , yk) is a
feasible solution of (4.7) with the objective value y0 ≥ ζd∞−ϵ. This implies that ζd∞−ϵ ≤ ζdω.
We already know that ζdω ≤ ζdω2

≤ ζd∞ if ω < ω2. Since ϵ > 0 arbitrary, we have shown that
ζdω converges to ζd∞ as ω → ∞.

4.3 Reducing SOS problem (4.7) to a COP

To derive a COP of the form (1.2) equivalent to SOS problem (4.7), we need to convert the
SOS condition

f0(x)− y0 +

m∑
k=1

ykθτk(ω)(x)(f
k(x))2 ∈ SOS[x,Aω] (4.13)

to a linear matrix inequality. By (4.9), we can represent the left hand side of (4.13) as

f0(x)− y0 +

m∑
k=1

ykθτk(ω)(x)(f
k(x))2 =

⟨
Q0

ω −H0
ωy0 +

m∑
k=1

Qk
ωyk, x

□Aω

⟩
. (4.14)
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Here H0
ω and Qk

ω (k = 0, 1, . . . ,m) are matrices in SAω chosen such that

f0(x) =
⟨
Q0

ω, x
□Aω

⟩
∈ R[x,Aω +Aω],

1 =
⟨
H0

ω, x
□Aω

⟩
∈ SOS[x,Aω],

θτk(ω)(x)(f
k(x))2 =

⟨
Qk

ω, x
□Aω

⟩
∈ SOS[x,Aω] (k = 1, 2, . . . ,m).

(4.15)

Specifically, H0
ω is a matrix in SAω whose elements are all zeros except H0

00 = 1.
By (4.14), we can rewrite the SOS condition (4.13) as⟨

Q0
ω −H0

ωy0 +

m∑
k=1

Qk
ωyk, x

□Aω

⟩
∈ SOS[x,Aω].

By Lemma 2.5, we know that the inclusion relation above is equivalent to Q0
ω − H0

ωy0 +∑m
k=1 Q

k
ωyk ∈ SAω

+ +
(
LAω

)⊥
. Thus, letting Kω = SAω

+ ∩ LAω , we obtain the following

primal-dual pair of COPs:

ζpω := inf

{
⟨Q0

ω, X⟩

∣∣∣∣∣ X ∈ Kω, ⟨H0
ω, X⟩ = 1,

⟨Qk
ω, X⟩ = 0 (k = 1, 2, . . . ,m)

}
. (4.16)

ζdω := sup

y0 ∈ R

∣∣∣∣∣∣∣
Q0

ω −H0
ωy0 +

m∑
k=1

Qk
ωyk ∈ K∗

ω

(y0, y1, . . . , ym) ∈ R1+m

 . (4.17)

In particular, the problem (4.17) is equivalent to the SOS problem (4.7). We note that
K∗

ω = SAω
+ + LAω , and that both Kω and K∗

ω closed. See Lemma 2.6.

4.4 Lagrangian-SDP relaxations of COPs (4.16) and (4.17)

If we take K = Kω = SAω
+ ∩ LAω , H0 = H0

ω and Qk
ω (k = 0, 1, 2, . . . , k), then the problems

(4.16) and (4.17) coincide with the primal-dual pair of COPs (1.1) and (1.2), respectively. We
are now ready to apply the general discussions on COPs (1.1) and (1.2) given in Sections 2,

Part I [4]. Let H1
ω =

m∑
k=1

Qk
ω for their Lagrangian-conic relaxation problems (2.1) and (2.2).

Then we obtain:

ηpω(λ) := inf
{
⟨Q0

ω + λH1
ω, X⟩

∣∣ X ∈ Kω, ⟨H0
ω, X⟩ = 1

}
. (4.18)

ηdω(λ) := sup
{
y0 ∈ R

∣∣ Q0
ω + λH1

ω −H0
ωy0 ∈ K∗

ω, y0 ∈ R
}
. (4.19)

Theorem 4.5. Assume that the feasible region of POP (4.1) is nonempty. Let ωmin ≤ ω ∈
Z+. The following results hold.

(i) ηdω(λ) = ηpω(λ) ≤ ζdω for every λ ∈ R. The problem (4.19) attains the optimal value
ηdω(λ) at a feasible solution if ηdω(λ) is finite.

(ii) ηdω(λ) converges to ζdω monotonically from below as λ→ ∞.
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(iii) For any ϵ > 0, there exist ω̂ ∈ Z+ and λ̂ ∈ R such that ζd∞ − ϵ ≤ ηdω(λ) ≤ ζd∞ holds for

every ω ≥ ω̂ and every λ ≥ λ̂; roughly speaking ηdω(λ) converges to ζd∞ from below as
λ > 0 and ω ∈ Z+ both tend to ∞.

(iv) In addition, if Condition (VI) holds, we can replace ζd∞ by the optimal value ζ∗ of
POP (4.1).

Proof. For (i) and (ii), it suffices to show that Conditions (I) and (II) hold for K = Kω =
SAω
+ ∩ LAω . Then, both assertions follow from (ii) of Theorem 2.1. It follows from the

assumption that the feasible region of (4.16) is nonempty. By construction, we know that
H0

ω, Qk
ω ∈ SAω

+ (k = 1, 2, . . . ,m). On the other hand, K = SAω
+ ∩ LAω ⊂ SAω

+ . Therefore

K∗ ⊃ SAω
+ , and Condition (I) follows. On the other hand we know that SAω

+ and LAω are
both closed convex cones. And, so is their intersection. Therefore, Condition (II) holds for
K = SAω

+ ∩ LAω .
(iii) We have derived the Lagrangian-SDP relaxation problem (4.19) of (4.1) from SDP

(4.16). By the same argument as above, we can prove directly that (4.19) is equivalent to
SOS problem:

ηdω(λ) := sup

{
y0 ∈ R

∣∣∣∣∣ f0(x)− y0 + λ

m∑
k=1

θτk(ω)(x)(f
k(x))2 ∈ SOS[x,Aω], y0 ∈ R

}
.

Thus it can be shown that if ωmin ≤ ω1 < ω2, then the inequality ηdω1
(λ) ≤ ηdω2

(λ) holds
for every λ ≥ 0. Let ϵ > 0. Then, by Lemma 4.4, we can find an ω̂ ∈ Z+ such that
ζd∞ − ϵ/2 ≤ ζdω ≤ ζd∞ for every ω ≥ ω̂. Furthermore, by (ii), we can find a λ̂ ∈ R such that

ζdω̂ − ϵ/2 ≤ ηdω̂(λ) ≤ ζdω̂ for every λ ≥ λ̂. Hence we obtain ζd∞ − ϵ ≤ ζdω̂ − ϵ/2 ≤ ηdω̂(λ). Now
if ω ≥ ω̂ and λ ≥ ω̂, then ζd∞ − ϵ ≤ ηdω̂(λ) ≤ ηdω(λ) ≤ ζd∞, where the last inequality follows
from the discussion above.

In order to solve the primal-dual pair of COPs (4.18) and (4.19), it is possible to apply the
bisection and 1-dimensional Newton methods proposed in Part I [4]. See also the numerical
method in [17], consisting of a bisection method (Algorithm A of [17]), a proximal alternating
direction multiplier method [12] (Algorithm B) and an accelerated proximal gradient method
[7] (Algorithm C).

Now we present a simpler way of deriving the Lagrangian-SDP relaxation, COP (4.18)
directly from POP (4.1). Choose λ > 0 and ω ∈ Z+ such that ω ≥ ωmin where ωmin =
max{⌈deg(f0(x))/2⌉, deg(fk(x)) (k = 1, 2, . . . ,m)}. Consider the unconstrained POP

ζp(λ) := inf
{
g0(λ, ω,x) : x ∈ Rn

}
, (4.20)

where g0(λ, ω,x) = f0(x)+λ
∑m

k=1 θτk(ω)(x)(f
k(x))2. (See (4.4) and (4.8) for the definition

of θτk(ω)(x)). Since θτk(ω)(x) ≥ 1 for every x ∈ Rn, the term λ
∑m

k=1 θτk(ω)(x)(f
k(x))2

added to the objective polynomial f0(x) of POP (4.1) serves as a penalty for violating the
equality constraints fk(x) = 0 (k = 1, 2, . . . ,m) of POP (4.1). By the construction of the
matrices H0

ω, Q
k
ω (k = 0, 1, . . . ,m) (see (4.15)) and H1

ω =
∑m

k=1 Q
k
ω, the unconstrained

POP (4.20) can be rewritten as

ζpω(λ) := inf
{
⟨Q0

ω + λH1
ω, x

□Aω ⟩ : ⟨H0
ω, x

□Aω ⟩ = 1, x ∈ Rn
}
.

Replacing x□Aω by a variable matrix X ∈ Kω = SAω
+ ∩ Lω, we obtain the Lagrangian-SDP

relaxation COP (4.18) and its dual (4.19). It follows from x□Aω ∈ Kω that ηpω(λ) ≤ ζpω(λ) ≤
ζ∗. We also see by Theorem 4.5 that if the feasible reagion of POP (4.1) is nonempty and
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Condition (VI) holds then ζpω(λ) converges to the optimal value ζ∗ of POP (4.1) as λ > 0 and
ω ∈ Z+ both tend to ∞. The derivation of the Lagrangian-SDP relaxation COP (4.18) and
its dual (4.19) are equivalent to the application of Lasserre’s hierarchy of SDP relaxations
[20] to (4.20).

4.5 A numerical example

We illustrate how ηdω(λ) converges to the optimal value ζ∗ of POP (4.1) as ω and λ both tend
to ∞ with a simple numerical example. We also roughly evaluate the performance of our
Lagrangian-SDP relaxation formulation (4.18) and (4.19) combined with the PB (projection-
bisection) method, which was originally proposed in [17] (see also Section 4 of Part I [4] and
Section 2 of [6]) for large scale COPs of the form (1.1).

Let f0(x) be a randomly generated polynomial with degree 4, m = 1 and f1(x) =∑n
i=1(2xi − 1)2 − 1, for a POP of the form (4.1). Since the feasible region is nonempty

and bounded, the problem has a finite optimal value ζ∗. The numerical experiments were
conducted in MATLAB on Mac Pro with Intel Xeon E5 8 core CPU (3.0 GHz). For the PB
method, we modified the MATLAB code of the PB method (Algorithm 2.2 in [6]) developed
for a class of QOPs. For the primal-dual interior-point method, SeDuMi [24] and SDPT3
[25] were used with default parameters for accuracy. The relative accuracy δ = 1.0e-4 was
used for the PB method. We note that the PB method solves the dual problem (4.19) while
SeDuMi and SDPT3 solve the primal-dual pair of (4.18) and (4.19) simaltaneously.

In Table 1, the changes of ηdω(λ) as λ and ω increase are shown for n fixed to 3. The
optimal value ζ∗ of POP (4.1) was computed by SparsePOP [26, 27] with SeDuMi. We note
that SparsePOP is a MATLAB implementation of Lasserre’s hierarchy of SDP relaxations
of POPs [20]. When the PB method was applied to (4.19) with ω = 2, ηdω(λ) increased with
λ from 100 to 51200, but it then decreased due to numerical errors. On the other hand,
when SeDuMi was applied to the primal-dual pair of (4.18) and (4.19), ηdω(λ) increased with
λ for each fixed ω = 2, 3, 4, and it also increased with ω for each fixed λ. It eventually
attained a better lower bound −5.02473 of the optimal value ζ∗ = −5.02431 of POP (4.1)
at ω = 4 and λ = 102400. We also observe in Table 1 that SeDuMi provided a better lower
bound in less cpu time.

Table 1: n = 3. The optimal value is -5.02431. The default parameters for accuracy were
used when applying SeDuMi and SDPT3 to (4.18) and (4.19). For the PB method applied
to (4.19), the relative accuracy δ = 1.0e-4 was used.
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We now consider larger problems. The PB method is compared with the direct applica-
tion of SparsePOP, which invokes SeDuMi or SDPT3 as an SDP solver, to POP (4.1) and
the applications of SeDuMi and SDPT3 to (4.18) and (4.19). Table 2 shows the case where
n = 20 and ω = 2. We observe that

(a) SparsePOP with SDPT3 and SparsePOP with SeDuMi applied directly to POP (4.1)
attained the best lower bound, and also performed faster than SDPT3 and SeDuMi
applied to (4.18) and (4.19), respectively.

(b) SDPT3 and SeDuMi applied to (4.18) and (4.19) worked effectively in computing
better bounds but required longer time than the PB method,

(c) the PB method with smaller λ up to 1600 attained a reasonable lower bound in less cpu
time but the lower bounds generated got worse for larger λ due to numerical errors.

Table 2: n = 20 and ω = 2. The default parameters for accuracy were used when applying
SeDuMi and SDPT3 to (4.18) and (4.19). For the PB method applied to (4.19), the relative
accuracy δ = 1.0e-4 was used.

Table 3 shows the case for n = 25, 30 and ω = 2. We note that the observation (a)
made in the previous case is no longer true in these cases. In general, the dual SDP problem
derived as Lasserre’s SDP relaxation [20] of a POP has no interior-feasible solution. This is
a difficulty that many SDP solvers such as SDPT3 based on the primal-dual interior-point
method cannot properly handle. For SeDuMi, we observe that it can effectively deal with
such degeneracy, however, it is too slow to process these problems. As far as the speed is
concerned, SDPT3 is much faster than SeDuMi for large SDPs, but its speed is still not fast
enough and its memory consumption is too large for these problems. The observation (c) on
the PB method remains valid and it successfully provided a lower bound for the unknown
optimal value of POP (4.1) with n = 30 which neither SeDuMi nor SDPT3 could process.

The numerical results reported in Tables 1 to 3 display high potential of our approach
based on the Lagrangian-SDP relaxation formulation (4.18) and (4.19) combined with the
PB method. As seen in the Tables, the current implementation of the PB method lacks
stability for large λ. A more stable and efficient implementation of the PB method is
necessary before fully evaluating the performance of our approach. See also the numerical
results reported in [3, 6, 17].



436 N. ARIMA, S. KIM, M. KOJIMA AND K.-C. TOH

Table 3: n = 25, 30 and ω = 2. The default parameters for accuracy were used when
applying SeDuMi and SDPT3 to (4.18) and (4.19). For the PB method applied to (4.19),
the relative accuracy δ = 1.0e-4 was used. † means that SDPT3 stops with error (termcode
= -5, gap = 3.6180e6, pinfeas = 1.1035e-4 and dinfeas = 7.5934e-2). ‡ means that SDPT3
terminated with error (termcode = -5, gap = 1.7981e-3, pinfeas = 7.1405e-11 and dinfeas =
8.0319e-12).

5 Concluding Remarks

For POP (1.3) with J = Rn
+, two different approaches can be used. The first one is the

hierarchy of Lagrangian-DNN relaxations, obtained by replacing SDP cones with DNN cones
in the construction of the hierarchy of Lagrangian-SDP relaxations in Section 4. The second
one is the hierarchy of Lagrangian-SDP relaxation for the reformulated equality constrained
POP over Rn, obtained from adding xi−x2i+n = 0 (i = 1, 2, . . . , n) and replacing the cone Rn

+

by R2n. The lower bounds generated by the first hierarchy of Lagrangian-DNN relaxations
may not be theoretically guaranteed to converge to the optimal value of the original POP.
However, it may work effectively and efficiently for practical problems with a low relaxation
order.

Preliminary numerical results have been reported in Section 4. As mentioned in Section
4.5, there remain some issues to be investigated for a stable and efficient implementation
of the PB method for the hierarchy of Lagrangian-SDP relaxations of general POPs. The
1-dimensional Newton method proposed in Part I [4] may increase the numerical efficiency.

In addition, handling sparsity in an efficient manner is an important issue. Although a
hierarchy of sparse Lagrangian-SDP relaxations was presented in the original version [5] of
this paper, it is excluded here for the simplicity of the discussions in this paper. We hope
to report extensive numerical results in the near future.
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