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In the current work, after providing some preliminaries, a characterization of the nor-
mal cone of a locally star-shaped set is addressed which leads to a necessary and sufficient
optimality condition. We show that the Slater constraint qualification and nondegeneracy
condition considered in [9, 16, 21] imply Cottle constraint qualification. A new constraint
qualification (CQ) is introduced and important connections between various CQs are proved.
Necessary and sufficient KKT optimality conditions, in terms of convexificators, are dis-
cussed in the last part of the paper. The obtained outcomes generalize various results given
in [9, 16,21].

The rest of the paper is organized as follows. Section 2 contains preliminaries. Charac-
terization of the normal cone of locally star-shaped sets and minimizers of semilocally convex
functions are addressed in Section 3. CQs are discussed in Section 4; and KKT optimality
conditions are investigated in Section 5. Section 6 concludes the paper.

2 Preliminaries

In this paper, we consider the following problem:

min f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m, (2.1)

where f, gi : Rn → R (i = 1, . . . ,m) are not necessarily locally Lipschitz or continuous or
convex. Set

K := {x : gi(x) ≤ 0, i = 1, . . . ,m}. (2.2)

Assume K ̸= ∅ and for x̄ ∈ K set I(x̄) := {i ∈ {1, 2, . . . ,m} : gi(x̄) = 0}.
For a set S ⊆ Rn, we use the notations conv S, int S and cl S to denote the convex hull,

the interior and the closure of S, respectively. Throughout the paper, the considered norm
∥ · ∥ is the Euclidean norm, i.e., ∥ · ∥ = ∥ · ∥2. The notation ⟨·, ·⟩ is utilized to denote the
inner product.

A nonempty set C ⊆ Rn is called a cone, if for any x ∈ C and any scalar λ ≥ 0, λx ∈ C.
For a nonempty set S ⊆ Rn, the cone of feasible directions of, the tangent cone to, the
adjacent cone to, and the normal cone to S at x̄ ∈ cl S, denoted by DS(x̄), TS(x̄), AS(x̄),
and NS(x̄), respectively, are defined as

DS(x̄) := {d ∈ Rn : ∃δ > 0 s.t. ∀λ ∈ (0, δ), x̄+ λd ∈ S} ,

TS(x̄) := {d ∈ Rn : ∃{xn} ⊆ S, ∃{λn} ⊆ (0,+∞), xn → x̄, λn(xn − x̄) → d} ,

AS(x̄) := {d ∈ Rn : ∀tn ↓ 0, ∃{dn} ⊆ Rn, dn → d, x̄+ tndn ∈ S} ,

NS(x̄) := {ζ ∈ Rn : ⟨ζ, d⟩ ≤ 0, ∀d ∈ TS(x̄)}.

The polar cone and the strict polar cone of S ⊆ Rn are respectively defined by

S◦ := {d ∈ Rn : ⟨d, x⟩ ≤ 0, ∀x ∈ S},

Ss := {d ∈ Rn : ⟨d, x⟩ < 0, ∀x ∈ S}.

If Ss ̸= ∅, then cl Ss = S◦. It is seen that NS(x̄) = T ◦
S(x̄).

The cone DS(x̄) is neither closed nor convex necessarily, while AS(x̄) and TS(x̄) are
closed but not necessarily convex. In general, DS(x̄) ⊆ AS(x̄) ⊆ TS(x̄). The pseudotangent
cone of S ⊆ Rn at x̄, denoted by PTS(x̄), is defined as PTS(x̄) := cl(conv(TS(x̄))).

The cone and the convex cone generated by S, respectively, are defined as

cone(S) := {λy : λ ≥ 0, y ∈ S},
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pos(S) :=

{
y ∈ Rn : ∃ν ∈ N; y =

ν∑
i=1

λiyi, λi ≥ 0, yi ∈ S, i = 1, 2, . . . , ν

}
.

Remark 2.1. If S1, . . . , Sl ⊆ Rn are convex sets, then

pos

( l∪
i=1

Si

)
=

{ l∑
i=1

λidi : di ∈ Si, λi ≥ 0, i = 1, 2, . . . , l

}
.

The lower and upper Dini directional derivatives play a vital role in defining convexifi-
cators. The effective domain of h is denoted by domh.

Definition 2.1. The lower and upper Dini directional derivatives of h : Rn → R at x ∈
domh in direction d ∈ Rn are respectively defined by

h−(x; d) := lim inf
t↓0

h(x+ td)− h(x)

t
, h+(x; d) := lim sup

t↓0

h(x+ td)− h(x)

t
.

The directional derivative of h at x ∈ domh in direction d ∈ Rn, denoted by h′(x; d), is
defined as

h′(x; d) := lim
t↓0

h(x+ td)− h(x)

t
.

Definition 2.2. [7,13] Let h : Rn → R and x̄ ∈ domh be given. The closed set ∂∗h(x̄) ⊆ Rn

is called

i) an upper convexificator (UC) of h at x̄ if for each d ∈ Rn,

h−(x̄; d) ≤ sup
ζ∈∂∗h(x̄)

⟨ζ, d⟩.

ii) a convexificator of h at x̄ if it is a UC of h at x̄ and furthermore

h+(x̄; d) ≥ inf
ζ∈∂∗h(x̄)

⟨ζ, d⟩.

iii) an upper semiregular convexificator (USRC) of h at x̄ if for each d ∈ Rn,

h+(x̄; d) ≤ sup
ζ∈∂∗h(x̄)

⟨ζ, d⟩. (2.3)

iv) an upper regular convexificator (URC) of h at x̄ if (2.3) holds as equality for each
d ∈ Rn.

Gâteaux differentiable functions, regular functions in the sense of Clarke [5], and tan-
gentially convex functions [21] are important functions which admit URC. If h is locally
Lipschitz, then Clarke subdifferential [5] and Michel-Penot subdifferential [22] are USRCs [7].

Now we recall some constraint qualification conditions from the literature. Let K be
as represented in (2.2). Hereafter assume that gi functions, defining K, are not necessarily
convex or differentiable.

Definition 2.3. We say that the Slater Constraint Qualification (SCQ) holds for Problem
(2.1) if intK ̸= ∅.
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For a given x̄ ∈ K, define

Γ(x̄) :=
∪

i∈I(x̄)

∂∗gi(x̄).

Definition 2.4. Let x̄ ∈ K. Assume that for each i ∈ I(x̄), gi has a URC ∂∗gi(x̄) at x̄. We
say that

• Generalized Lasserre Constraint Qualification (GLCQ) holds at x̄ if 0 /∈ ∂∗gi(x̄) for
each i ∈ I(x̄).

• Cottle Constraint Qualification (CCQ) holds at x̄ if Γs(x̄) ̸= ∅.

• Guignard Constraint Qualification (GCQ) holds at x̄ if Γ◦(x̄) ⊆ PTK(x̄).

• Abadie Constraint Qualification (ACQ) holds at x̄ if Γ◦(x̄) ⊆ TK(x̄).

Generalized Abadie Constraint Qualification (GACQ) holds at x̄ if Γ◦(x̄) ⊆ AK(x̄).

• The Zangwill Constraint Qualification (ZCQ) holds at x̄ if Γ◦(x̄) ⊆ cl DK(x̄).

It is clear that, ZCQ ⇒ GACQ ⇒ ACQ ⇒ GCQ. See [2–4,20,24] for more details about
CQs and their important role in optimization.

Definition 2.5. Let K be as represented in (2.2), and x̄ ∈ K. Assume that f and gi, i ∈
I(x̄) admit URCs ∂∗f(x̄) and ∂∗gi(x̄) at x̄, respectively. The vector x̄ is called
(i) a Fritz John (FJ) point of (2.1) if

0 ∈ λ0conv(∂
∗f(x̄)) +

∑
i∈I(x̄)

λiconv(∂
∗gi(x̄))

for some nonzero vector (λ0, λi, i ∈ I(x̄)) ≥ 0.
(ii) a KKT point of (2.1), if it is a FJ point with λ0 > 0.

3 Locally Star-shaped Sets and Semilocally Convex Functions

It is known from the literature that KKT conditions are sufficient for optimality in Prob-
lem (2.1) if f, gi functions are convex and differentiable. In the two last decades, several
generalizations of convexity and differentiation have been introduced to extend the above
result for wider classes of problems; see e.g. [1, 4, 5, 23] for some generalizations of convex-
ity/differentiation and related discussions.

Since in our work the behavior of the objective function and the feasible set is important
around the point under consideration in contrast to other areas, we focus on locally star-
shaped sets and semilocally convex functions, defined and investigated by Ewing [10].

Definition 3.1. [10] A nonempty set S ⊆ Rn is said to be locally star-shaped at x̄ ∈ S, if
corresponding to x̄ and each x ∈ S, there exists a(x̄, x) ∈ (0, 1] such that

x̄+ λ(x− x̄) ∈ S, ∀λ ∈ (0, a(x̄, x)). (3.1)

If a(x̄, x) = 1 for each x ∈ S, then S is said to be star-shaped at x̄.

In the whole paper, S ∈ L(x̄) means S is locally star-shaped at x̄. Open sets and convex
sets are locally star-shaped at each of their elements, and cones are locally star-shaped at
the origin. If S is closed and it is locally star-shaped at each x ∈ S, then S is convex [15].
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There exist locally star-shaped sets (at some x) which are neither star-shaped nor locally
convex (at x). For example, consider S = R2\{(x1, x2) ∈ R2 : x2 = x2

1, x1 ̸= 0} at
x̄ = (0, 0).

Definition 3.2. [10] Let S ∈ L(x̄) and h : S → R be a real-valued function. h is said to be
semilocally convex (SLC) at x̄ (denoted h ∈ FS(x̄)) if corresponding to x̄ and each x ∈ S
there exists a positive number d(x̄, x) ≤ a(x̄, x) such that

h(x̄+ λ(x− x̄)) ≤ h(x̄) + λ(h(x)− h(x̄)), ∀λ ∈ (0, d(x̄, x)). (3.2)

Consider h(x) = [x], where [·] stands for the floor function. This function is not convex,
while it is SLC at each point of R. This example also shows that semilocally convexity does
not imply continuity necessarily. If S is closed and convex and h is continuous and SLC,
then by [14, Theorem 1.2] and [3, Theorem 3.2.2], h is convex.

If gi functions defining K in (2.2) are SLC at x̄ ∈ K, then K ∈ L(x̄).
The SLC functions enjoy nice properties. If S ∈ L(x̄), h ∈ FS(x̄), and x̄ is a local

minimizer of h over S, then x̄ is a global minimizer of h over S. If, in addition, x̄ is a strict
local minimizer, then x̄ is a strict global minimizer; see [10].

The following results address some important properties of locally star-shaped sets and
SLC functions. These theorems generalize some popular results in classic convex analysis.

Theorem 3.1. Let S ∈ L(x̄). Then

(i) TS(x̄) = cl(cone(S − x̄)) = cl(DS(x̄)).

(ii) NS(x̄) = (pos(S − x̄))◦ = {d : ⟨d, x− x̄⟩ ≤ 0, ∀x ∈ S}.
Proof. The inclusion cl(cone(S − x̄)) ⊆ TS(x̄) can be proved similar to [12, Theorem 4.8].
The proofs of other relations are not difficult and are hence omitted.

Note that, unlike the convex sets, for a locally star-shaped set S, the normal cone N◦
S(x̄)

may not coincide with TS(x̄). For example, consider

S = R2 \
{
(x1, x2) ∈ R2\{(0, 0)} : x1, x2 ≤ 0

}
, x̄ = (0, 0).

Theorem 3.2. Let S ∈ L(x̄) and h ∈ FS(x̄).

i) x̄ is a minimizer of h on S if and only if h+(x̄;x− x̄) ≥ 0 for any x ∈ S.

ii) If h admits a URC ∂∗h(x̄) at x̄ and 0 ∈ conv ∂∗h(x̄) +NS(x̄), then x̄ is a minimizer
of h on S.

Proof. (i) h ∈ FS(x̄) implies the existence of h′(x̄;x− x̄) with h′(x̄;x− x̄) = h+(x̄;x− x̄) and
h′(x̄;x− x̄) ≤ h(x)−h(x̄) for any x ∈ S (see [10]). Therefore, h+(x̄;x− x̄) ≥ 0 for any x ∈ S
implies h(x) ≥ h(x̄) for any x ∈ S. Conversely, if h+(x̄;x − x̄) = h′(x̄;x − x̄) < 0 for some
x ∈ S, then there exists some λ > 0 such that xλ := x̄ + λ(x − x̄) ∈ S and h(xλ) < h(x̄).
This contradicts the assumption.
(ii) If 0 ∈ conv ∂∗h(x̄) + NS(x̄), then −η ∈ NS(x̄) for some η ∈ conv ∂∗h(x̄). Hence,
⟨η, d⟩ ≥ 0 for all d ∈ TS(x̄). Therefore, by Theorem 3.1(i), ⟨η, x − x̄⟩ ≥ 0 for each x ∈ S.
This leads to

h+(x̄;x− x̄) = sup{⟨η, x− x̄⟩ : η ∈ ∂∗h(x̄)}

= sup{⟨η, x− x̄⟩ : η ∈ conv ∂∗h(x̄)} ≥ 0,

for any x ∈ S and the proof is completed due to part (i).
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The converse of Theorem 3.2(ii) will be investigated in Theorem 5.3.
Mart́ınez-Legaz [21] studied a generalization of convexity as follows.

Definition 3.3. [21] A function h : Rn → R is called tangentially convex at x ∈ Rn if for

every d ∈ Rn the limit h′(x; d) = limt↓0
h(x+td)−h(x)

t exists, is finite, and is a convex function
of d.

Definition 3.4. [21] A function h : Rn → R which is tangentially convex at x is said to be
pseudoconvex at x if h(y) ≥ h(x) for every y ∈ Rn with h′(x; y − x) ≥ 0.

The following result shows that Theorem 3.2 is still valid if one replaces locally semicon-
vexity assumption with pseudoconvexity.

Theorem 3.3. Let S ∈ L(x̄). Assume that h is pseudoconvex at x̄ (in the sense of Definition
3.4). Then:

(i) The tangential subdifferential defined as

∂Th(x̄) = {η ∈ Rn|h′(x̄; d) ≥ ⟨η, d⟩, ∀d ∈ Rn}

is a URC of h at x̄.

(ii) x̄ is a minimizer of h over S if and only if

h′(x̄;x− x̄) = sup{⟨η, x− x̄⟩ : η ∈ ∂Th(x̄)} ≥ 0, ∀x ∈ S.

(iii) If 0 ∈ ∂Th(x̄) +NS(x̄), then x̄ is a minimizer of h over S.

Proof. For part (i), see [21, p. 3]. The proof of parts (ii) and (iii) is similar to that of
Theorem 3.2.

In the next sections, we study optimality conditions and CQs for Problem (2.1) with a
locally star-shaped feasible set K (as represented in (2.2)) and an SLC objective function f .

4 Constraint Qualifications

Constraint Qualifications (CQs) are some conditions which help us to derive optimality in
optimization theory. Various CQs have been defined and investigated in the literature, see
e.g. [2] and [3, Chapter 5] for some reviews. The main aim of this section is to introduce a
new CQ and to establish the relationships between some CQs, including two CQs addressed
in [9, 16,21]. Lemma 4.1 is required in presenting these connections.

Lemma 4.1. Assume that K ∈ L(x̄) is as represented in (2.2) and gi, i ∈ I(x̄) admits a
URC ∂∗gi(x̄) at x̄. Then cl pos

(
Γ(x̄)

)
⊆ NK(x̄).

Proof. As NK(x̄) is a closed convex cone, it is sufficient to show that ∂∗gi(x̄) ⊆ NK(x̄) for
each i ∈ I(x̄). Considering i ∈ I(x̄) and x ∈ K arbitrary, K ∈ L(x̄) implies g+i (x̄;x− x̄) ≤ 0.
Hence,

⟨ζ, x− x̄⟩ ≤ 0, ∀
(
x ∈ K, i ∈ I(x̄), ζ ∈ ∂∗gi(x̄)

)
.

Now the proof is completed by applying Theorem 3.1.

Remark 4.1. Let K ∈ L(x̄) be as represented in (2.2). If gi, i ∈ I(x̄), admits a URC
∂∗gi(x̄) at x̄, then, thanks to Theorem 3.1, cl(DK(x̄)) = AK(x̄) = TK(x̄). Therefore,
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ZCQ ⇔ GACQ ⇔ ACQ.

Now, we introduce a new CQ, as a modification of SCQ. Recall that Γ(x̄) =
∪

i∈I(x̄) ∂
∗gi(x̄).

Definition 4.1. Assume that K ∈ L(x̄) is as represented in (2.2), and gi, i ∈ I(x̄) admits
a URC ∂∗gi(x̄) at x̄. We say that directional constrain qualification (DCQ) holds at x̄ if
there exists y ∈ K and ε > 0 such that y + ε d

∥d∥ ∈ K, for each d ∈ Γ(x̄).

Remark 4.2. Due to Definition 4.1, DCQ is well-defined when d ̸= 0 for any d ∈ Γ(x̄).
Hence, in defining DCQ we have assumed GLCQ implicitly. Notice that GLCQ does not
imply DCQ (See Example 4.1 in the current section).

SCQ+GLCQ implies DCQ while the converse does not hold (See Example 5.4 at the end
of Section 5 of the present paper). If gi is continuous for each i, then DCQ implies SCQ
(see the proof of Theorem 4.4). Theorem 4.2 shows that DCQ implies CCQ.

Theorem 4.2. Assume that K ∈ L(x̄) is as represented in (2.2), and gi, i ∈ I(x̄) admits
a URC ∂∗gi(x̄) at x̄. If DCQ holds at x̄, then CCQ holds at x̄.

Proof. By DCQ there exist y ∈ K and ε > 0 such that y + ε d
∥d∥ ∈ K for any d ∈ Γ(x̄).

Considering d ∈ Γ(x̄) arbitrary, by Lemma 4.1, d ∈ NK(x̄), and hence by Theorem 3.1,
⟨d, z − x̄⟩ ≤ 0 for each z ∈ K. Thus, we get

⟨ζ, ε ζ

∥ζ∥
+ y − x̄⟩ ≤ 0, ∀i ∈ I(x̄), ∀ζ ∈ ∂∗gi(x̄),

which implies
⟨ζ, y − x̄⟩ ≤ −ε∥ζ∥, ∀i ∈ I(x̄),∀ζ ∈ ∂∗gi(x̄).

Hence, taking 0 /∈ ∂∗gi(x̄) into account (Remark 4.2), we have

⟨ζ, y − x̄⟩ < 0, ∀i ∈ I(x̄),∀ζ ∈ ∂∗gi(x̄).

Therefore, CCQ holds at x̄.

The converse of the above theorem may not hold, i.e., CCQ does not imply DCQ neces-
sarily.

Remark 4.3. Let x̄ be a FJ point of (2.1). If DCQ holds, then according to Theorem 4.2,
CCQ is fulfilled, and so

0 /∈ conv(∪i∈I(x̄)conv(∂
∗gi(x̄))).

Therefore, a FJ point is a KKT point provided that DCQ holds.

In [9,16], the authors consider SCQ and GLCQ to obtain optimality conditions. On the
other hand, some optimality conditions have been obtained in the literature under CCQ;
see [3,17]. The following corollary, which is a direct consequence of Theorem 4.2, shows that
SCQ+GLCQ implies CCQ. Therefore, some results presented in [9,16] can be derived from
corresponding results in [17].

Corollary 4.3. Under the assumptions of Theorem 4.2, if SCQ and GLCQ hold at x̄, then
CCQ holds at x̄.

Note that if gi, i = 1, . . . ,m, are convex, then the subdifferential set in classic convex
analysis can be considered as a URC, and so SCQ implies GLCQ (see [16]). Therefore, if
gi, i = 1, . . . ,m, are convex, then according to Corollary 4.3, SCQ implies CCQ.

The following theorem provides a connection between DCQ and ZCQ.
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Theorem 4.4. Let K ∈ L(x̄) be as represented in (2.2). Assume that gi, i ∈ I(x̄), admits
a URC ∂∗gi(x̄) at x̄; and gi, i /∈ I(x̄), is upper semicontinuous at x̄. If DCQ holds at x̄,
then ZCQ holds at x̄.

Proof. We choose y ∈ K such that DCQ holds. Similar to the proof of Theorem 4.2, we get

⟨ζ, y − x̄⟩ ≤ −ε∥ζ∥, ∀i ∈ I(x̄),∀ζ ∈ ∂∗gi(x̄).

According to Remark 4.2, 0 /∈ ∂∗gi(x̄) for any i ∈ I(x̄). Hence, due to the closedness of
∂∗gi(x̄), we have

g+i (x̄; y − x̄) = sup
ζ∈∂∗gi(x̄)

⟨ζ, y − x̄⟩ ≤ −ε inf
ζ∈∂∗gi(x̄)

∥ζ∥ < 0, ∀i ∈ I(x̄).

So, for each d ∈ Γ◦(x̄), we have

g+i (x̄; d+ t(y − x̄)) ≤ g+i (x̄; d) + tg+i (x̄; y − x̄) < 0, ∀t > 0,∀i ∈ I(x̄).

Therefore, for sufficiently small λ values, gi
(
x̄ + λ(d + t(y − x̄))

)
≤ 0 for each i ∈ I(x̄).

Also, due to the upper semicontinuity assumption, for sufficiently small λ values we have
gi
(
x̄ + λ(d + t(y − x̄))

)
≤ 0 for each i /∈ I(x̄). Hence d + t(y − x̄) ∈ DK(x̄) for each t > 0,

which leads to d ∈ cl DK(x̄). Therefore, Γ◦(x̄) ⊆ cl DK(x̄) and the proof is completed.

Li and Zhang [17] showed that in general, neither Γ◦(x̄) ⊆ TK(x̄) nor Γ◦(x̄) ⊇ TK(x̄)
holds necessarily. Corollary 4.5 proves the equality of these two sets for locally star-shaped
sets under appropriate assumptions.

Corollary 4.5. Assume that K ∈ L(x̄) is as represented in (2.2), and gi, i ∈ I(x̄), admits
a URC ∂∗gi(x̄) at x̄.

(i) If gi, i /∈ I(x̄), is upper semicontinuous at x̄, then DCQ implies ACQ.

(ii) ACQ holds at x̄ if and only if Γ◦(x̄) = TK(x̄).

Proof. (i) Apply Remark 4.1 and Theorem 4.4.
(ii) By Lemma 4.1, TK(x̄) ⊆ T ◦◦

K (x̄) = N◦
K(x̄) ⊆ Γ◦(x̄). Hence, ACQ is equivalent to

Γ◦(x̄) = TK(x̄).

Now, we continue with investigating a connection between ZCQ and CCQ. In [17], it
has been proved that CCQ implies ZCQ provided that the constraint functions are locally
Lipschitz at x̄ and ∂∗gi(x̄), i ∈ I(x̄), is a bounded USRC. In the following theorem, it is
shown that the locally Lipschitz assumption is not required in the presence of a locally
star-shaped feasible set and URCs.

Theorem 4.6. Assume that K ∈ L(x̄) is as represented in (2.2), gi, i ∈ I(x̄) admits a
bounded URC ∂∗gi(x̄) at x̄, and gi, i /∈ I(x̄) is upper semicontinuous at this point. If CCQ
holds at x̄, then ZCQ holds at x̄.

Proof. Let d ∈ Γs(x̄) be arbitrary. Because of the boundedness of ∂∗gi(x̄) and 0 /∈ ∂∗gi(x̄),

g+i (x̄; d) < 0, ∀i ∈ I(x̄).

Furthermore, due to the upper semicontinuity assumption, for sufficiently small λ values
we have gi

(
x̄ + λd

)
≤ 0 for each i /∈ I(x̄). These imply d ∈ DK(x̄). Therefore, Γ◦(x̄) =

clΓs(x̄) ⊆ clDK(x̄).
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Example 4.1 in the current section shows that CCQ does not imply ZCQ in the absence
of the boundedness of URCs. Also, the converse does not hold; see Example 4.2 in the
current section.

The following diagram summarizes the results of this section. In the whole diagram, we
assume that K ∈ L(x̄) is as represented in (2.2) and gi, i ∈ I(x̄) admits a URC ∂∗gi(x̄) at x̄.
As can be seen from the results of the current section, for some of the presented implications,
we need to assume upper semicontinuity for nonbinding constraints and/or boundedness for
URCs of binding constraints. These two assumptions have been respectively indicated by
“usc” and “boundedness” in the diagram.

The following two examples show that the converse of some implications presented in
the above diagram may not hold.

Example 4.1. (CCQ ⇏ DCQ), (GLCQ ⇏ DCQ), and (CCQ ⇏ ZCQ):
Consider g1, g2 : R2 → R defined by

g1(x1, x2) =

{ √
x1 + x2, x1 ≥ 0,

x2, x1 < 0,
g2(x1, x2) =

{
−1, x1 = x2 = 0,
x2
1 + x2

2, o.w.

Then
K = {(x1, x2) : g1(x1, x2) ≤ 0, g2(x1, x2) ≤ 0} = {(0, 0)}.

For x̄ = (0, 0), we have I(x̄) = {1} and ∂∗g1(0, 0) = {(α, 1) : α ≥ 0} is a URC of g1 at x̄. It
can be seen that

(0,−1) ∈ (Γ(x̄))s, (0, 0) /∈ ∂∗g1(x̄), cl(DK(x̄)) = {(0, 0)}.

Hence, CCQ and GLCQ hold at x̄ while DCQ and ZCQ do not hold at x̄.

Example 4.2. (ZCQ ⇏ CCQ): Consider

g(x) =

{
0, x ≤ 0,
1, x > 0.

Let x̄ = 0. Then [0,+∞) is a URC of g at x̄. Also, K = {x : g(x) ≤ 0} = {x : x ≤ 0}. Hence,
CCQ does not hold at x̄ while ZCQ holds at x̄. Note that Γ◦(x̄) = (−∞, 0] = cl(DK(x̄)).

5 Optimality Conditions

In this section, some optimality conditions are derived using the characterization results
established in previous sections. Results of this section generalize corresponding ones given
in [9, 16,21].

Lemma 5.1, which provides a full characterization of the normal cone, shows that the
converse of the inclusion addressed in Lemma 4.1 holds under upper semicontinuity of non-
binding constraints and DCQ.
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Lemma 5.1. Assume that K ∈ L(x̄) is as represented in (2.2), gi, i ∈ I(x̄) admits a URC
∂∗gi(x̄) at x̄, and gi, i /∈ I(x̄) is upper semicontinuous at x̄. If DCQ holds at x̄, then

NK(x̄) = cl pos
(
Γ(x̄)

)
. (5.1)

Proof. According to Corollary 4.5,
(
pos(Γ(x̄))

)◦
= Γ◦(x̄) = TK(x̄). Therefore,

NK(x̄) = T ◦
K(x̄) =

(
posΓ(x̄)

)◦◦
= cl pos

(
Γ(x̄)

)
.

Theorem 5.2. Assume that K ∈ L(x̄) is as represented in (2.2), gi, i ∈ I(x̄) admits a
bounded URC ∂∗gi(x̄) at x̄, and gi, i /∈ I(x̄) is upper semicontinuous at x̄. If DCQ holds at
x̄, then

NK(x̄) =

{ ∑
i∈I(x̄)

λiconv(∂
∗gi(x̄)) : λi ≥ 0, i ∈ I(x̄)

}
.

Proof. It is not difficult to see that,

pos
(
∪i∈I(x̄) ∂

∗gi(x̄)
)
= pos

(
∪i∈I(x̄) conv(∂

∗gi(x̄)
)
.

Since DCQ holds, CCQ is fulfilled and so

0 /∈ conv(∪i∈I(x̄)conv(∂
∗gi(x̄))).

Therefore, pos
(
∪i∈I(x̄) conv(∂

∗gi(x̄))
)
is a closed set and by Remark 2.1 and Lemma 5.1,

NK(x̄) = cl pos
(
∪i∈I(x̄) (∂

∗gi(x̄))
)

= pos
(
∪i∈I(x̄) conv(∂

∗gi(x̄))
)

= {
∑

i∈I(x̄) λiconv(∂
∗gi(x̄)) : λi ≥ 0, i ∈ I(x̄)}.

In Theorem 5.2, the condition “gi, i ∈ I(x̄) admits a bounded URC” is essential and one
cannot replace URC with USRC or UC. Example 5.1 clarifies it.

Example 5.1. Let

g(x) =

{
−x, x ≥ 0
−1, x < 0

and K = {x ∈ R : g(x) ≤ 0} = R. For x̄ = 0, we have

g+(x̄; d) = g−(x̄; d) =

{
−d, d ≥ 0
−∞, d < 0.

Therefore, ∂∗g(x̄) = {−1} is a USRC and a UC of g at x̄. Furthermore, K ∈ L(x̄) and DCQ
holds at x̄ while

NK(x̄) = {0} ̸= {λconv(∂∗g(x̄)) : λ ≥ 0}.

Lasserre [16], Dutta and Lalitha [9], and Mart́ınez-Legaz [21] showed that KKT con-
ditions are necessary for optimality. To this end, they considered the FJ conditions at
optimal solutions and then imposed some CQs to get KKT conditions. Their manner can
be summarized as:

Minimizer =⇒ FJ
CQ
=⇒ KKT
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In Theorem 5.3 and Corollary 5.5, we use the characterization of NK(x̄), proved in
Lemma 5.1 and Theorem 5.2, and we get KKT conditions without going through FJ condi-
tions. The diagram below clarifies our manner:

Minimizer + (DCQ) + (NK characterization) ⇒ KKT

Theorem 5.3. Let K ∈ L(x̄) and f ∈ FK(x̄) has a bounded URC ∂∗f(x̄) at x̄. Assume
that gi (i ∈ I(x̄)) admits a URC ∂∗gi(x̄) at x̄, and gi, i /∈ I(x̄) is upper semicontinuous at
this point. If x̄ is an optimal solution of Problem (2.1) which satisfies DCQ, then

0 ∈ conv ∂∗f(x̄) + cl pos(Γ(x̄)).

Proof. Because of the positive homogeneity, finiteness and convexity of the function f+(x̄; ·)
(due to the existence of a bounded URC), by Theorems 3.1(i) and 3.2(i), we have

f+(x̄; d) ≥ 0, ∀d ∈ TK(x̄).

Therefore,
sup{⟨η, d⟩ : η ∈ conv ∂∗f(x̄)} ≥ 0, ∀d ∈ TK(x̄). (5.2)

By compactness of conv ∂∗f(x̄) and due to (5.2), we have

sup{⟨η, d⟩ : η ∈ conv ∂∗f(x̄)}+ ITK(x̄)(d) ≥ 0, ∀d ∈ Rn

where ITK(x̄)(d) is equal to zero if d ∈ TK(x̄), and +∞ otherwise. From Corollary 4.5,
TK(x̄) is a closed convex cone, and then by [11, Example V.2.3.1], the support function of
NK(x̄) is ITK(x̄). Now by a manner similar to the proof of [11, Theorem VII.1.1.1], we have
0 ∈ conv(∂∗f(x̄)) +NK(x̄). The proof is completed because of Lemma 5.1.

Remark 5.1. From the proof of Theorem 5.3, it can be seen that this result is still valid if
one replaces bounded URC for f with bounded USRC/UC. Indeed, f ∈ FK(x̄) implies the
existence of f ′(x̄;x− x̄) with f ′(x̄;x− x̄) = f+(x̄;x− x̄) = f−(x̄;x− x̄) for any x ∈ K, and
thanks to Theorem 3.2(i), x̄ is a minimizer of f on K if and only if f±(x̄;x− x̄) ≥ 0 for any
x ∈ K. Therefore, as ∂∗f(x̄) is a bounded USRC/UC of f at x̄, by Theorem 3.1(i),

sup{⟨η, d⟩ : η ∈ conv ∂∗f(x̄)} ≥ 0, ∀d ∈ TK(x̄).

Now, the desired result can be derived by following the rest of the proof of Theorem 5.3.

Note that the above theorem may not hold if one assumes GLCQ instead of DCQ.

Example 5.2. Consider min f(x1, x2) = x1 subject to (x1, x2) ∈ K, where K is as described
in Example 4.1. Let x̄ = (0, 0). Then ∂∗f(0, 0) = {(1, 0)} is a URC of f at x̄. It is clear that,
x̄ is a minimizer of f over K, and GLCQ holds at x̄ while DCQ does not hold. Furthermore,

0 /∈ conv ∂∗f(x̄) + cl pos(Γ(x̄)).

Theorem 5.4 is a converse version of Theorem 5.3.

Theorem 5.4. Let K ∈ L(x̄) and f ∈ FK(x̄) has a URC ∂∗f(x̄) at x̄. Assume that
gi, i ∈ I(x̄) admits a URC ∂∗gi(x̄) at x̄. If 0 ∈ conv∂∗f(x̄) + cl pos(Γ(x̄)), then x̄ is an
optimal solution of Problem (2.1).

Proof. Apply Theorem 3.2(ii) and Lemma 4.1.
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In Theorem 5.4, the condition “gi, i ∈ I(x̄) admits a URC” is essential and one can not
replace URC with USRC or UC.

Example 5.3. Consider
min f(x) = x, s.t. x ∈ K, (5.3)

with K as described in Example 5.1. The set ∂∗g(x̄) = {−1} is a USRC and a UC of g
at x̄ = 0. Also, ∂∗f(x̄) = {1} is a USRC and a UC of f at x̄. Furthermore, K ∈ L(x̄),
f ∈ FK(x̄), and DCQ holds at x̄. Although, 0 ∈ ∂∗f(x̄) + cl pos(Γ(x̄)), here x̄ is not an
optimal solution.

The following corollary, which gives a full characterization of optimal solutions, is derived
from Theorems 5.2-5.4.

Corollary 5.5. Let K ∈ L(x̄) and f ∈ FK(x̄) has a bounded URC ∂∗f(x̄) at x̄. Assume
that gi, i ∈ I(x̄) admits a URC ∂∗gi(x̄) at x̄, and gi, i /∈ I(x̄) is upper semicontinuous
at x̄. Furthermore, assume that DCQ holds at x̄ and pos(Γ(x̄)) is closed (for instance, if
∂∗gi(x̄), i ∈ I(x̄) is bounded). Then, x̄ is an optimal solution of (2.1) if and only if there
exist λi ≥ 0, i ∈ I(x̄) such that

0 ∈ conv ∂∗f(x̄) +
∑

i∈I(x̄)

λiconv(∂
∗gi(x̄)).

As mentioned before, in Theorem 5.3 and Corollary 5.5 the KKT conditions are gotten
from optimality directly, in contrast to [9, Theorem 2.4], [16, Theorem 2.3] and [21, Theorem
9]. Furthermore, here we have used URC instead of usual gradient (used in [16]), Clarke
generalized gradient (used in [9]) and tangential subdifferential (used in [21]). Moreover, here
nonbinding gi functions are assumed to be upper semicontinuous and not necessarily locally
Lipschitz. It is worth mentioning that [9, Theorem 2.4], [16, Theorem 2.3] and [21, Theorem
9] result from Corollary 5.5.

We continue this section by an example in which the optimality of a point under consid-
eration is concluded from the results of the present paper while it can not be derived from
the results given in [9, 16,21].

Example 5.4. Consider

min f(x1, x2) = max{x1, x2}
s.t. gi(x1, x2) ≤ 0, i = 1, 2,

where

g1(x1, x2) = −x2, g2(x1, x2) =

{
−1, x2 = |x1| or x1 = 0
x2
1 + x2

2, o.w.

Let x̄ = (0, 0). Then I(x̄) = {1}. It is not difficult to see that ∂∗g1(0, 0) = {(0,−1)} is a
URC of g1 at x̄, and ∂∗f(0, 0) = {(0, 1) , (1, 0)} is a URC for f at x̄. Here, the set of feasible
solutions is

K = {(x1, x2) ∈ R2 : x1 = 0, x2 ≥ 0} ∪ {(x1, x2) ∈ R2 : x2 = |x1|},

and it is locally star-shaped (not convex) at x̄. We have,

(0, 0) = (0, 1) + (0,−1) ∈ ∂∗f(0, 0) + ∂∗g1(0, 0).

Hence, x̄ = (0, 0) is an optimal solution, because of Theorem 5.4.
The optimality of x̄ = (0, 0) in this example cannot be derived from the results provided

in [9, 16,21], because K is not convex and also SCQ does not hold.
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Example 5.5 presents a function which is neither locally Lipschitz nor convex nor differ-
entiable, while admits a bounded URC.

Example 5.5. Let f : R → R be defined by

f(x) =

 0, x = − 1
n , n ∈ N

−1, x < 0, x ̸= − 1
n , n ∈ N

x, x ≥ 0

Let x̄ = 0. It is clear that f is neither locally Lipschitz nor convex nor differentiable at
x̄ while {0, 1} is a bounded URC of f at x̄.

6 Conclusions

In the current work, a nonsmooth optimization problem has been dealt with. Some CQs
have been investigated and then KKT optimality conditions, in terms of convexificators,
have been obtained.

The feasible set of the problem under consideration is assumed to be locally star-shaped.
This assumption is less restrictive than convexity. The objective function is semilocally
convex. The provided KKT conditions are gotten from optimality directly, in contrast to
corresponding results existing in the literature. Furthermore, we have used upper regular
convexificator instead of usual gradient, Clarke generalized gradient, and tangential subdif-
ferential which have been used in the literature. Moreover, in the present paper nonbinding
constraint functions are assumed to be upper semicontinuous and not necessarily locally
Lipschitz. It is worth mentioning that optimality conditions given in the present paper
are gotten under a CQ weaker than existing ones. Due to these, the results given in the
present paper extend some important theorems existing in the literature. The problem for
semi-infinite/multi-objective programming is worth studying.
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