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yk = argminy

{
Lβ(xk, y, λk−1) +

1

2
∥y − yk−1∥2H

}
, (1.2)

λk = λk−1 − θβ [Axk + Byk − b]

where β > 0 is a penalty parameter, θ > 0 is a stepsize parameter, G ∈ Rn×n and H ∈ Rp×p

are symmetric and positive semidefinite matrices, and

Lβ(x, y, λ) := f(x) + g(y)− ⟨λ,Ax + By − b⟩+
β

2
∥Ax + By − b∥2 (1.3)

is the augmented Lagrangian function for problem (1.1). If (H,G) = (0, 0) in the above
method, we obtain the standard ADMM. Moreover, the above subproblems with suitable
choices of G and H are easy to solve or even have closed-form solutions for many relevant
instances of (1.1) (see [5, 19,33,37] for more details).

For the case in which f and g in (1.1) are both convex (e.g., see [12, 18, 19, 27]), the
complexity results for the proximal ADMM (1.2) can be conveniently stated in terms of
the following simple termination criterion associated with the optimality condition for (1.1),
namely: for given ρ, ε > 0, terminate with a quintuple (x, y, λ, r1, r2) ∈ Rn×Rp×Rl×Rn×Rp

satisfying

max{∥Ax + By − b∥, ∥r1∥, ∥r2∥} ≤ ρ, r1 ∈ ∂εf(x)−A∗λ, r2 ∈ ∂εg(y)−B∗λ (1.4)

where ∂ϵ denotes the classical ϵ-subdifferential of convex functions and the norms in the
first inequality can be arbitrarily chosen. In terms of this termination criterion, the best
ergodic iteration-complexity bound found in the literature is O(max{ρ−1, ε−1}) while the
best pointwise one is O(ρ−2). (The latter bound is independent of ε since, in the pointwise
case, the two inclusions above are shown to hold with ε = 0.)

This paper considers the special case of (1.1) in which f is as stated immediately follow-
ing (1.1) (and hence not necessarily convex) and g is a differentiable function whose gradient
is Lipschitz continuous on the whole Rp. By considering an extended notion of subdifferential
for the nonconvex function f (see for example [28, 30]), this paper establishes an O(ρ−2)-
pointwise iteration-complexity bound to obtain a quadruple (x, y, λ, r1) ∈ Rn×Rp×Rl×Rn

satisfying

max{∥Ax + By − b∥, ∥∇g(y)−B∗λ∥, ∥r1∥} ≤ ρ, r1 ∈ ∂f(x)−A∗λ. (1.5)

for an important subclass of the proximal ADMM (1.2). The latter subclass has the following
properties: the penalty parameter β is sufficiently large (see (2.6)), G is an arbitrary positive
semidefinite matrix, H is a sufficiently large positive multiple of the identity, and the stepsize
θ lies in the interval (0, 2). To the best of our knowledge, this is the first time that iteration-
complexity is established in the literature for a variant of the ADMM with stepsize θ > (

√
5+

1)/2, even for the case in which (1.1) is assumed to be a convex problem. It is worth pointing
out that [7,10] show that larger choice of θ usually improves the practical performance of the
proximal ADMM. Finally, asymptotic convergence of the proposed method is also analyzed
under Kurdyka- Lojasiewicz property.

Previous related works. The ADMM was introduced in [9,11] and is thoroughly discussed
in [3, 10]. Even though convergence of the sequence generated by the ADMM has been
established in very early papers about it, only recently has its iteration-complexity been
established. To discuss this development in the convex case, we use the terminology weak
pointwise or strong pointwise bounds to refer to complexity bounds relative to the best
of the first k iterates or the last iterate, respectively, to satisfy the termination criterion
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(1.4). The first iteration-complexity bound for the ADMM was established in [27] under
the assumptions that C is injective. More specifically, the ergodic iteration-complexity for
the standard ADMM is derived in [27] for any θ ∈ (0, 1] while a weak pointwise iteration-
complexity easily follows from the approach in [27] for any θ ∈ (0, 1). Subsequently, without
assuming that C is injective, [19] established the ergodic iteration-complexity of the proximal
ADMM (1.2) with G = 0 and θ = 1 and, as a consequence, of the split inexact Uzawa
method [40]. Paper [18] establishes the weak pointwise and ergodic iteration-complexity
of another collection of ADMM instances which includes the standard ADMM for any θ ∈
(0, (1 +

√
5)/2). It should be noted however that [18,19] do not provide any details on how

to obtain an easily verifiable ergodic termination criterion with a well-established iteration-
complexity bound. A strong pointwise iteration-complexity bound for the proximal ADMM
(1.2) with G = 0 and θ = 1 is derived in [20]. Pointwise and ergodic iteration-complexity
results for the whole proximal ADMM (1.2) and for any θ ∈ (0, (1+

√
5)/2) are given in [4,14].

In addition to providing alternative proofs for these latter results, paper [12] obtains an
ergodic iteration complexity bound for the proximal ADMM with θ = (1+

√
5)/2. A number

of papers (see for example [5, 6, 13, 16, 26, 29] and references therein) have obtained similar
complexity results in the context of other ADMM classes. Finally, it should be mentioned
that, subsequently to this paper, [17] studied complexity results for the proximal ADMM
with stepsize parameter θ ∈ (0, 2) in the convex case.

Iteration-complexity analysis of the ADMM has also been established for possibly non-
convex instances of (1.1) satisfying the same assumptions made on this paper, i.e., f is a
proper lower semi-continuous function and g is a continuously differentiable function whose
gradient is Lipschitz continuous on the whole Rp. Recently, there have been a lot of interest
on the study of ADMM variants for nonconvex problems (see, e.g., [15,21–24,31,32,36,38]).
The results developed in [15, 24, 31, 32, 36, 38] establish convergence of the generated se-
quence to a stationary point of (1.1) under the assumption that the objective function of
(1.1) satisfies the so-called Kurdyka- Lojasiewicz (K- L) property. However, none of these
papers considers the issue of iteration complexity for ADMM although their theoretical
analysis are generally half-way or close to accomplishing such goal. Paper [22] analyzes the
convergence of ADMM for solving nonconvex consensus and sharing problems and estab-
lishes the iteration complexity of ADMM for the consensus problem. Paper [23] studies the
iteration-complexity of a multi-block type ADMM method whose two-block special case is
a modification of the proximal ADMM in which the function g of the second subproblem
in (1.2) is replaced by its linear approximation, G is positive definite and H is chosen as
LI where L is the Lipschitz constant of ∇g(·). Finally, [21] studies the iteration-complexity
of a proximal variant of the augmented Lagrangian method for solving the 1-block special
form of (1.1), i.e., with f = 0 and A = 0.

Organization of the paper. Subsection 1.1 presents some notations and basic results. Sec-
tion 2 describes the proximal ADMM and presents corresponding convergence rate bounds
whose proofs are given in Section 3. The asymptotic convergence of the proposed method
under Kurdyka- Lojasiewicz property are discussed in Section 4

1.1 Notations and basic results

This subsection presents some definitions, notations and basic results used in this paper.
Let Rn denote the n-dimensional Euclidean space with inner product and associated

norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. We use Rl×n to denote the set of all l × n
matrices. The image space of a matrix Q ∈ Rl×n is defined as Im(Q) := {Qx : x ∈ Rn}
and PQ denotes the Euclidean projection onto Im (Q). The notation Q ≻ 0 means that
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Q is a definite positive matrix. The symbol λmin(Q) denotes the minimum eigenvalue of a
symmetric matrix Q. If Q is a symmetric and positive semidefinite matrix, the seminorm
induced by Q on Rn, denoted by ∥·∥Q, is defined as ∥·∥Q = ⟨Q(·), ·⟩1/2. For a given sequence
{zk : k ≥ 0}, let {∆zk} be the sequence defined by

∆zk := zk − zk−1, k ≥ 1.

The domain of a function h : Rn → (−∞,∞] is the set domh := {x ∈ Rn : h(x) < +∞}.
Moreover, h is said to be proper if h(x) <∞ for some x ∈ Rn.

We next recall some definitions and results of subdifferential calculus [28, 30].

Definition 1.1. Let h : Rn → (−∞,∞] be a proper lower semi-continuous function.

(i) The Fréchet subdifferential of h at x ∈ domh, written by ∂̂h(x), is the set of all
elements u ∈ Rn which satisfy

lim inf
y ̸=x y→x

h(y)− h(x)− ⟨u, y − x⟩
∥y − x∥

≥ 0.

When x /∈ domh, we set ∂̂h(x) = ∅.

(ii) The limiting subdifferential, or simply subdifferential, of h at x ∈ domh, written by
∂h(x), is defined as

∂h(x) = {u ∈ Rn : ∃xn → x, h(xn)→ h(x), uk ∈ ∂̂h(xn), with uk → u}. (1.6)

(iii) A critical (or stationary) point of h is a point x in the domain of h satisfying 0 ∈ ∂h(x).

The following result gives some properties of the subdifferential.

Proposition 1.1. Let h : Rn → (−∞,∞] be a proper lower semi-continuous function.

(a) if {(uk, xk)} is a sequence such that xk → x, uk → u, h(xk)→ h(x) and uk ∈ ∂h(xk),
then u ∈ ∂h(x);

(b) if x ∈ Rn is a local minimizer of h, then 0 ∈ ∂h(x);

(c) if p : Rn → R is a continuously differentiable function, then ∂(h + p)(x) = ∂h(x) +
∇p(x).

We next recall the definition of critical points of (1.1).

Definition 1.2. A triple (x∗, y∗, λ∗) ∈ Rn × Rp × Rl is a critical point of problem (1.1) if

0 ∈ ∂f(x∗)−A∗λ∗, 0 = ∇g(y∗)−B∗λ∗, 0 = Ax∗ + By∗ − b. (1.7)

Under some mild conditions, it can be shown that if (x∗, y∗) is a local minimum of (1.1),
then there exists λ∗ such that (x∗, y∗, λ∗) is a critical point of (1.1).

We end this section by presenting an auxiliary result which is used in our presentation.

Lemma 1.2. Let S ∈ Rn×p be a non-zero matrix and let σ+
S denote the smallest positive

eigenvalue of SS∗. Then, for every u ∈ Rp, there holds

∥PS∗(u)∥ ≤ 1√
σ+
S

∥Su∥. (1.8)
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Proof. Let r denote the rank of S and let S = RΛQ∗ be a partial singular-value decompo-
sition of S where R ∈ Rn×r is such that R∗R = I, Q ∈ Rp×r is such that Q∗Q = I and
Λ ∈ Rr×r is a positive diagonal matrix. It is easy to see that

∥PS∗(u)∥ = ∥PQ(u)∥ = ∥Q(Q∗Q)−1Q∗u∥ = ∥Q∗u∥ ∀u ∈ Rp. (1.9)

Moreover, we have

∥Q∗u∥ = ∥Λ−1ΛQ∗u∥ ≤ ∥Λ−1∥∥ΛQ∗u∥ = ∥Λ−1∥∥RΛQ∗u∥ = ∥Λ−1∥∥Su∥ ∀u ∈ Rp.
(1.10)

The result now follows from the above two relations and the fact that ∥Λ−1∥ = 1/
√

σ+
S .

2 Proximal ADMM and its Convergence Rate

This section describes the assumptions made on problem (1.1) and states the variant of
the proximal ADMM considered in this paper. It also states the main result of this paper
(Theorem 2.2), and a special case of it (Corollary 2.3), both of them describing convergence
rate bounds for the aforementioned proximal ADMM variant. The proof of Theorem 2.2 is
however postponed to Section 3.

The augmented Lagrangian associated with problem (1.1) is defined as

Lβ(x, y, λ) := f(x) + g(y)− ⟨λ,Ax + By − b⟩+
β

2
∥Ax + By − b∥2. (2.1)

This paper considers problem (1.1) under the following set of assumptions:

(A0) f : Rn → (−∞,∞] is a proper lower semi-continuous function;

(A1) B ̸= 0 and Im(B) ⊃ {b} ∪ Im(A);

(A2) g : Rp → R is differentiable everywhere on Rp and there exists L > 0 such that

∥PB∗(∇g(y′))− PB∗(∇g(y))∥ ≤ L∥y′ − y∥ ∀y, y′ ∈ Rp; (2.2)

(A3) there exists m ≥ 0 such that the function g(·) +m∥ · ∥2/2 is convex, or equivalently,

g(y′)− g(y)− ⟨∇g(y), y′ − y⟩ ≥ −m

2
∥y′ − y∥2 ∀y, y′ ∈ Rp; (2.3)

(A4) there exists β̄ ≥ 0 such that

L̄ := inf
(x,y)

{
f(x) + g(y) +

β̄

2
∥Ax + By − b∥2

}
> −∞. (2.4)

Some comments are in order. First, due to the generality of (A0), problem (1.1) may
include an extra constraint of the form x ∈ X where X is a closed set since this constraint
can be incorporated into f by adding to it the indicator function of X. Second, (A1) implies
that for every x ∈ Rn, there exists y ∈ Rp such that (x, y) satisfies the (linear) constraint
of (1.1). The extra condition that B ̸= 0 is very mild since otherwise (1.1) would be much
simpler to solve. Third, if ∇g(·) is L-Lipschitz continuous, then (A2) and (A3) with m = L
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obviously hold. However, conditions (A2) and (A3) combined are generally weaker than
the condition that ∇g(·) be L-Lipschitz continuous.

Next we state the proximal ADMM for solving problem (1.1).

Proximal ADMM

(0) Let an initial point (x0, y0, λ0) ∈ Rn×Rp×Rl and a symmetric positive semi-definite
matrix G ∈ Rn×n be given. Let a stepsize parameter θ ∈ (0, 2) be given and define

γ :=
θ

(1− |θ − 1|)2
. (2.5)

Choose scalars β ≥ β̄ (see (A4)) and τ ≥ 0 such that

δ1 :=

(
βσB + 2τ −m

4
− 3γ(L2 + τ2)

βσ+
B

)
> 0, (2.6)

where σB (resp., σ+
B) denotes the smallest eigenvalue (resp., positive eigenvalue) of

B∗B, and set k = 1;

(1) compute an optimal solution xk ∈ Rn of the subproblem

min
x∈Rn

{
Lβ(x, yk−1, λk−1) +

1

2
∥x− xk−1∥2G

}
(2.7)

and then compute an optimal solution yk ∈ Rp of the subproblem

min
y∈Rp

{
Lβ(xk, y, λk−1) +

τ

2
∥y − yk−1∥2

}
; (2.8)

(2) set
λk = λk−1 − θβ [Axk + Byk − b] (2.9)

and k ← k + 1, and go to step (1).

end

We now make a few remarks about the proximal ADMM. First, the assumption that
θ ∈ (0, 2) guarantees that γ in (2.5) is well-defined and positive. Second, the special case of
the proximal ADMM in which G = 0 requires only an initial pair (y0, λ0) since any of its
iteration is independent of xk−1. Third, note that if βB∗B+τI−mI ≻ 0, then the objective
function of subproblem (2.8) is strongly convex and hence yk is uniquely determined. Fourth,
the subproblems (2.7) and (2.8) are of the form

min
x∈Rn

{
f(x) + ⟨c, x⟩+

1

2
∥x∥2G+βA∗A

}
, min

y∈Rp

{
g(y) + ⟨d, y⟩+

1

2
∥y∥2τI+βB∗B

}
(2.10)

for some c ∈ Rn and d ∈ Rp. For the purpose of this paper, we assume they are easy to
solve exactly, possibly by choosing τ ≥ 0, β > 0 and G appropriately. Fifth, condition (2.6)
imposed on the different data constants and parameters of the proximal ADMM method
is needed to establish convergence rate bounds for it (see Theorem 2.2). Note that, if
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either σβ > 0 or τ > m/2, then it is always possible to choose a sufficiently large penalty
parameter β satisfying this condition. Hence, if σβ > 0, convergence rate bounds for the
standard ADMM (i.e., the special case of the above method with G = 0 and τ = 0) can be
derived for β sufficiently large (see Corollary 2.3).

Next we define a parameter required in order to present our convergence rate bounds.
Define

η0(y0, λ0; θ) := min
(∆y0,∆λ0)

c1
2
∥B∗∆λ0∥2 +

(
βσB + 2τ −m

4

)
∥∆y0∥2

s.t. τ∆y0 + (1− 1/θ)B∗∆λ0 = B∗λ0 −∇g(y0) (2.11)

where

c1 :=
2|θ − 1|

βθ(1− |θ − 1|)σ+
B

≥ 0. (2.12)

Theorem 2.2 below expresses the complexity of the proximal ADMM in terms of the
quantity η0, which depends on the initial iterate pair (y0, λ0) as well as the constant m and
the parameters θ, β and τ used by the method. This contrasts with the analysis of the
papers [21–23] which derive iteration-complexity for variants of the augmented Lagrangian
and the proximal ADMM expressed in terms of both (x0, y0, λ0) and (x1, y1, λ1). We believe
that the one derived in this paper is more convenient since quantities expressed only in terms
of (x0, y0, λ0) are easier to compute and/or estimate. Definition (2.11) of η0 is somewhat
complicated but, under some conditions, it simplifies or an upper bound on η0 can easily be
obtained. The following trivial result elaborates on this point and gives sufficient conditions
for the quantity η0 to be finite.

Lemma 2.1. Let (y0, λ0) ∈ Rp × Rl and θ ∈ (0, 2) be given. Then, problem (2.11) is
feasible, and hence the quantity η0 := η0(y0, λ0; θ) is finite, under either one of the following
conditions:

(i) B∗λ0 = ∇g(y0), in which case η0 = 0;

(ii) τ = 0, θ ̸= 1 and B∗B invertible;

(iii) τ > 0.

The following result derives convergence rate bounds for the proximal ADMM for solving
the nonconvex optimization problem (1.1) satisfying assumptions (A0)-(A4) for any θ ∈
(0, 2) and β sufficiently large.

Theorem 2.2. Assume that the stepsize θ ∈ (0, 2) and the initial pair (y0, λ0) ∈ Rp ×Rl is
such that the quantity η0 := η0(y0, λ0; θ) defined in (2.11) is finite and define

∆0
β := Lβ(x0, y0, λ0)− L̄ (2.13)

where L̄ is as in (A4). If, for every k ≥ 1, we define

λ̂k := λk−1 − β (Axk + Byk−1 − b) , (2.14)

then we have
−G∆xk ∈ ∂f(xk)−A∗λ̂k, (2.15)

and there exists j ≤ k such that
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∥∆xj∥G ≤

√
6 max{η0,∆0

β}
k

, ∥∇g(yj)−B∗λ̂j∥ ≤ (β∥B∗B∥+ τ)

√
3 max{η0,∆0

β}
δ1k

,

∥Axj + Byj − b∥ ≤ 1

βθ

√
3 max{η0,∆0

β}
δ2k

where δ1 is as in (2.6), and δ2 is defined as

δ2 :=

(
βθ +

6θγ(L2 + τ2)

σ+
Bδ1

)−1

. (2.16)

As a consequence of the previous result, the following corollary establishes convergence
rate bounds for the standard ADMM for solving (1.1) with B∗B invertible for any stepsize
θ ∈ (0, 2) and sufficiently large penalty parameter β.

Corollary 2.3. Consider the standard ADMM, i.e., the special case of the proximal ADMM
with G = 0 and τ = 0, applied to problem (1.1) with B∗B invertible. Assume that the initial
pair (y0, λ0) satisfies B∗λ0 = ∇g(y0) and β ≥ β̄ is chosen in a such a way that

βσB − 2m

8
≥ 3γL2

βσB
. (2.17)

Then, ∆0
β ≥ 0 where ∆0

β is as in (2.13), and for every k ≥ 1,

0 ∈ ∂f(xk)−A∗λ̂k

and there exists j ≤ k such that

∥∇g(yj)−B∗λ̂j∥ ≤ O

√
β∥B∗B∥

√
∆0

β

σBk

 , ∥Axj + Byj − b∥ ≤ O

√
∆0

β

βθk

 .

Proof. Since B∗λ0 = ∇g(y0), it follows from Lemma 2.1(i) that η0 = 0. Moreover, since
B∗B is invertible, we have σB = σ+

B . The conclusion that ∆0
β ≥ 0 follows from Lemma 3.8

with k = 0, and the fact that η0 = 0. Moreover, inequality (2.17) yields γL2 ≤ (σBβ)2/24.
Hence, since τ = 0, it follows from the definitions of δ1 and δ2 in (2.6) and (2.16), respectively,
and inequality (2.17) that

βσB

8
≤ δ1 ≤

βσB

4
, βθ ≤ 1

δ 2
≤ 3βθ. (2.18)

Hence, δ1 = O(βσB) and 1/δ2 = O(βθ). Therefore, the desired result trivially follows from
the facts that G = 0, τ = 0 and η0 = 0, and Theorem 2.2.

3 Proof of Theorem 2.2

This section gives the proof of Theorem 2.2.
We first establish a few technical lemmas. The first one describes a set of inclusions/equations

satisfied by the sequence {(xk, yk, λk)} generated by the proximal ADMM.
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Lemma 3.1. Consider the sequence {(xk, yk, λk)} generated by the proximal ADMM and

let {λ̂k} as defined in (2.14). Then, for every k ≥ 1, the following inclusions hold:

0 ∈
[
∂f(xk)−A∗λ̂k

]
+ G(xk − xk−1), (3.1)

0 =
[
∇g(yk)−B∗λ̂k

]
+ βB∗B(yk − yk−1) + τ(yk − yk−1), (3.2)

0 = [Axk + Byk − b] +
1

θβ
(λk − λk−1). (3.3)

Proof. The optimality conditions for (2.7) and (2.8) imply that

0 ∈ ∂f(xk)−A∗(λk−1 − β(Axk + Byk−1 − b)) + G(xk − xk−1),

0 = ∇g(yk)−B∗(λk−1 − β(Axk + Byk − b)) + τ(yk − yk−1),

respectively. These relations combined with (2.14) immediately yield (3.1) and (3.2). Rela-
tion (3.3) follows immediately from (2.9).

The following lemma provides a recursive relation for the sequence {∆λk}.

Lemma 3.2. Let ∆y0 ∈ Rp and ∆λ0 ∈ Rl be such that

τ∆y0 + (1− 1/θ)B∗∆λ0 = B∗λ0 −∇g(y0). (3.4)

Then, for every k ≥ 1, we have

B∗∆λk = (1− θ)B∗∆λk−1 + θuk (3.5)

where
uk = ∇g(yk)−∇g(yk−1) + τ(∆yk −∆yk−1). (3.6)

Proof. Using (2.14) and (3.3) we easily see that

θλ̂k := λk + (θ − 1)λk−1 + βθB(yk − yk−1), ∀k ≥ 1.

This expression together with (3.2) then imply that

B∗λk = (1− θ)B∗λk−1 + θ[∇g(yk) + τ∆yk] ∀k ≥ 1. (3.7)

Hence, in view of (3.6), relation (3.5) holds for every k ≥ 2. Also, (3.6) and (3.7) both with
k = 1 imply that

B∗∆λ1 = B∗(λ1 − λ0) = −θB∗λ0 + θ [∇g(y1) + τ∆y1] = −θB∗λ0 + θ [u1 +∇g(y0) + τ∆y0]

which, together with the definition of ∆y0 in (3.4), shows that (3.5) also holds for k = 1.

The next lemma describes how the sequence {(xk, yk, λk)} affects the value of the aug-
mented Lagrangian function defined in (2.1).

Lemma 3.3. For every k ≥ 1, we have

(a) Lβ(xk, yk−1, λk−1)− Lβ(xk−1, yk−1, λk−1) ≤ −∥∆xk∥2G/2;
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(b) Lβ(xk, yk, λk−1)− Lβ(xk, yk−1, λk−1) ≤ (m− βσB − 2τ)∥∆yk∥2/2;

(c) Lβ(xk, yk, λk)− Lβ(xk, yk, λk−1) = [1/(θβ)]∥∆λk∥2.

Proof. (a) In view of (2.7), we have

Lβ(xk, yk−1, λk−1) + ∥xk − xk−1∥2G/2 ≤ Lβ(xk−1, yk−1, λk−1),

which, combined with the identity ∆xk = xk − xk−1, proves (a).
(b) Using the definition of Lβ in (2.1), we have

Lβ(xk, yk−1, λk−1)− Lβ(xk, yk, λk−1)

= g(yk−1)− g(yk)− ⟨λk−1, B(yk1 − yk)⟩+
β

2
∥Axk + Byk−1 − b∥2 − β

2
∥Axk + Byk − b∥2

= g(yk−1)− g(yk)− ⟨λk−1 − β(Axk + Byk − b), B(yk1
− yk)⟩+

β

2
∥B(yk−1 − yk)∥2

= g(yk−1)− g(yk)− ⟨λ̂k, B(yk−1 − yk)⟩ (3.8)

where the last inequality is due to (2.14). On the other hand, it follows from (A3) and (3.2)
that

g(yk−1)−g(yk)−⟨λ̂k, B(yk−1 − yk)⟩ ≥ −m

2
∥yk−1−yk∥2+

β

2
∥B(yk−1−yk)∥2+τ∥yk−1−yk∥2,

(3.9)
which, combined with (3.8) and the fact that ∥B∆yk∥2 ≥ σB∥∆yk∥2, proves the desired
inequality.

(c) This statement follows from (2.9), the identity ∆λk = λk − λk−1 and the fact that
(2.1) implies that

Lβ(xk, yk, λk) = Lβ(xk, yk, λk−1)− ⟨λk − λk−1, Axk + Byk − b⟩.

Our goal now is to show that a certain sequence associated with {Lβ(xk, yk, λk)} is
monotonically decreasing, namely, the sequence {∆k

β + ηk} where

∆k
β := Lβ(xk, yk, λk)− L̄ ∀k ≥ 0, (3.10)

ηk :=
c1
2
∥B∗∆λk∥2 +

(
βσB + 2τ −m

4

)
∥∆yk∥2 ∀k ≥ 1, (3.11)

and L̄, η0 = η0(y0, λ0; θ) and c1 are as defined in (A4), (2.11) and (2.12), respectively.
Before establishing the monotonicity property of the above sequence, we state three

technical results. The first one describes an upper bound on ∆k
β −∆k−1

β in terms of three
quantities related to {∆xk}, {∆λk} and {∆yk}, respectively.

Lemma 3.4. For every k ≥ 1,

∆k
β + ηk − (∆k−1

β + ηk−1) ≤ −1

2
∥∆xk∥2G + Θ1

k + Θ2
k (3.12)

where

Θ1
k :=

1

βθ
∥∆λk∥2 +

c1
2

(
∥B∗∆λk∥2 − ∥B∗∆λk−1∥2

)
(3.13)

and

Θ2
k := −

(
βσB + 2τ −m

4

)(
∥∆yk∥2 + ∥∆yk−1∥2

)
(3.14)

where c1 is defined in (2.12).
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Proof. The proof of the lemma follows by adding the three inequalities given in statements
(a), (b) and (c) of Lemma 3.3 and using the definitions of ∆k

β and ηk in (3.10) and (3.11),
respectively.

The next two results combined provide an upper bound for Θ1
k in terms of {∆yk}.

Lemma 3.5. Let uk and Θ1
k be as in (3.6) and (3.13), respectively. Then,

Θ1
k ≤

γ

βσ+
B

∥uk∥2

where γ is defined in (2.5).

Proof. Assumption (A1) clearly implies that ∆λk = −βθ(Axk +Byk − b) ∈ Im(B). Hence,
it follows from Lemma 1.2 that

∥∆λk∥ = ∥PB(∆λk)∥ ≤ 1√
σ+
B

∥B∗∆λk∥

where PB(·) is defined in Subsection 1.1. Hence, in view of (3.5) and (3.13), we have

Θ1
k ≤

1

βθσ+
B

∥B∗∆λk∥2 +
c1
2

(∥B∗∆λk∥2 − ∥B∗∆λk−1∥2)

=

(
1

βθσ+
B

+
c1
2

)
∥(1− θ)B∗∆λk−1 + θuk∥2 −

c1
2
∥B∗∆λk−1∥2.

Note that if θ = 1, then (2.12) implies that c1 = 0 and the above inequality implies the
conclusion of the lemma. We will now establish the conclusion of the lemma for the case in
which θ ̸= 1. The previous inequality together with the relation ∥s1 + s2∥2 ≤ (1 + t)∥s1∥2 +
(1 + 1/t)∥s2∥2 which holds for every s1, s2 ∈ Rl and t > 0 yield

Θ1
k ≤

(
1

βθσ+
B

+
c1

2

)[
(1 + t)(θ − 1)2∥B∗∆λk−1∥2 +

(
1 +

1

t

)
θ2∥uk∥2

]
−

c1

2
∥B∗∆λk−1∥2

=

[(
1

βθσ+
B

+
c1

2

)
(1 + t)(θ − 1)2 −

c1

2

]
∥B∗∆λk−1∥2 +

(
1

βθσ+
B

+
c1

2

)(
1 +

1

t

)
θ2∥uk∥2

=

{
(1 + t)(θ − 1)2

βθσ+
B

−
[
1− (1 + t)(θ − 1)2

] c1
2

}
∥B∗∆λk−1∥2 +

(
1

βθσ+
B

+
c1

2

)(
1 +

1

t

)
θ2∥uk∥2.

Using the above expression with t = −1 + 1/|θ − 1| and noting that t > 0 in view of the assumption that
θ ∈ (0, 2), we conclude that

Θ1
k ≤

[
1

βθσ+
B

|θ − 1| − (1− |θ − 1|)
c1

2

]
∥B∗∆λk−1∥2 +

(
1

βθσ+
B

+
c1

2

)
θ2

1− |θ − 1|
∥uk∥2

=
1

βθσ+
B

(
1 +

|θ − 1|
1− |θ − 1|

)
θ2

1− |θ − 1|
∥uk∥2

where the last equality is due to (2.12). Hence, in view of (2.5), the conclusion of the lemma follows.

Lemma 3.6. The vector uk defined in (3.6) satisfies

∥uk∥2 ≤ 3(L2 + τ2)(∥∆yk∥2 + ∥∆yk−1∥2). (3.15)
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Proof. Noting that (3.5) implies that uk ∈ ImB∗ and using assumption (A2) and non-
expansiveness of the projection operator, we obtain

∥uk∥2 = ∥PB∗(uk)∥2 = ∥PB∗ (∇g(yk)−∇g(yk−1)) + τPB∗ (∆yk −∆yk−1) ∥2

≤ [L∥∆yk∥+ τ∥∆yk −∆yk−1∥]2

≤ 3L2∥∆yk∥2 + 3τ2(∥∆yk∥2 + ∥∆yk−1∥2) (3.16)

where the last inequality follows from the triangle inequality and the relation (s1+s2+s3)2 ≤
3s21 + 3s22 + 3s23 for s1, s2, s3 ∈ R. Therefore, the desired inequality follows trivially from
(3.16).

Finally, the next proposition shows that the sequence {∆k
β} decreases.

Proposition 3.7. The sequence {(xk, yk, λk)} generated by the proximal ADMM satisfies

∆k
β + ηk − (∆k−1

β + ηk−1) ≤ −1

2
∥∆xk∥2G − δ1(∥∆yk∥2 + ∥∆yk−1∥2) ∀k ≥ 1 (3.17)

where δ1, ∆k
β and ηk are as in (2.6), (3.10) and (3.11), respectively.

Proof. It follows from Lemmas 3.5 and 3.6 that

Θ1
k ≤

3γ(L2 + τ2)

βσ+
B

(∥∆yk∥2 + ∥∆yk−1∥2)

and hence, in view of (2.6) and (3.14), we have

Θ1
k + Θ2

k ≤
(

3γ(L2 + τ2)

βσ+
B

+
m− βσB − 2τ

4

)
(∥∆yk∥2 + ∥∆yk−1∥2)

= −δ1(∥∆yk∥2 + ∥∆yk−1∥2)

where the last inequality is due to the definition of δ1 in (2.6). Hence, the result follows due
to (3.12).

The next three lemmas show how to obtain convergence rate bounds for the quantities
∥∆xj∥G, ∥∆yj∥ and ∥∆λj∥ with the aid of Proposition 3.7. The first one shows that
{∆k

β + ηk} is nonnegative.

Lemma 3.8. Let ∆k
β and ηk be as in (3.10) and (3.11), respectively. Then,

∆k
β + ηk ≥ 0 ∀k ≥ 0. (3.18)

Proof. Let us first consider that case k ≥ 1. Assume for contradiction that there exists an
index k0 ≥ 0 such that ∆k0+1

β +ηk0+1 < 0. Since {∆k
β+ηk} is decreasing (see Proposition 3.7),

we obtain

j∑
k=1

(∆k
β + ηk) ≤

k0∑
k=1

(∆k
β + ηk) + (j − k0)(∆k0+1

β + ηk0+1) ∀j > k0 (3.19)

and hence

lim
j→∞

j∑
k=1

(∆k
β + ηk) = −∞. (3.20)
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On the other hand, since β ≥ β̄, it follows from (2.1), (2.9), (3.10), (3.11) and assumption
(A4) that

∆k
β + ηk = Lβ(xk, yk, λk)− L̄+ ηk ≥ Lβ(xk, yk, λk)− L̄ ≥ Lβ̄(xk, yk, λk)− L̄

= f(xk) + g(yk) +
β̄

2
∥Axk + Byk − b∥2 − L̄+

1

βθ
⟨λk, λk − λk−1⟩

≥ 1

2βθ

(
∥λk∥2 − ∥λk−1∥2 + ∥λk − λk−1∥2

)
≥ 1

2βθ

(
∥λk∥2 − ∥λk−1∥2

)
and hence that

j∑
k=1

(∆k
β + ηk) ≥ 1

2βθ

(
∥λj∥2 − ∥λ0∥2

)
≥ − 1

2βθ
∥λ0∥2 ∀j ≥ 1, (3.21)

which yields the desired contradiction. Therefore, (3.18) holds for k ≥ 1. Now, for the
case k = 0, the desired inequality follows from the last conclusion and Proposition 3.7 with
k = 1.

Lemma 3.9. For every k ≥ 1, we have

k∑
j=1

(
1

2
∥∆xj∥2G + δ1∥∆yj∥2 + δ2∥∆λj∥2

)
≤ 3 max{∆0

β , η0} (3.22)

where δ1, ∆0
β and δ2 are as defined in (2.6), (2.13) and (2.16), respectively.

Proof. First note that Proposition 3.7 together with Lemma 3.8 yields, for every k ≥ 1,

k∑
j=1

(
1

2
∥∆xj∥2G + δ1(∥∆yj∥2 + ∥∆yj−1∥2)

)
≤ ∆0

β + η0 ≤ 2 max{∆0
β , η0} (3.23)

which, in particular, implies that

k∑
j=1

(∥∆yj∥2 + ∥∆yj−1∥2) ≤
2 max{∆0

β , η0}
δ1

. (3.24)

Due to (3.23), in order to prove (3.22), it suffices to show that

k∑
j=1

∥∆λj∥2 ≤
max{∆0

β , η0}
δ2

. (3.25)

Then, in the remaining part of the proof we will show that (3.25) holds. By rewriting (3.13),
we have

∥∆λk∥2 = βθ
[c1

2

(
∥B∗∆λk−1∥2 − ∥B∗∆λk∥2

)
+ Θ1

k

]
∀k ≥ 1,

where ∆λ0 is such that the pair (∆y0,∆λ0) is a solution of (2.11). Hence, using (2.11) and
Lemmas 3.5 and 3.6, we obtain

k∑
j=1

∥∆λj∥2 ≤ βθ

c1
2
∥B∗∆λ0∥2 +

k∑
j=1

Θ1
j

 ≤ βθη0 +
θγ

σ+
B

k∑
j=1

∥uj∥2
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≤ βθη0 +
3θγ(L2 + τ2)

σ+
B

k∑
j=1

(∥∆yj∥2 + ∥∆yj−1∥2)

≤ βθη0 +
6θγ(L2 + τ2)max{∆0

β , η0}
σ+
Bδ1

where the last inequality is due to (3.24). Hence, (3.25) follows from the last inequality and
the definition of δ2 in (2.16).

Lemma 3.10. For every k ≥ 1, there exists j ≤ k such that

∥∆xj∥G ≤

√
6 max{η0,∆0

β}
k

, ∥∆yj∥ ≤

√
3 max{η0,∆0

β}
δ1k

, ∥∆λj∥ ≤

√
3 max{η0,∆0

β}
δ2k

where δ1, η0, ∆0
β and δ2 are as defined in (2.6), (2.11), (2.13) and (2.16), respectively.

Proof. The proof of this result follows directly from Lemma 3.9.

We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2: First note that the inclusion (2.15) follows immediately from (3.1).
Also, we obtain from (3.2) and (3.3) that

∇g(yk)−B∗λ̂k = −(βB∗B + τ)∆yk, Axk + Byk − b = − 1

βθ
∆λk, ∀k ≥ 1.

Hence, to end the proof, just combine the above identities with Lemma 3.10. □

4 Convergence Analysis of the Proximal ADMM Under Kurdyka-
 Lojasiewicz Property

This section analyzes the convergence of the proximal ADMM under the assumption that
a specific potencial function is Kurdyka- Lojasiewicz (K- L). The K- L property and K- L
function can be described as follows.

Definition 4.1. Let T : Rn → (−∞,∞] be a proper lower semicontinuous function.

(a) T is said to have the Kurdyka- Lojasiewicz property at z∗ ∈ dom ∂T if there exist
η ∈ (0,+∞], a neighborhood U of z∗ and a continuous concave function ϕ : [0, η)→ R+

such that: i) ϕ(0) = 0; ii) ϕ is C1 on (0, η); iii) for all s ∈ (0, η), ϕ′(s) > 0; iv) for all
z ∈ U ∩ {z ∈ Rn : T (z∗) < T (z) < T (z∗) + η}, the Kurdyka- Lojasiewicz inequality
holds

ϕ′(T (z)− T (z∗)) dist(0, ∂T (z)) ≥ 1. (4.1)

(b) If T has the K L property at each point of dom ∂T , then T is called a K- L function.

We refer the reader to [2] and references therein for examples of K- L functions. We
first show the convergence of the sequence {(xk, yk, λk)} generated by the proximal ADMM
assuming that it is bounded. Subsequently, we discuss a case in which this boundedness can
be ensured.
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Proposition 4.1. Let {(xk, yk, λk)} be generated by the proximal ADMM with τ = 0.
Assume that G is positive definite and define

T (x, y, λ) := Lβ(x, y, λ) + 3c1θ
2β2∥B∗(Ax + By + b)∥2/2, (4.2)

where c1 is as in (2.12). Then there exist κ1, κ2 > 0 such that, for every k ≥ 1,

T (xk, yk, λk) + κ1

(
∥∆xk∥2 + ∥∆yk∥2 + ∥∆λk∥2

)
≤ T (xk−1, yk−1, λk−1) (4.3)

and there exists (wx
k , w

y
k, w

λ
k ) ∈ ∂T (xk, yk, λk) satisfying ∥(wx

k , w
y
k, w

λ
k )∥ ≤

κ2∥(∆xk,∆yk,∆λk)∥. Additionally, if T is a K L function and {(xk, yk, λk)} is bounded,
then {(xk, yk, λk)} converges to a critical point of problem (1.1).

Proof. From (4.2), Lemma 3.3 with τ = 0 and (2.9), we have

T (xk, yk, λk)− T (xk−1, yk−1, λk−1) ≤ −∥∆xk∥2G
2

+
(m− βσB)

2
∥∆yk∥2 − 2

∥∆λk∥2

θβ

+ 3
∥∆λk∥2

θβ
+

3c1
2

(
∥B∗∆λk∥2 − ∥B∗∆λk−1∥2

)
. (4.4)

Using Lemma 3.5 and the facts that τ = 0 and ∥∇g(yk)−∇g(yk−1)∥2 ≤ L2∥∆yk∥2 (see the
first inequality in (3.16) with τ = 0), we obtain

∥∆λk∥2

θβ
+

c1
2

(
∥B∗∆λk∥2 − ∥B∗∆λk−1∥2

)
≤ γ

βσ+
B

∥∇g(yk)−∇g(yk−1)∥2 ≤ γL2

βσ+
B

∥∆yk∥2,

which, combined with (4.4), yields

T (xk, yk, λk)− T (xk−1, yk−1, λk−1) ≤ −∥∆xk∥2G
2

−
[

(βσB −m)

2
− 3γL2

βσ+
B

]
∥∆yk∥2

− 2
∥∆λk∥2

θβ
.

Since G is positive definite, the last inequality and (2.6) with τ = 0 imply that there exists
κ1 > 0 such that (4.3) holds. Now, it follows from (3.1)–(3.3), (2.14) and some algebraic
manipulations that

wx
k := −3c1θβA

∗(BB∗ + I)∆λk −G∆xk ∈ ∂xT (xk, yk, λk)

wy
k := −3c1θβB

∗(BB∗ + I)∆λk − βB∗B∆yk = ∇yT (xk, yk, λk)

wλ
k := ∆λk/θβ = ∇λT (xk, yk, λk),

and hence the second statement of the proposition easily follows. In order to prove the last
statement of the proposition, note the boundedness of {(xk, yk, λk)} implies that there exists
a subsequence {(xkj , ykj , λkj )} converging to some (x̄, ȳ, λ̄). Now, in view of (2.7), we have

Lβ(xkj
, ykj−1, λkj−1) ≤ Lβ(x̄, ykj−1, λkj−1) + ∥x̄− xkj−1∥2G/2,

which, combined with the fact that (∥∆xk∥, ∥∆yk∥, ∥∆λk∥) → (0, 0, 0) (see (4.3)),
yields lim supj→∞ f(xkj

) ≤ f(x̄). Hence, since f is lower semi continuous, we obtain
limj→∞ f(xkj

) = f(x̄). Thus, using (4.2) and the fact that g is continuous, we conclude
that T (xkj

, ykj
, λkj

)→ T (x̄, ȳ, λ̄) as j →∞. Hence, the desired result follows from the first
part of the proposition and [2, Theorem 2.9].
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Proposition 4.2. Assume that B = I, f is coercive, i.e., lim∥x∥→+∞ f(x) = +∞, and
ḡ := infy g(y) > −∞. Then the sequence {(xk, yk, λk)} generated by the proximal ADMM
with τ = 0 is bounded.

Proof. Since ∇g is L-Lipschitz continuous (see (A2) with B = I) we have

g(y′) ≤ g(y) + ⟨∇g(y), y′ − y⟩+
L

2
∥y′ − y∥2 ∀y, y′ ∈ Rp.

Hence, using y = yk and y′ = yk − (1/L)∇g(yk), and the definition of ḡ, we obtain

ḡ ≤ g(yk − (1/L)∇g(yk)) ≤ g(yk)− 1

2L
∥∇g(yk)∥2. (4.5)

On the other hand, the optimality condition for (2.8) yields

λk = ∇g(yk) + (1− θ)β(Axk + yk − b).

Since (3.22) implies that
∑k

j=1 ∥∆λj∥2 < ∞, we obtain, from (2.9), that {Axk + Byk − b}
is bounded. Thus, we conclude that there exists κ > 0 such that

∥λk∥2 ≤ 2∥∇g(yk)∥2 + 2κβ. (4.6)

Hence, using the decreasing property of T (see (4.3)) together with the latter inequality, we
obtain

T (x0, y0, λ0) ≥ T (xk, yk, λk) ≥ Lβ(xk, yk, λk)

= f(xk) +
β

2

∥∥∥∥[Axk + yk − b]− λk

β

∥∥∥∥2 + g(yk)− ∥λk∥2

2β

≥ f(xk) +
β

2

∥∥∥∥[Axk + yk − b]− λk

β

∥∥∥∥2 + g(yk)− ∥∇g(yk)∥2

β
− κ.

Since γ ≥ 1 (see (2.5)), it follows from (2.6) that β > 2L. So, the last inequality and (4.5)
imply that

T (x0, y0, λ0) ≥ f(xk) +
β

2

∥∥∥∥[Axk + yk − b]− λk

β

∥∥∥∥2 + ḡ − κ. (4.7)

Therefore, the last inequality together with the coerciveness of f and boundedness of {Axk+
yk − b} imply that {(xk, yk, λk)} is bounded.

5 Concluding Remark

In this paper, we have established convergence rate bounds for the proximal ADMM for
solving nonconvex linearly constrained optimization problems. In this study, the stepsize
parameter included in the Lagrange multiplier updating can be chosen in the interval (0, 2)
instead of the classical one (0, (

√
5 + 1)/2).

Due to the possible nonconvexity of the objective function of (1.1), a sufficiently large
penalty parameter was required in the analysis of the method. This kind of assumption
is quite common in the nonconvex ADMM literature. Although a large penalty parameter
may compromise the performance of the method, some proximal ADMM variants have
been demonstrated to be efficient for solving some nonconvex problems; see, for instance,
[23,24,32]. We also mention that some assumptions related to the matrix B (see Corollary 2.3
and Propositio 4.2) may imply that (1.1) can be reduced to an unconstrained problem and
then proximal gradient type methods can be used to solve it. Even in this case, the use of
the proximal ADMM may be interesting; see, for example, [23].
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