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A NOTE ON THE OPTIMAL PARAMETER OF
BABAIE-KAFAKI’S THREE-TERM CONJUGATE GRADIENT

METHOD∗

Xiaoliang Dong† and Deren Han

Abstract: Minimizing the condition number is often used in conjugate gradient methods to improve com-
putational efficiency. In this paper, based on an eigenvalue study and a singular value study, respectively,
we discuss the condition number of the conjugate gradient method proposed by Babaie–Kafaki. The ob-
tained results improve the method, since the condition number of the corresponding iteration matrix attains
its minimum value. Moreover, we propose a modified Hestenes–Stiefel type three–term conjugate gradient
method with adaptive strategy, in which the nice properties of the sufficient descent condition and adaptive
conjugacy condition can be retained, accelerating the convergence or reducing the condition number of it-
eration matrix. Under mild conditions, we show that the proposed method converges globally for general
objective functions. Numerical experiments indicate that the method is practically promising.
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dition number
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1 Introduction

Consider the following unconstrained optimization problem:

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a smooth function. We denote by g(x) the gradient of f at x and
abbreviate g(xk) and f(xk) by gk and fk, respectively. Also, we use yk−1 = gk − gk−1 and
∥ · ∥ to stand for the Euclidian norm.

Conjugate gradient (CG) methods are a class of efficient tools for solving large–scale un-
constrained optimization problems due to their low memory requirement and simple iterative
formula. The recursion scheme of CG methods is

x0 ∈ Rn, xk+1 = xk + sk, sk = αkdk, ∀k ≥ 0, (1.2)
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where αk > 0 is a steplength to be computed along the search direction dk defined by

d1 = −g1, dk = −gk + βkdk−1, k = 2, 3, · · · (1.3)

and βk is a parameter. Several famous formulas for βk are called the Fletcher–Reeves
[24], Hestenes–Stiefel [29], Polak–Ribière–Polyak [25] and Dai–Yuan [12] formulas, and the
corresponding parameters βk are listed as follows

βFR
k =

∥gk∥2

∥gk−1∥2
, βHS

k =
gTk yk−1

dTk−1yk−1
, βPRP

k =
gTk yk−1

∥gk−1∥2
, βDY

k =
∥gk∥2

dTk−1yk−1
. (1.4)

We refer to an excellent survey [26] for further details.
Among these formulae, the Hestenes–Stiefel (HS) method has attracted much attention,

not only for its important history significance, but also for its excellent computational per-
formance. Numerous modified HS algorithms and variants of the parameter βHS

k have been
developed, analyzed and implemented over the past few years. Generally, the conjugacy con-
dition, sufficient descent condition and minimizing condition number are significant factors
that play important roles for the efficiency.

The search directions of the HS method satisfy the standard conjugacy condition, inde-
pendent of the line search used. That is,

dTk yk−1 = 0. (1.5)

The modified HS conjugate direction

dk = −

(
I −

sk−1y
T
k−1

sTk−1yk−1
+

sk−1s
T
k−1

sTk−1yk−1

)
gk = −Mkgk, (1.6)

proposed by Perry [32] satisfied yTk−1Mk = sTk−1, which is similar, but not identical to the
conjugacy condition (1.5). Later, as an extension of (1.5), Dai and Liao [13] proposed the
following Dai–Liao (DL) conjugacy condition:

dTk yk−1 = −ξgTk sk−1, (1.7)

with a positive constant ξ.
If there exists a constant c > 0 such that

dTk gk ≤ −c∥gk∥2, ∀k ∈ N, (1.8)

then the so-called sufficient descent condition holds. Gilbert and Nocedal [25] illustrates its
important usefulness for obtaining convergence of the PRP+ CGmethod. Classical examples
included the CG DESCENT method [27], the CGOPT method [14], the THREECG method
[4], the 3HS+ method [31] and the CTTHS and MTTHS methods [38], in which the condition
(1.8) holds independent of any line searches used and the convexity of the objective functions.
Further development and applications can refer to [1,2,5,6,8–11,15,17–23,30,31,33,35–37].
Note that although the DL method seldom generates uphill search directions in actual com-
putations, it generally fails to guarantee the sufficient descent condition [3]. In applications,
ill–condition usually causes the loss of the orthogonality, which further causes the loss of ef-
ficiency. Hence, minimizing the condition number and correcting the orthogonality property
are important in implementing CG methods. By combining the orthogonality correction
scheme, Hager and Zhang developed an excellent software package L CG DESCENT, which
is very efficient for solving large–scale test problems [28].
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Recently, three–term methods attract more and more attentions. Babaie–Kafaki [7] pro-
posed an extended three–term CG method, in which the search direction dk was constructed
as follows:

dEZZL
k = −gk + βHS

k sk−1 − θkyk−1, (1.9)

where the parameter θk is given by

θk = ωk
gTk sk−1

sTk−1yk−1
, (1.10)

and ωk ∈ [0, 1] is a scalar. When ωk = 1, the above method reduced to the method
proposed by Zhang, Zhou and Li [38], and when ωk = 0, the method reduced to the HS
method. Throughout the paper, we use the same notations as in [7] and [38] and call them
EZZL and ZZL method for short, respectively.

The convergence analysis of the EZZL method was made if the objective functions were
uniformly convex. However, it is unknown that whether this method can be globalized with
the Wolfe conditions for the nonconvex functions. On the other hand, note that the search
direction (1.9) can be rewritten as dk = −Qkgk with the iteration matrix Qk

Qk = I −
sk−1y

T
k−1

sTk−1yk−1
+ ωk

yk−1s
T
k−1

yTk−1sk−1
, (1.11)

which is neither symmetric nor normal unless ωk = −1. To study the sufficient descent
condition, Babaie–Kafaki introduced the symmetric matrix

Ak =
Qk +QT

k

2
= I +

1

2
(ωk − 1)

sk−1y
T
k−1 + yk−1s

T
k−1

sTk−1yk−1
, (1.12)

and analyzed its smallest and largest eigenvalues:

λ±
k (ωk) =

1

2

{
(1 + ωk)± (1− ωk)

∥sk−1∥∥yk−1∥
sTk−1yk−1

}
. (1.13)

From (1.13) we can see that in order to guarantee the positive definiteness of the matrix
Ak, we should ensure that λ−

k = ξ ∈ (0, 1]. Consequently, the following optimal value of the
parameter ωk is obtained

ωk =
(2ξ − 1)yTk−1sk−1 + ∥sk−1∥∥yk−1∥

yTk−1sk−1 + ∥sk−1∥∥yk−1∥
. (1.14)

Though the choice (1.14) can ensure the sufficient descent property, the other two key
factors, i.e., conjugacy condition and minimizing condition number, are ignored. In this
paper, to keep the intrinsic clustering of the eigenvalues of iteration matrix and self–adjusting
conjugacy property, we conduct an eigenvalue study and a singular value study, which help
us present a revised version of the parameter. We also prove that the EZZL method is
actually the ZZL method where the optimal choice for the parameter λk can minimize the
condition number of the iteration matrix. The analysis motivates us to consider minimizing
the condition number of the iteration matrix in algorithm design.

The paper is organized as follows. In Sect.2, we present the optimal parameter choice
from an eigenvalue study and a singular value study, respectively. In Sect. 3, we propose
a modified HS type three–term CG method and establish its global convergence with the
Wolfe conditions for the nonconvex functions. We report numerical results in Sect. 4. Final
conclusions are made in the Sect. 5. Numerical results are listed in the part of Appendix.
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2 An Optimal Parameter Choice

As mentioned above, the matrix condition number, both due to its role in the error analysis
and its role in convergence rate, plays an important role in a numerical algorithm. Hence,
for the three–term HS–type method (1.9), we consider finding an optimal choice for the
parameter ωk and minimizing the condition number of iteration matrix (1.11), based on an
eigenvalue study and a singular value study, respectively.

• An eigenvalue study: We first consider the condition number based on an eigenvalue
study. To be specific, we substitute (1.14) in (1.13), and obtain that

λ+
k (ωk) =

ξyTk−1sk−1 + (2− ξ)∥sk−1∥∥yk−1∥
yTk−1sk−1 + ∥sk−1∥∥yk−1∥

, (2.1)

and the corresponding condition number is computed as

Cond2(Ak) =
λ+
k (ωk)

λ−
k (ωk)

=
yTk−1sk−1 + ( 2ξ − 1)∥sk−1∥∥yk−1∥

yTk−1sk−1 + ∥sk−1∥∥yk−1∥
. (2.2)

The choice for ξ = 1, which corresponds to ωk = 1, can minimize the condition number
of the iteration matrix Ak.

• A singular value study: We now briefly present the definition of the singular value
decomposition and spectral condition number as follows.

Definition 2.1 ([34]). Let A ∈ Rn×m be a nonzero matrix with rank r. Then, Rm

has an orthogonal basis qi, i = 1, 2, ...,m, Rn has an orthogonal basis pi, i = 1, 2, ..., n,
and there exist σ1 ≥ σ2 ≥ ... ≥ σr > 0 such that

Aqi =

{
σipi, i=1,2,...,r,
0, i=r+1,...,m,

(2.3)

and

AT pi =

{
σiqi, i=1,2,...,r,
0, i=r+1,...,n.

(2.4)

Furthermore, for a nonsingular matrix A ∈ Rn×n, its spectral condition number is
defined by κ2(A) = ∥A∥∥A−1∥.

Since sTk yk = αkd
T
k yk > 0, as guaranteed by the Wolfe line search, we obviously obtain

that the vectors sk and yk are nonzero vectors. Therefore, there exist a set of mutually
unit orthogonal vectors {ui

k}
n−2
i=1 such that

sTk u
i
k = yTk u

i
k = 0, i = 1, 2, ..., n− 2, (2.5)

which yield

Qku
i
k = ui

k, i = 1, 2, ..., n− 2. (2.6)
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It follows that Qk has the eigenvalue 1 of multiplicity n − 2, which corresponds to
{ui

k}
n−2
i=1 . Naturally, we intend to find the two remanning eigenvalues, i.e, σ+

k (ω) and
σ−
k (ω).

We can easily get the trace of QT
kQk as follows:

Tr(QT
kQk) = n− 2 + (1 + ω2

k) ·
∥sk−1∥2∥yk−1∥2

(sTk−1yk−1)2
,

= 1 + ...+ 1︸ ︷︷ ︸
n−2 times

+(σ+
k (ωk))

2 + (σ−
k (ωk))

2,
(2.7)

which implies that
(σ+

k (ω))
2 + (σ−

k (ω))
2 = (1 + ω2

k)Θk, (2.8)

where

Θk =

(
∥sk−1∥∥yk−1∥
sTk−1yk−1

)2

≥ 1. (2.9)

Notice that Qk presents rank–two update, we can readily compute its determinant.
Specifically, from the relationship that the determinant of the iteration matrix Qk

equals to the product of σ+
k (ω) and σ−

k (ω), we get that

det(Qk) = σ+
k (ωk)σ

−
k (ωk) = ωkΘk. (2.10)

Based on the relationships between the trace and the determinant of a matrix and its
eigenvalues, we can construct a quadratic equation as follows:

σ2 −
√

(1 + ωk)2Θkσ + (ωkΘk) = 0. (2.11)

It should be pointed out that the discriminant in quadratic equation (2.11) ∆σ =
(1− ωk)

2Θk ≥ 0 and therefore the existence of two real roots can be ensured.

A simple analysis of Equation (2.11) indicates that

σ±
k (ωk) =

√
Θk

2
{|1 + ωk| ± |1− ωk|} . (2.12)

Subsequently, we list the singular values of Qk by considering the following two cases.

Case (i) For 0 < ωk ≤ 1, we can easily obtain that

1, 1, ..., 1︸ ︷︷ ︸
n−2 times

, σ−
k = ωk

√
Θk, σ

+
k =

√
Θk. (2.13)

Case (ii) For ωk > 1, we can readily get that

1, 1, ..., 1︸ ︷︷ ︸
n−2 times

, σ−
k =

√
Θk, σ

+
k = ωk

√
Θk. (2.14)

To minimize the spectral condition number κ2(Qk), it is equivalent to clustering the
singular values of the iteration matrix Qk as dense as possible. We consider to employ
ωk = 1 to achieve this goal.
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3 A New Three–Term CG Method

It follows from the last section that the availability of condition number analysis of itera-
tion matrix is essential to practically implement CG method. To elaborate this further, in
this section, we find a new hybridization form of search directions of the EZZL method to
coordinate with three aforementioned key factors in a suitable way, thereby retaining the
properties of HS+ method and ZZL method, and ensuring the global convergence for the
general functions. Different from the existent methods, a dynamical adjustment strategy of
the search direction is chosen to reduce the condition number of iteration matrix as much
as possible or efficiently eliminate round–off error. Since the proposed search directions are
obtained from condition number analysis, we call the presented method as CZZL method
for short. In Subsection 3.1, a description of a CZZL algorithm is detailed. Convergence
analysis of the CZZL method is investigated in Subsection 3.2.

3.1 Properties of the CZZL method

Theoretically, the HS+ method has the conjugacy condition (1.5) and self–restarting mech-
anism.

In such a case, we combine the obtained optimal parameter and the self–adjusting con-
jugacy condition [19], and present the following search direction:

dk =


−gk + βHS

k dk−1, k ∈ K1,

−gk + βHS
k dk−1 −

gTk dk−1

dTk−1yk−1
yk−1, k ∈ K2,

(3.1)

where the index set K1 and K2 are presented by

K1 = {k ∈ N| gTk yk−1 > 0, gTk dk−1 < 0},

K2 = {k ∈ N| gTk yk−1 > 0, gTk dk−1 ≥ 0}.

Subsequently, we state the steps of this method as follows.

Algorithm 3.1 (CZZL method). Step 1. Give positive constant ε, and ρ < σ < 1. Choose
an initial point x1 ∈ Rn and set d1 = −g1 and k = 1.

Step 2. Determine a steplength αk satisfying the Wolfe conditions:

f(xk + αkdk)− f(xk) ≤ ραkg
T
k dk, (3.2)

g (xk + αkdk)
T
dk ≥ σgTk dk. (3.3)

Step 3. Let the new iterate by xk+1 = xk + αkdk and calculate gk+1. If ∥gk+1∥ < ε,
then stop.

Step 4. If gTk+1yk ≤ 0, then set dk+1 = −gk+1 and k = k + 1, and goto Step 2.

Step 5. If gTk+1yk > 0, then compute the search direction dk+1 by (3.1), and goto Step
2.

The following lemma indicates that the proposed search directions satisfy the sufficient
descent condition and adaptive conjugacy condition, the proof is similar to that of the CHS
method in [19], so we omit it here.
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Lemma 3.2. Suppose that the steplength αk satisfies the Wolfe conditions. The search
directions {dk}k≥0 of CZZL method satisfiy the sufficient descent condition (1.8) with c = 1,
that is dTk gk ≤ −∥gk∥2. Furthermore, the adaptive conjugacy condition is also satisfied, that
is,

yTk dk+1 =

 −∥yk∥2

sTk yk

(
gTk+1sk

)
, gTk+1dk > 0,

0, gTk+1dk ≤ 0.
(3.4)

Remark 3.3. The relaxed form of conjugacy condition above leads to inherit some nice
properties of the HS+ method, while maintaining the descent property and known conver-
gence results.

3.2 Global convergence of the CZZL method

We begin this section by making the following regular assumptions, commonly used to
establish the global convergence of the CG methods.

Assumption 3.4.
Boundedness Assumption: The level set Ω = {x ∈ Rn|f(x) ≤ f(x1)} is bounded.
Lipschitz Assumption: In some neighborhood Ω0 of Ω, the objective function f is

continuously differentiable and its gradient g is Lipschitz continuous, namely, there exists a
constant L > 0 such that ∥g(x)− g(y)∥ ≤ L∥x− y∥,∀x, y ∈ Ω0.

Note that these Assumptions imply that there exist constants B > 0 and γ > 0 such
that ∥x− y∥ ≤ 2B and ∥g(x)∥ ≤ γ, ∀x, y ∈ Ω.

Now, we come to establish global convergence of Algorithm 3.1. For general nonlinear
functions, similar to [27], we can obtain a weaker global convergence result in the sense that
lim inf
k→∞

∥gk∥ = 0. In what follows, for the sake of contradiction we assume that there exist a

positive constant ε such that
∥gk∥ ≥ ε, ∀k ∈ N. (3.5)

Similar to analysis of [27], here we need to state some properties of dk, βk and sk.

Lemma 3.5. Suppose that Assumptions 3.4 hold. Let {xk}k≥0 be generated by Algorithm
3.1. If (3.5) holds, then there exist positive constants C1 and M such that

|βHS
k | ≤ C1∥sk−1∥, ∥pk∥ ≤ M, (3.6)

where

pk =

{
−gk, if gTk yk−1 ≤ 0 or k ∈ K1,
−gk + θHS

k yk−1, if k ∈ K2.
(3.7)

Proof. Clearly, it is sufficient to consider the case where gTk dk−1 > 0 and gTk yk−1 > 0, which
corresponds to k ∈ K2. Note that from definition of the parameter θHS

k as (1.10), where
ωk = 1, it follows

θHS
k =

gTk dk−1

dTk−1(gk − gk−1)
∈ [0, 1). (3.8)

We have from (3.7), (3.8), and the limitation on ∥g(x)∥ in Ω that

∥pk∥ ≤ ∥gk∥+ |θHS
k | · ∥yk−1∥

= ∥gk∥+
gTk dk−1

dTk−1yk−1
· ∥gk − gk−1∥

≤ ∥gk∥+ ∥gk − gk−1∥
= 3γ.

(3.9)
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So, setting M = 3γ, we get ∥pk∥ ≤ M .
Now, we estimate a bound for βk. Actually,

|βHS
k | = | gTk yk−1

dTk−1yk−1
| ≤ L∥gk∥∥sk−1∥

(1− σ)ε2
≤ 2BLγ

(1− σ)ε2
. (3.10)

Subsequently, we give the convergence result of our presented method. It should be
pointed out that the proof is analogous to that of Theorem 3.2 in [27] and we omit it
here.

Theorem 3.6. Suppose that Assumptions 3.4 hold. Let {xk}k≥1 be generated by Algorithm
3.1. If (3.5) holds, then lim inf

k→∞
∥gk∥ = 0.

4 Numerical Results

In this section, we report some numerical results on a set of 73 nonlinear unconstrained
problems. For each test problem, the dimension n is set to 10000 and the Fortran expression
of its function and gradient can be downloaded from Andrei’s website: http://www.ici.

ro/camo/neculai/SCALCG/evalfg.for.
The following CG methods in the form of (1.9) or (1.3), only different in the choice of

the CG parameter, are test:

1. The HZ (CG DESCENT) method [27]: The CG method with the parameter

βHZ
k = max

{
βHS
k − 2

∥yk−1∥2

(dTk−1yk−1)2
gTk dk−1,

−1

∥dk−1∥min{η, ∥gk−1∥}

}
, where η = 0.1.

2. The EZZL method [7]: The three–term CG method with the search directions defined
by (1.9) and (1.10) with the parameter ωk defined by (1.14), where ξ = 0.96 is an
optimal value, please see [7].

3. The ZZL method [38]: The CG method similar to EZZL method with the parameter
ωk = 1.

4. The CZZL method: Algorithm 3.1.

All algorithms use exactly the same implementation of the Wolfe line search conditions
with ρ = 10−4, σ = 0.6. We stop the iterations if the inequality ∥gk∥∞ ≤ 10−6 is satisfied.

The detailed numerical results, including the CPU time in seconds and the number of
iterations, the total number of function evaluations, and gradient evaluations implementation
for each of the tested method, can be found in the part of Appendix.

Further to demonstrate the efficiency of these methods, the use of profiles of Dolan and
Moŕe [16] will present a wealth of information including efficiency and robustness. More
analytically, the left side of the figure presents the percentage of test problem for which a
method performs fastest, the right side gives the percentage of the test problems that are
successfully solved. The top curve is the method that solved the most problems in a time
that was within a factor ω of the best time.

To some extent, as can be seen from the Figs.1, 2 and 3, the curves of the CZZL method
approximately solves 60% of the test problems with the least number of iterations, 55% the
number of function and gradient evaluations. Obviously, the three figures above graphically
illustrate that the curve of “CZZL” is always the top performer for almost all values of ω.
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Figure 1: Performance based on iterations

Figure 2: Performance based on function evaluations

Figure 3: Performance based on gradient evaluations
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Figure 4: Performance based on CPU time

Meanwhile, as we see in Fig.4, the best performance, relative to the number of the CPU
time, is obtained by the “CZZL” method, followed by the “HZ” method. Noted that the
optimal parameter is set as ξ = 1 in the ZZL method and ξ = 0.96 in the EZZL method,
which determines the curves of the two algorithms are close. However, as a variant of the
EZZL or ZZL methods, the direction of the CZZL method needs less computational cost for
inner products than these two methods do. This is maybe the reason why CZZL method is
slightly superior to the EZZL and ZZL methods in Fig.4.

Since all methods are implemented with the same condition of line search, we conclude
that the CZZL method is efficient for solving large scale test problems.

5 Conclusions

We establish a relationship between the EZZL method and the ZZL one, which adds us to
understanding to one of intrinsic advantages of ZZL method. That is, the condition number
Cond2(Qk) and the spectral condition number κ2(Qk) attain their minimum values, which is
no other than the original ZZL method. Based on this fact, we proposed another three–term
HS type CG method, which is essentially designed based on an adaptive switch from the
ZZL method to the HS+ one for gTk dk−1 ≤ 0. The strategy is justified by the fact that the
automatic approximate restart property can effectively avoid jamming, i.e., generating many
tiny steps without significant progress to the solution. Under mild conditions, we show that
the proposed method converges globally for general objective functions. Computationally,
the proposed CZZL method slightly outperforms the HZ, EZZL and ZZL methods.
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[16] E.D.Dolan and J.J. Moré, Benchmarking optimization software with performance pro-
files, Math. Program. 91(2,Ser.A) (2002) 201–213.

[17] Z. Dai and F. Wen, A generalizd apporach to sparse and stable portfolio optimizarion
problme, J. Ind. Manae. Optim. 14 (2018) 1561–1666.



370 X. DONG AND D. HAN

[18] Z. Dai and F. Wen, Some improved sparse and stable portfolio optimization problems,
Financ Res. Lett. 27 (2018) 46-52.

[19] X. Dong, H. Liu and Y. He, A self–adjusting conjugate gradient method with sufficient
descent condition and conjugacy condition, J. Optim. Theory Appl. 165 (2015) 225–241.

[20] X. Dong, D. Han, Z.Dai, X.Li and J.Zhu, An accelerated three–term conjugate gradient
method with sufficient descent condition and conjugacy condition, J. Optim. Theory
Appl. 179 (2018) 944–961.

[21] X. Dong, H. Liu, Y.He and X.Yang, A modified Hestenes–Stiefel conjugate gradient
method with sufficient descent condition and conjugacy condition, J. Comput. Appl.
Math. 281 (2015) 239–249.

[22] X. Dong, D. Han, R. Ghanbari, X. Li and Z.Dai, Some new three–term Hestenes–Stiefel
conjugate gradient methods with affine combination, Optimization, 66 (2017) 1–18.

[23] M. Fatemi, An optimal parameter for Dai–Liao family of conjugate gradient methods,
J. Optim. Theory Appl. 169 (2016) 587–605.

[24] R.Fletcher and C.Reeves, Function minimization by conjugate gradients, Comput. J. 7
(1964) 149–154.

[25] J.C.Gilbert and J.Nocedal, Global convergence properties of conjugate gradient meth-
ods for optimization, SIAM J. Optim. 2 (1992) 21–42.

[26] W.W.Hager and H.Zhang, A survey of nonlinear conjugate gradient methods, Pac. J.
Optim. 2 (2006) 35–58.

[27] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed and
an efficient line search, SIAM J. Optim. 16 (2005) 170–192.

[28] W. W. Hager and H. Zhang, The limited memory conjugate gradient method, SIAM
J. Optim. 23 (2013) 2150–2168.

[29] M.R.Hestenes and E.Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl.Bur. Stand. 49 (1952) 409–436.

[30] X. Li, W.Zhang and X.Dong, A class of modified FR conjugate gradient method and
applications to non–negative matrix factorization, Comput. Math. Appl. 73 (2016) 270–
276.

[31] Y. Narushima, H. Yabe and J. A. Ford, A three–term conjugate gradient method with
sufficient descent property for unconstrained optimization, SIAM J. Optim. 21 (2011)
212–230.

[32] A. Perry, A modified conjugate gradient algorithm, Oper.Res. 26 (1976) 1073–1078.

[33] K. Sugiki,Y. Narushima Y and H. Yabe, Globally convergent three–term conjugate
gradient methods that use secant conditions and generate descent search directions for
unconstrained optimization, J. Optim. Theory Appl. 153 (2012) 733–757.

[34] D. S. Watkins, Fundamentals of matrix computations, John Wiley and Sons, New York,
2010.



A NOTE ON CONJUGATE GRADIENT METHOD 371

[35] G. Yu, L. Guan and W.Chen, Spectral conjugate gradient methods with sufficient
descent property for large–scale unconstrained optimization, Optim.Methods Softw. 23
(2008) 275–293.

[36] L. Zhang, W. Zhou and D. Li, A descent modified Polak–Ribière–Polyak conjugate
gradient method and its global convergence, IMA J. Numer. Anal. 26 (2006) 629–640.

[37] L. Zhang, W. Zhou and D. Li, Global convergence of a modified Fletcher–Reeves conju-
gate gradient method with Armijo–type line search, Numer.Math. 104 (2006) 561–572.

[38] L. Zhang, W. Zhou and D. Li, Some descent three—term conjugate gradient methods
and their global convergence, Optim. Methods Softw 22 (2007) 697–711.

Manuscript received 17 April 2017
revised 6 November 2018

accepted for publication 31 December 2018

Xiaoliang Dong
College of Science, Xi’an Shiyou University
Xi’an, 710065, P.R. China
School of Mathematics Science, Nanjing Normal University
Nanjing, P.R. China
E-mail address: dongxl@stu.xidian.edu.cn

Deren Han
School of Mathematics and Systems Science
Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC)
Beihang University, Beijing,100191, PR China.
E-mail address: handr@buaa.edu.cn



372 X. DONG AND D. HAN

Appendix: Numerical Results

In this appendix, we provide details of the results of our numerical experiments that were
summarized in Sect.4. The following table provides the number of iterations, function and
gradient evaluation counts and CPU time for the implemented methods HZ, ZZL, EZZL
and CZZL.

Table 1: Comparison of efficiency with other algorithms
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