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Abstract: In this paper, we generalize the classical extragradient algorithm for solving variational inequality
problems by utilizing nonzero normal vectors of the feasible set. In particular, conceptual algorithms are
proposed with two different linesearchs. We then establish convergence results for these algorithms under
mild assumptions. Our study suggests that nonzero normal vectors may significantly improve convergence
if chosen appropriately.
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1 Introduction

In this work, we present conditional extragradient algorithms for solving generally con-
strained variational inequality problems by using nonzero normal vectors of the feasible set.
Let T : dom(T ) ⊆ Rn → Rn be an operator and let C ⊂ dom(T ) be a nonempty closed and
convex set, the classical variational inequality problem is formulated as

find x∗ ∈ C such that ⟨T (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C. (1.1)

This problem unifies a broad range of optimization problems and serves as a useful com-
putational framework in very diverse applications. Indeed, (1.1) has been well studied and
has numerous important applications in physics, engineering, economics and optimization
theory, see, e.g., [20, 22,27] and the references therein.

It is well-known that (1.1) is closely related with the so-called dual problem of the
variational inequalities, written as

find x∗ ∈ C such that ⟨T (x), x− x∗⟩ ≥ 0, ∀x ∈ C. (1.2)

We denote the solution set of (1.1) and (1.2) by S∗ and Sdual, respectively. Throughout, our
standing assumptions are the following:

(A1) T is continuous on C.

(A2) Problem (1.1) has at-least one solution and all solutions of (1.1) solve the dual problem
(1.2).
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Note that Assumption (A1) implies Sdual ⊆ S∗ (see Fact 2.12 below). So, the existence
of solutions of (1.2) implies that of (1.1). However, the reverse assertion needs generalized
monotonicity assumptions. For example, if T is pseudomonotone then S∗ ⊆ Sdual (see [30,
Lemma 1]). With this results, we note that (A2) is strictly weaker than pseudomonotonicity
of T (see [29, Example 1.1.3] and Example 5.1 below). Moreover, the assumptions S∗ ̸= ∅
and the continuity of T are natural and classical for most of methods that solve (1.1) in the
literature. Assumption (A2) has also been used in various algorithms for solving (1.1) (see,
e.g., [30, 31]).

1.1 Extragradient Algorithm

Using projection-type algorithms is a popular approach for solving variational inequalities.
Excellent surveys on this topic can be found in [19,21,29]. One of the most studied algorithms
is the so-called extragradient algorithm, which was first appeared in [32]. For solving (1.1),
projection methods have to perform at least two projections onto the feasible region at
each iteration, because the natural extension of the projected gradient method (just one
projection when T = ∇f) fails in general for monotone operators (see, e.g., [8]). Thus, an
extra projection is necessary in order to establish the convergence. A general extragradient
scheme can be formulated as follows.

Algorithm 1.1 (Extragradient Algorithm). Given αk, βk, γk > 0.

Step 0 (Initialization): Take x0 ∈ C.

Step 1 (Iterative Step): Compute

zk = xk − βkT (x
k), (1.3a)

yk = αkPC(z
k) + (1− αk)x

k, (1.3b)

and xk+1 = PC

(
xk − γkT (y

k)
)
. (1.3c)

Step 2 (Stopping Test): If xk+1 = xk, then stop. Otherwise, set k ← k + 1 and go to
Step 1.

Next, we describe some strategies to choose the parameters αk, βk and γk in (1.3) (see,
e.g., [19, 29]).

(a) Constant stepsizes: For each k, take βk = γk where 0 < β̌ ≤ βk ≤ β̂ < +∞ and αk = 1.
(b) Armijo-type linesearch on the boundary of the feasible set: Set σ > 0, and δ ∈ (0, 1).
For each k, take αk = 1 and βk = σ2−j(k) where j(k) := min

{
j ∈ N : ∥T (xk)− T (PC(z

k,j))∥ ≤ δ

σ2−j
∥xk − PC(z

k,j)∥2
}
,

and zk,j = xk − σ2−jT (xk).

(1.4)

In this approach, we take γk = βk.
(c) Armijo-type linesearch along the feasible direction: Set δ ∈ (0, 1). For each k, take

0 < β̌ ≤ βk ≤ β̂ < +∞, and αk = 2−ℓ(k) where ℓ(k) := min

{
ℓ ∈ N : ⟨T (zk,ℓ), xk − PC(z

k)⟩ ≥ δ

βk
∥xk − PC(z

k)∥2
}
,

and zk,ℓ = 2−ℓPC(z
k) + (1− 2−ℓ)xk.

(1.5)



CONDITIONAL EXTRAGRADIENT ALGORITHMS 333

Then, define γk =
⟨T (yk), xk − yk⟩
∥T (yk)∥2

.

We provide several comments to explain the differences between these strategies.
Strategy (a) was added to the extragradient algorithm in [32] and it is effective if T

is monotone and globally Lipschitz continuous. The main difficulty of this strategy is the
necessity of choosing βk in (1.3a) satisfying 0 < βk ≤ β < 1/L where the possibly unknown L
is the Lipschitz constant of T ; therefore, the stepsizes should be sufficiently small to ensures
the convergence.

Strategy (b) was first studied in [28] under monotonicity and Lipschitz continuity of T .
The Lipschitz continuity assumption was removed later in [24] by using feasible lineasearch.
Note that this strategy requires computing the projection onto C inside the inner loop of the
Armijo-type linesearch (1.4). Thus, the need to compute possible many projections at each
iteration k makes Strategy (b) inefficient when an explicit formula for PC is not available.

Strategy (c) was presented in [25] which demands only one projection for each outer step
k. This approach guarantees convergence by assuming only the monotonicity of T and the
existence of solutions of (1.1), but not the Lipschitz continuity of T .

In Strategies (b) and (c), the operator T and the projection PC are evaluated at least
twice per iteration. The resulting algorithm is applicable to the whole class of monotone
variational inequalities. It has the advantage of not requiring exogenous parameters. Fur-
thermore, both strategies occasionally allow long stepsizes by exploiting the information
available at each iteration.

Extragradient-type algorithms is currently a subject of intense research (see, e.g., [1,4,7,
8,15,36,38]). Another variant of Strategy (c) was presented in [31] where the monotonicity
was replaced by (A2). The main difference is that, instead of (1.5), the scheme presented
in [31] performs{

ℓ(k) := min
{
ℓ ∈ N : ⟨T (zk,ℓ), xk − PC(z

k)⟩ ≥ δ⟨T (xk), xk − PC(z
k)⟩

}
,

and zk,ℓ = 2−ℓPC(z
k) + (1− 2−ℓ)xk,

(1.6)

where δ ∈ (0, 1).

1.2 Proposed Schemes

The paper studies two conceptual algorithms, each of which has three variants. Convergence
analysis for both algorithms is established assuming weaker assumptions than previous work
[5,33]. Our scheme was inspired by Algorithm 1.1 and the conditional subgradient method
which was studied in [17] and further developed in [18,33].

Basically, each conceptual algorithm contains a linesearch step and a projection step.
First, the linesearch step allows to find a suitable halfspace separating the current iteration
and the solution set. We will consider two different linesearches: one on the boundary of the
feasible set and one along a feasible direction. Second, the projection step has three variants
with different and interesting features on the generated sequence. We also note that some of
the proposed variants are related to [7,25,36]. An essential characteristic of the conceptual
algorithms is the convergence under very mild assumptions, like the continuity of the oper-
ator T (see (A1)), the existence of solutions of (1.1), which also solve the dual variational
inequality (1.2) (see (A2)). We would like to emphasize that (A2) is less restrictive than
pseudomonotonicity of T and plays a central role in our convergence analysis.

The remaining of the paper is organized as follows. Section 2 provides notations and
preliminary results, in which we also prove the convergence of a natural extension of Al-
gorithm 1.1 with nonzero normal vectors. The convergence analysis of our conceptual
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algorithms together with two linesearches is given in Sections 3 and 4. In Section 5, we
present an example showing that our suggested approach may perform better than previous
classical variants. Finally, some concluding remarks are given in Section 6.

2 Preliminaries

We begin with some basic notation and definitions, which are standard and follow [3].
Throughout, we write p := q to indicate that p is defined by q. The inner product and the
induced norm in Rn are denoted respectively by ⟨·, ·⟩ and ∥ · ∥. We denote the nonnegative
integers by N := {0, 1, 2, . . .} and the extended-real line by R := R∪{+∞}. The closed ball
centered at x ∈ Rn with radius ρ > 0 will be denoted by B[x, ρ] := {y ∈ Rn : ∥y − x∥ ≤ ρ}.
The domain of a function f : Rn → R is defined by dom(f) := {x ∈ Rn : f(x) < +∞} and
we say that f is proper if dom(f) ̸= ∅. For any set G, cl(G) and cone(G) respectively denote
the topological closure and the conic hull of G. Finally, let T : Rn ⇒ Rn be an operator.
Then, the domain and the graph of T are given by dom(T ) := {x ∈ Rn : T (x) ̸= ∅} and
Gph(T ) := {(x, u) ∈ Rn × Rn : u ∈ T (x)}.

Definition 2.1 (normal cone). Let C be a subset of Rn and let x ∈ C. A vector u ∈ Rn

is called a normal to C at x if for all y ∈ C, ⟨u, y − x⟩ ≤ 0. The collection of all such
normal u is called the normal cone of C at x and is denoted by NC(x). If x /∈ C, we define
NC(x) = ∅.

In some special cases, formulas for normal cone can be obtained explicitly, for example,
polyhedral sets [33], closed convex cones [11, Example 2.62], sets defined by smooth func-
tional constraints [35, Theorem 6.14] (see also [34, Theorem 23.7] and [11, Proposition 2.61]).

The normal cone can be seen as an operator, i.e., NC : C ⊂ Rn ⇒ Rn : x 7→ NC(x).
Recall that the indicator function of C is defined by δC(y) := 0, if y ∈ C and +∞, otherwise,
and the classical convex subdifferential operator for a proper function f : Rn → R is defined
by ∂f : Rn ⇒ Rn : x 7→ ∂f(x) := {u ∈ Rn : f(y) ≥ f(x) + ⟨u, y − x⟩, ∀ y ∈ Rn}. Then, it is
well-known that the normal cone operator can be expressed as NC = ∂δC .

Fact 2.2. (See [13, Proposition 4.2.1(ii)]) The normal cone operator for C, NC , is a maximal
monotone operator and its graph, Gph(NC), is closed, i.e., for every sequence (xk, uk)k∈N ⊂
Gph(NC) that converges to some (x, u), we have (x, u) ∈ Gph(NC).

Next, recall that the orthogonal projection of x onto C, PC(x), is the unique point in C
such that ∥PC(x) − x∥ ≤ ∥x − y∥ for all y ∈ C. Some well-known facts about orthogonal
projections are presented below.

Fact 2.3. For all x, y ∈ Rn and all z ∈ C, the following hold:

(i) ∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2 − ∥(x− PC(x))−
(
y − PC(y)

)
∥2 (a.k.a. firm nonexpan-

siveness).

(ii) ⟨x− PC(x), z − PC(x)⟩ ≤ 0.

(iii) Let x ∈ C, y ∈ Rn and z = PC(y), then ⟨x− y, x− z⟩ ≥ ∥x− z∥2.

Proof. (i) & (ii): See [40, Lemmas 1.1 and 1.2].
(iii): Using (ii), we have ⟨x− y, x− z⟩ = ⟨x− z, x− z⟩+ ⟨x− z, z − y⟩ ≥ ∥x− z∥2.

Corollary 2.4. For all x, p ∈ Rn and α > 0, we have

x− PC(x− αp)

α
∈ p+NC(PC(x− αp)). (2.1)
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Proof. Let z = x− αp, then the conclusion follows from z − PC(z) ∈ NC(PC(z)).

Next, we present some lemmas that are useful in the sequel.

Lemma 2.5. Let H ⊆ Rn be a closed halfspace and C ⊆ Rn such that H ∩ C ̸= ∅. Then,
for every x ∈ C, we have PH∩C(x) = PH∩C(PH(x)).

Proof. If x ∈ H, then x = PH∩C(x) = PH∩C(PH(x)). Suppose that x /∈ H. Fix any
y ∈ C ∩H. Since x ∈ C but x /∈ H, there exists γ ∈ [0, 1), such that x̃ = γx + (1 − γ)y ∈
C ∩ bdH, where bdH is the hyperplane boundary of H. Hence, (x̃− PH(x))⊥(x− PH(x))
and (PH∩C(x)− PH(x))⊥(x− PH(x)), then

∥x̃− x∥2 = ∥x̃− PH(x)∥2 + ∥x− PH(x)∥2, (2.2)

and
∥PH∩C(x)− x∥2 = ∥PH∩C(x)− PH(x)∥2 + ∥x− PH(x)∥2, (2.3)

respectively. Using (2.2) and (2.3), we get

∥y − PH(x)∥2 ≥ ∥x̃− x∥2 = ∥x̃− PH(x)∥2 + ∥PH(x)− x∥2 ≥ ∥x̃− PH(x)∥2.
= ∥x̃− x∥2 − ∥x− PH(x)∥2 ≥ ∥PH∩C(x)− x∥2 − ∥x− PH(x)∥2 = ∥PH∩C(x)− PH(x)∥2.

So, ∥y−PH(x)∥ ≥ ∥PH∩C(x)−PH(x)∥ for all y ∈ C ∩H. Thus, PH∩C(x) = PC∩H(PH(x)).

Lemma 2.6. Let S be a nonempty, closed and convex set. Let x0, x ∈ Rn. Assume that
x0 /∈ S and that S ⊆ W (x) = {y ∈ Rn : ⟨y − x, x0 − x⟩ ≤ 0}. Then, x ∈ B[ 12 (x

0 + x), 1
2ρ],

where x = PS(x
0) and ρ = dist(x0, S) := ∥x0 − PS(x0)∥.

Proof. Since S is convex and closed, x = PS(x
0) and ρ = dist(x0, S) are well-defined. S ⊆

W (x) implies that x = PS(x
0) ∈W (x). Define v := 1

2 (x0 + x) and r := x0 − v = 1
2 (x

0 − x),
then x− v = −r and ∥r∥ = 1

2∥x
0 − x∥ = 1

2ρ. It follows that

0 ≥ ⟨x− x, x0 − x⟩ =
⟨
x− v + v − x, x0 − v + v − x

⟩
= ⟨−r + (v − x), r + (v − x)⟩ = ∥v − x∥2 − ∥r∥2.

So, x ∈ B[v, r] and the proof is complete.

Definition 2.7 (Fejér convergence). Let S be a nonempty subset of Rn. A sequence
(xk)k∈N ⊂ Rn is said to be Fejér convergent to S if and only if for all x ∈ S there ex-
ists k0 ∈ N such that ∥xk+1 − x∥ ≤ ∥xk − x∥ for all k ≥ k0.

Fejér convergence was introduced in [12] and has been elaborated further in [2,26]. The
following are useful properties of Fejér sequences.

Fact 2.8. If (xk)k∈N is Fejér convergent to S, then the following hold

(i) The sequence (xk)k∈N is bounded.

(ii) The sequence
(
∥xk − x∥

)
k∈N converges for all x ∈ S.

(iii) If an accumulation point x∗ belongs to S, then the sequence (xk)k∈N converges to x∗.

Proof. (i) and (ii): See [3, Proposition 5.4]. (iii): See [3, Theorem 5.5].
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We recall the following well-known characterization of S∗ which will be used repeatedly.

Fact 2.9. (See [19, Proposition 1.5.8]) The following are equivalent:

(i) x ∈ S∗.

(ii) −T (x) ∈ NC(x).

(iii) For all β > 0, we have x = PC(x− βT (x)).

Proposition 2.10. Given T : dom(T ) ⊆ Rn → Rn and α > 0. If x = PC(x− α(T (x) + u))
for some u ∈ NC(x), then x ∈ S∗, or equivalently, x = PC(x− βT (x)) for all β > 0.

Proof. It follows from Corollary 2.4 that 0 ∈ T (x)+u+NC(x), which implies that −T (x) ∈
NC(x). The conclusion is now immediate from Fact 2.9.

Remark 2.11. It is quite easy to see that the reverse of Proposition 2.10 is not true in
general.

The next result will be used to prove that all accumulation points of the sequences
generated by the proposed algorithms belong to the solution set of problem (1.1).

Fact 2.12. (See [10, Lemma 3]) If T : dom(T ) ⊆ Rn → Rn is continuous, then Sdual ⊆ S∗.

Lemma 2.13. For any (z, v) ∈ Gph(NC) define H(z, v) :=
{
y ∈ Rn : ⟨T (z)+v, y−z⟩ ≤ 0

}
.

Then, S∗ = Sdual ⊆ H(z, v).

Proof. S∗ = Sdual by Assumption (A2) and Fact 2.12. Take x∗ ∈ Sdual, then ⟨T (z), x∗−z⟩ ≤
0 for all z ∈ C. Since (z, v) ∈ Gph(NC), we have ⟨v, x∗ − z⟩ ≤ 0. Summing up these
inequalities, we get ⟨T (z) + v, x∗ − z⟩ ≤ 0. Then, x∗ ∈ H(z, v).

In view of Lemma 2.13, Assumptions (A1) and (A2) imply that Sdual = S∗. Hence, the
next result is immediate.

Lemma 2.14. If T : dom(T ) ⊆ Rn → Rn is continuous and Assumption (A2) holds, then
S∗ is a closed and convex set.

2.1 Extragradient Algorithm with Normal Vectors

We now show that it is possible to incorporate normal vectors of the feasible sets into the
extragradient algorithm. As we will see below, this approach generalizes Algorithm 1.1
with Strategy (a). To proceed, we assume that T is Lipschitz with constant L and (A2)
holds.
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Algorithm 2.15 (Extragradient Algorithm with Normal Vectors). Take (βk)k∈N ⊂ [β̌, β̂]

such that 0 < β̌ ≤ β̂ < 1/(L+ 1) and δ ∈ (0, 1).

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test): If xk = PC(x
k − βkT (x

k)), then stop. Otherwise:

Step 2 (First Projection): Take uk ∈ NC(x
k) such that

∥uk∥ ≤ δ∥xk − PC(x
k − βk(T (x

k) + uk))∥, (2.4)

zk = PC(x
k − βk(T (x

k) + uk)). (2.5)

Step 3 (Second Projection): Take vk ∈ NC(z
k) such that

∥vk − uk∥ ≤ ∥xk − zk∥. (2.6)

Set
xk+1 = PC(x

k − βk(T (z
k) + vk)). (2.7)

Set k ← k + 1 and go to Step 1.

Proposition 2.16. Algorithm 2.15 is well-defined.

Proof. It is sufficient to prove that if Step 1 is not satisfied, i.e.,

∥xk − PC(x
k − βkT (x

k))∥ > 0. (2.8)

then Steps 2 and 3 are attainable.
Step 2 is attainable: Suppose that (2.4) does not hold for every αuk ∈ NC(x

k) with α > 0,
i.e., ∥αuk∥ > δ∥xk−PC(x

k−βk(T (x
k)+αuk))∥ ≥ 0. Taking limit when α goes to 0, we get

∥xk − PC(x
k − βkT (x

k))∥ = 0, which contradicts (2.8).
Step 3 is attainable: Suppose that (2.6) does not hold for every αvk ∈ NC(z

k) with α > 0,
i.e., ∥αvk−uk∥ > ∥xk−zk∥, where zk = PC(x

k−βk(T (x
k)+uk)) as (2.5) and uk ∈ NC(x

k)
satisfying (2.4). Letting α goes to 0 and using (2.4), we get ∥xk− zk∥ ≤ ∥uk∥ ≤ δ∥xk− zk∥.
So, xk = zk. Then, Proposition 2.10 implies a contradiction to (2.8).

It is immediate from Proposition 2.10 that if the Stopping Test is satisfied for xk, then
xk ∈ S∗. So we investigate the remaining case that the Stopping Test is not satisfied for
all xk. In this case, we will prove that the algorithm generates an infinite sequence (xk)k∈N
that converges to S∗.

Lemma 2.17. Suppose that T is Lipschitz continuous with constant L. Let x∗ ∈ S∗.
Suppose also that Stopping Test is not satisfied for xk. Then Step 4 generates xk+1 and that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1− β2
k(L+ 1)2)∥zk − xk∥2.

Proof. Define wk = xk − βk(T (z
k) + vk) with vk ∈ NC(z

k) taken from Step 3. Then, using
(2.7) and applying Proposition 2.3(i), with x = wk and y = x∗, we get

∥xk+1 − x∗∥2 ≤ ∥wk − x∗∥2 − ∥wk − PC(w
k)∥2

≤ ∥xk − x∗ − βk(T (z
k) + vk)∥2 − ∥xk − xk+1 − βk(T (z

k) + vk)∥2

= ∥xk − x∗∥2 − ∥xk − xk+1∥2 + 2βk⟨T (zk) + vk, x∗ − xk+1⟩. (2.9)
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Since vk ∈ NC(z
k) and (A2), we have

⟨T (zk) + vk, x∗ − xk+1⟩ =⟨T (zk) + vk, zk − xk+1⟩+ ⟨T (zk) + vk, x∗ − zk⟩
≤⟨T (zk) + vk, zk − xk+1⟩+ ⟨T (zk), x∗ − zk⟩
≤⟨T (zk) + vk, zk − xk+1⟩.

Substituting into (2.9) yields

∥xk+1 − x∗∥2 ≤∥xk − x∗∥2 − ∥xk − xk+1∥2 − 2βk⟨T (zk) + vk, xk+1 − zk⟩
=∥xk − x∗∥2 − ∥xk − zk∥2 − ∥zk − xk+1∥2

+2⟨xk − βk(T (z
k) + vk)− zk, xk+1 − zk⟩. (2.10)

Define xk = xk − βk(T (x
k) + uk) with uk ∈ NC(x

k) taken from Step 2 and recall that
zk = PC(x̄

k) and that xk+1 = PC(w
k) = PC(x

k − βk(T (z
k) + vk)), we have

2⟨xk−βk(T (z
k) + vk)− zk, xk+1 − zk⟩

= 2⟨wk − PC(x
k), PC(w

k)− PC(x
k)⟩

= 2⟨xk − PC(x
k), PC(w

k)− PC(x
k)⟩+ 2⟨wk − xk, PC(w

k)− PC(x
k)⟩

≤ 2⟨wk − xk, PC(w
k)− PC(x

k)⟩
= 2⟨wk − xk, xk+1 − zk⟩ = 2βk⟨(T (xk) + uk)− (T (zk) + vk), xk+1 − zk⟩
≤ 2βk

(
∥T (zk)− T (xk)∥+ ∥vk − uk∥

)
∥xk+1 − zk∥

≤ 2βk(L+ 1)∥zk − xk∥∥xk+1 − zk∥ ≤ β2
k(L+ 1)2∥zk − xk∥2 + ∥xk+1 − zk∥2,

(2.11)

using Proposition 2.3(ii), with x = xk−βk(T (x
k)+uk) and z = xk+1, in the first inequality,

the Cauchy-Schwarz inequality in the second one and the Lipschitz continuity of T and (2.6)
in the third one. Finally, the conclusion follows from (2.11) and (2.10).

Corollary 2.18. The sequence (xk)k∈N is Fejér convergent to S∗ and lim
k→∞

∥zk − xk∥ = 0.

Proof. It follows from Lemma 2.17 and βk ≤ β̂ < 1/(L+ 1) that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1− β̂2L2)∥zk − xk∥2 ≤ ∥xk − x∗∥2.

So, (xk)k∈N is Fejér convergent to S∗. Now Fact 2.8(ii) together with the above inequality
imply lim

k→∞
∥zk − xk∥ = 0.

Proposition 2.19. The sequence (xk)k∈N converges to a point in S∗.

Proof. The sequence (xk)k∈N is bounded by Lemma 2.17 and Fact 2.8(i). Let x̃ be an accu-
mulation point of some subsequence (xik)k∈N. By Corollary 2.18, x̃ is also an accumulation
point of (zik)k∈N. Without loss of generality, we suppose that the corresponding parameters
(βik)k∈N and (uik)k∈N converge to β̃ and ũ, respectively. Since zk = PC(x

k−βk(T (x
k)+uk)),

taking the limit along the subsequence (ik)k∈N, we obtain x̃ = PC(x̃− β̃(T (x̃) + ũ)). There-
fore, Fact 2.2 and Proposition 2.10 imply x̃ ∈ S∗. Finally, we apply Fact 2.8(iii).
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3 Conceptual Algorithm with Linesearch B

In this section, we study a conceptual algorithm, in which we use a linesearch along the
boundary of the feasible set to obtain the stepsizes. Indeed, Linesearch B given below
generalizes Strategies (b) by involving normal vectors to feasible sets.

Linesearch B. (Linesearch on the boundary)

Input: (x, u, σ, δ,M). Where x ∈ C, u ∈ NC(x), σ > 0, δ ∈ (0, 1), and M > 0.
Set α = σ and θ ∈ (0, 1) and choose u ∈ NC(x). Denote zα = PC(x − α(T (x) + αu)) and
choose vα ∈ NC(zα) with ∥vα∥ ≤M .

While α∥T (zα)− T (x) + αvα − αu∥ > δ∥zα − x∥ do
α← θα and choose any vα ∈ NC(zα) with ∥vα∥ ≤M .

End While

Output: (α, zα, vα).

We now show that Linesearch B is well-defined assuming only (A1), i.e., continuity of T .

Lemma 3.1. If x ∈ C and x /∈ S∗, then Linesearch B stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch B does not stop for all α ∈ P :=
{σ, σθ, σθ2, . . .} and the chosen vectors

vα ∈ NC(zα), ∥vα∥ ≤M, zα = PC(x− α(T (x) + αu)). (3.1)

We have

α∥T (zα)− T (x) + αvα − αu∥ > δ∥zα − x∥. (3.2)

Next, divide both sides of (3.2) by α > 0 and let α goes to 0. Due to the boundedness of
(vα)α∈P and the continuity of T , we obtain

0 = lim inf
α→0

∥T (zα)− T (x) + αvα − αu∥ ≥ lim inf
α→0

∥x− zα∥
α

≥ 0.

Using zα in (3.1), we have

lim inf
α→0

∥x− PC(x− α(T (x) + αu))∥
α

= 0. (3.3)

On the other hand, Corollary 2.4 implies

x− PC(x− α(T (x) + αu))

α
∈ T (x) + αu+NC(PC(x− α(T (x) + αu))). (3.4)

From (3.3), the continuity of the projection and the closedness of Gph(NC) imply 0 ∈
T (x) +NC(x), which is a contradiction since x /∈ S∗.

Next, we present the conceptual algorithm, which is related to Algorithm 1.1 with
Strategy (b) when nonzero normal vectors are used. Here, we assume that (A1) and (A2)
hold.
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Conceptual Algorithm B. Given σ > 0, δ ∈ (0, 1), and M > 0.

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test): If xk = PC(x
k − T (xk)), then stop. Otherwise,

Step 2 (Linesearch B): Take uk ∈ NC(x
k) with ∥uk∥ ≤M and set

(αk, z
k, vk) = Linesearch B (xk, uk, σ, δ,M),

i.e., (αk, z
k, vk) satisfies

vk ∈ NC(z
k) with ∥vk∥ ≤M, αk ≤ σ, (3.5a)

zk = PC(x
k − αk(T (x

k) + αku
k)), (3.5b)

αk∥T (zk)− T (xk) + αk(v
k − uk)∥ ≤ δ∥zk − xk∥. (3.5c)

Step 3 (Projection): Set vk := αkv
k and xk+1 := FB(x

k).

Step 4: Set k ← k + 1 and go to Step 1.

We consider three variants of FB in Step 3:

FB.1(x
k) =PC

(
PH(zk,vk)(x

k)
)
, (Variant B.1) (3.6)

FB.2(x
k) =PC∩H(zk,vk)(x

k), (Variant B.2) (3.7)

FB.3(x
k) =PC∩H(zk,vk)∩W (xk)(x

0), (Variant B.3) (3.8)

where

H(zk, vk) :=
{
y ∈ Rn : ⟨T (zk) + vk, y − zk⟩ ≤ 0

}
, (3.9a)

and W (xk) :=
{
y ∈ Rn : ⟨y − xk, x0 − xk⟩ ≤ 0

}
. (3.9b)

These halfspaces have been widely used in the literature, see, e.g., [5,9,37] and the references
therein. Our goal is to analyze the convergence of these variants. First, we start by showing
that the algorithm is well-defined.

Proposition 3.2. Assume that FB(x
k) is well-defined whenever xk is available. Then,

Conceptual Algorithm B is also well-defined.

Proof. If the Stopping Test is not satisfied, then Step 2 is attainable by Lemma 3.1. So the
algorithm is well-defined.

Proposition 3.3. xk ∈ S∗ if and only if xk ∈ H(zk, vk), where zk and vk are obtained in
Steps 2 and 3, respectively.

Proof. If xk ∈ S∗, then xk ∈ H(zk, vk) by Lemma 2.13. Now suppose that xk /∈ S∗. Define
ūk = αku

k ∈ NC(x
k) and wk = xk − αk(T (x

k) + ūk). Then,

αk⟨T (zk) + vk, xk − zk⟩ = αk⟨T (zk)− T (xk) + vk − ūk, xk − zk⟩+ αk⟨T (xk) + ūk, xk − zk⟩
= αk⟨T (zk)− T (xk) + vk − ūk, xk − zk⟩+ ⟨xk − wk, xk − zk⟩
≥ −αk∥T (zk)− T (xk) + vk − ūk∥ · ∥xk − zk∥+ ∥xk − zk∥2

≥ −δ∥xk − zk∥2 + ∥xk − zk∥2 = (1− δ)∥xk − zk∥2 > 0, (3.10)

where we have used Linesearch B and Fact 2.3(iii) in the second inequality. It follows that
xk /∈ H(zk, vk) by the definition of H(zk, vk).
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Let (xk)k∈N, (z
k)k∈N and (αk)k∈N be sequences generated by Conceptual Algorithm

B and suppose that xk /∈ S∗. Using (3.10), we obtain a useful algebraic property

∀k ∈ N : ⟨T (zk) + vk, xk − zk⟩ ≥ (1− δ)

αk
∥xk − zk∥2. (3.11)

Proposition 3.4. If Stopping Test is not satisfied at xk, then Conceptual Algorithm B
generates xk+1 ̸= xk.

Proof. Suppose on the contrary that xk+1 = xk. Consider three cases.
If Variant B.1 is used, then xk+1 = PC

(
PH(zk,vk)(x

k)
)
= xk. Then Fact 2.3(ii) implies

⟨PH(zk,vk)(x
k)− xk, z − xk⟩ = ⟨PH(zk,vk)(x

k)− xk+1, z − xk+1⟩ ≤ 0, (3.12)

for all z ∈ C. Using again Fact 2.3(ii),

∀z ∈ H(zk, vk) : ⟨PH(zk,vk)(x
k)− xk, PH(zk,vk)(x

k)− z⟩ ≤ 0. (3.13)

Note that zk ∈ C ∩H(zk, vk) ̸= ∅. So, setting z = zk and summing up (3.12) and (3.13),
we obtain ∥xk − PH(zk,vk)(x

k)∥2 = 0. Hence, xk = PH(zk,vk)(x
k), i.e., xk ∈ H(zk, vk).

If Variant B.2 is used, then xk+1 = PC∩H(zk,vk)(x
k) = xk. So xk ∈ H(zk, vk).

If Variant B.3 is used, then xk+1 = PC∩H(zk,vk)∩W (xk)(x
0) = xk. So xk ∈ H(zk, vk).

Hence, in all cases, we have showed that xk ∈ H(zk, vk), which implies xk ∈ S∗ by
Proposition 3.3. By Fact 2.9, we get xk = PC(x

k −T (xk)), i.e., Stopping Test is satisfied at
xk, a contradiction.

In view of Proposition 3.4, we will only examine the case that Stopping Test is not
satisfied for all xk. In this case, Conceptual Algorithm B generates an infinite sequence
(xk)k∈N such that xk /∈ S∗ for all k ∈ N.

3.1 Convergence Analysis of Variant B.1

We consider the case Variant B.1 is used and the algorithm generates an infinite sequence
(xk)k∈N such that xk /∈ S∗ for all k ∈ N. Note that by Lemma 2.13, H(zk, vk) is nonempty
for all k. Thus, the projection step (3.6) is well-defined, so is the whole algorithm.

Proposition 3.5. The following hold:

(i) The sequence (xk)k∈N is Fejér convergent to S∗.

(ii) The sequence (xk)k∈N is bounded.

(iii) lim
k→∞

⟨T (zk) + vk, xk − zk⟩ = 0.

Proof. (i): Take x∗ ∈ S∗. Note that, by definition (zk, vk) ∈ Gph(NC). Using (3.6),
Fact 2.3(i) and Lemma 2.13, we have

∥xk+1 − x∗∥2 = ∥PC(PH(zk,vk)(x
k))− PC(PH(zk,vk)(x∗))∥2

≤ ∥PH(zk,vk)(x
k)− PH(zk,vk)(x∗)∥2

≤ ∥xk − x∗∥2 − ∥PH(zk,vk)(x
k)− xk∥2 ≤ ∥xk − x∗∥2.

(3.14)

(ii): Follows from (i) and Fact 2.8(i).



342 J.Y. BELLO-CRUZ, R. DÍAZ MILLlÁN AND H. M. PHAN

(iii): Take x∗ ∈ S∗ and notice that PH(zk,vk)(x
k) = xk−

⟨
T (zk) + vk, xk − zk

⟩
∥T (zk) + vk∥2

(
T (zk)+vk

)
.

Then (3.14) yields

∥xk+1 − x∗∥2 ≤∥xk − x∗∥2 −

∥∥∥∥∥xk −
⟨
T (zk) + vk, xk − zk

⟩
∥T (zk) + vk∥2

(
T (zk) + vk

)
− xk

∥∥∥∥∥
2

= ∥xk − x∗∥2 −
(⟨T (zk) + vk, xk − zk⟩)2

∥T (zk) + vk∥2
.

It follows that
⟨T (zk) + vk, xk − zk⟩2

∥T (zk) + vk∥2
≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2. (3.15)

Since T and the projection are continuous and (xk)k∈N is bounded, (zk)k∈N is bounded. The
boundedness of

(
∥T (zk)+vk∥

)
k∈N follows from (3.5). Using Fact 2.8(ii), the right hand side

of (3.15) goes to 0, when k goes to ∞. Then, the result follows.

Next we establish the main convergence result for Variant B.1.

Theorem 3.6. The sequence (xk)k∈N converges to a point in S∗.

Proof. By Fact 2.8(iii), we show that there exists an accumulation point of (xk)k∈N belonging
to S∗. First, (xk)k∈N is bounded due to Proposition 3.5(ii). Let (xik)k∈N be a convergent
subsequence such that (uik)k∈N, (v

ik)k∈N, and (αik)k∈N also converge. Set lim
k→∞

xik = x̃,

lim
k→∞

uik = ũ, lim
k→∞

vik = ṽ and lim
k→∞

αik = α̃. Using Proposition 3.5(iii), (3.11), and taking

the limit as k →∞, we have

0 = lim
k→∞

⟨T (zik) + vik , xik − zik⟩ ≥ (1− δ)

α̃
lim
k→∞

∥zik − xik∥2 ≥ 0.

This implies

lim
k→∞

∥xik − zik∥ = 0. (3.16)

Now we consider two cases:

Case 1: lim
k→∞

αik = α̃ > 0. From (3.5), the continuity of T and the projection, and (3.16),

we have x̃ = lim
k→∞

xik = lim
k→∞

zik = PC

(
x̃ − α̃(T (x̃) + α̃ũ)

)
. So x̃ ∈ S∗ due to Proposition

2.10.

Case 2: lim
k→∞

αik = α̃ = 0. Define α̃k := αk

θ , then lim
k→∞

α̃ik = 0. So we can assume α̃ik does

not satisfy Armijo-type condition in Linesearch B, i.e.,

∥T
(
z̃ik

)
− T (xik) + α̃ik ṽ

ik − α̃iku
ik∥ > δ∥z̃ik − xik∥

α̃ik

, (3.17)

where ṽik ∈ NC(z̃
ik) and z̃ik = PC(x

ik − α̃ik(T (x
ik)+ α̃iku

ik)). The left hand side of (3.17)
goes to 0 by the continuity of T and PC . So,

lim
k→∞

∥z̃ik − xik∥
α̃ik

= 0. (3.18)
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By Corollary 2.4, with x = xik , α = α̃ik and p = T (xik) + α̃iku
ik , we have

xik − z̃ik

α̃ik

∈ T (xik) + α̃iku
ik +NC(z̃

ik).

Taking the limits as k → ∞ and using (3.18), the continuity of T and the closedness of
Gph(NC), we obtain 0 ∈ T (x̃) +NC(x̃), thus, x̃ ∈ S∗.

3.2 Convergence Analysis of Variant B.2

We consider the case Variant B.2 is used and the algorithm generates an infinite sequence
(xk)k∈N such that xk /∈ S∗ for all k ∈ N.

Proposition 3.7. The sequence (xk)k∈N is Féjer convergent to S∗. Moreover, it is bounded
and lim

k→∞
∥xk+1 − xk∥ = 0.

Proof. Take x∗ ∈ S∗. By Lemma 2.13, x∗ ∈ H(zk, vk), for all k ∈ N. Moreover x∗ ∈ C
implies that the projection step (3.7) is well-defined. Next, using Fact 2.3(i) for two points
xk, x∗ and the set C ∩H(zk, vk), we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2. (3.19)

So, (xk)k∈N is Féjer convergent to S∗. Hence, (xk)k∈N is bounded by Fact 2.8(i). Taking
the limit in (3.19) and using Fact 2.8(ii), we obtain the conclusion.

The next proposition shows a connection between the projection steps in Variant B.1
and Variant B.2. This fact has a geometry interpretation: in Variant B.2, xk is projected
onto a smaller set, thus, it may improve the convergence.

Proposition 3.8. The following hold

(i) xk+1 = PC∩H(zk,vk)(PH(zk,vk)(x
k)).

(ii) lim
k→∞

⟨T (zk) + vk, xk − zk⟩ = 0.

Proof. (i): Since xk ∈ C but xk /∈ H(zk, vk) and C∩Hk ̸= ∅, the result follows from Lemma
2.5.

(ii): Take x∗ ∈ S∗. Notice that xk+1 = PC∩H(zk,vk)(x
k) and that projections onto convex

sets are firmly-nonexpansive (see Fact 2.3(i)), we have

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − ∥xk+1 − xk∥2 ≤ ∥xk − x∗∥2 − ∥PH(zk,vk)(x
k)− xk∥2.

The remainder of the proof is analogous to Proposition 3.5(iii).

Finally we present the convergence result for Variant B.2.

Proposition 3.9. The sequence (xk)k∈N converges to a point in S∗.

Proof. Similar to the proof of Theorem 3.6.
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3.3 Convergence Analysis of Variant B.3

We consider the case Variant B.3 is used and the algorithm generates an infinite sequence
(xk)k∈N such that xk /∈ S∗ for all k ∈ N. Observe that C ∩ H(zk, vk) ∩W (xk) is a closed
convex set. So, the algorithm is well-defined if this set C∩H(zk, vk)∩W (xk). The following
lemma guarantees its non-emptiness.

Lemma 3.10. For all k ∈ N, we have S∗ ⊆ C ∩H(zk, vk) ∩W (xk).

Proof. We proceed by induction. By definition, ∅ ̸= S∗ ⊆ C. By Lemma 2.13, S∗ ⊆
H(zk, vk) for all k. Since W (x0) = Rn, we have S∗ ⊆ H(z0, v0)∩W (x0). Assume that S∗ ⊆
H(zk, vk) ∩W (xk). Then, xk+1 = PC∩H(zk,vk)∩W (xk)(x

0) is well-defined. By Fact 2.3(ii),

we obtain ⟨x∗ − xk+1 , x0 − xk+1⟩ ≤ 0 for all x∗ ∈ S∗. This implies x∗ ∈ W (xk+1). Hence,
S∗ ⊆ H(zk+1, vk+1) ∩W (xk+1). Then, the conclusion follows by induction principle.

Before proving the convergence of the sequence (xk)k∈N, we study its boundedness. The
next lemma shows that the sequence remains in a ball determined by the initial point.

Lemma 3.11. Let x = PS∗(x
0) and ρ = dist(x0, S∗). Then (xk)k∈N ⊂ B

[
1
2 (x

0 + x), 1
2ρ

]
∩

C, in particular, (xk)k∈N is bounded.

Proof. By Lemma 3.10, we have S∗ ⊆ H(zk, vk) ∩W (xk) for all k. Using Lemma 2.6, with
S = S∗ and x = xk, we obtain xk ∈ B

[
1
2 (x

0 + x), 1
2ρ

]
for all k ∈ N. Finally, notice that

(xk)k∈N ⊂ C.

Now, we focus on the properties of the accumulation points.

Proposition 3.12. All accumulation points of (xk)k∈N belong to S∗.

Proof. Since W (xk) is a halfspace with normal x0 − xk, we have xk = PW (xk)(x
0). So by

the firm non-expansiveness of PW (xk) (see Fact 2.3(i)) and xk+1 ∈W (xk), we have

∥xk+1 − xk∥2 ≤ ∥xk+1 − x0∥2 − ∥xk − x0∥2.

Thus, (∥xk − x0∥)k∈N is monotone and nondecreasing. Moreover, by Lemma 3.11, (∥xk −
x0∥)k∈N is bounded, thus, converges. It follows that

lim
k→∞

∥xk+1 − xk∥ = 0. (3.20)

Since xk+1 ∈ H(zk, vk), we get ⟨T (zk) + vk, xk+1 − zk⟩ ≤ 0, where zk and vk are obtained
in Steps 2 and 3, respectively. Combining with (3.11), we obtain

0 ≥ ⟨T (zk) + vk, xk+1 − xk⟩+
⟨
T (zk) + vk, xk − zk

⟩
≥ −∥T (zk) + vk∥ · ∥xk+1 − xk∥+ 1− δ

αk
∥xk − zk∥2.

Using (3.5) and some simple algebra,

∥xk − zk∥2 ≤ σ

1− δ
∥T (zk) + vk∥ · ∥xk+1 − xk∥. (3.21)

By the boundedness of (vk)k∈N and (xk)k∈N, we can choose a subsequence (ik)k∈N such that
(αik)k∈N, (x

ik)k∈N, and (vik)k∈N converge to α̃, x̃, and ṽ, respectively. Taking the limits in
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(3.21) and using (3.20), we get lim
k→∞

∥xik − zik∥2 = 0. Consequently, x̃ = lim
k→∞

zik . Now we

consider two cases:
Case 1: lim

k→∞
αik = α̃ > 0. By (3.5) and the continuity of the projection, x̃ = lim

k→∞
zik =

PC

(
x̃− α̃(T (x̃) + α̃ũ)

)
and hence by Proposition 2.10, x̃ ∈ S∗.

Case 2: lim
k→∞

αik = α̃ = 0. This case is similar to the proof of Theorem 3.6.

Finally, we prove that (xk)k∈N converges to the solution closest to x0.

Theorem 3.13. The sequence (xk)k∈N converges to x = PS∗(x
0).

Proof. First, x̄ is well-defined due to Lemma 2.14. It follows from Lemma 3.11 that
(xk)k∈N ⊂ B

[
1
2 (x

0 + x), 1
2ρ

]
∩ C where ρ = dist(x0, S∗), so it is bounded. Let (xik)k∈N

be a subsequence of (xk)k∈N that converges to x̂. Then, x̂ ∈ B
[
1
2 (x

0 + x), 1
2ρ

]
∩ C. Fur-

thermore, x̂ ∈ S∗ due to Proposition 3.12. So, x̂ ∈ S∗ ∩B
[
1
2 (x

0 + x), 1
2ρ

]
= {x}. Thus, x is

the unique accumulation point of (xk)k∈N. Hence, (xk)k∈N converges to x ∈ S∗.

4 Conceptual Algorithm with Linesearch F

As mentioned before, the disadvantage of Linesearch B is the necessity to compute the
projection onto the feasible set within the inner loop to find the stepsize α. To overcome this,
we propose the second conceptual algorithm that uses a linesearch along feasible directions.

We further note that in Linesearch F below, if we set u = 0 ∈ NC(x), then the
projection step is done outside the While loop.

Linesearch F. (Linesearch along the feasible direction)

Input: (x, u, β, δ,M). Where x ∈ C, u ∈ NC(x), β > 0, δ ∈ (0, 1), and M > 0.
Set α ← 1 and θ ∈ (0, 1). Define zα = PC(x − β(T (x) + αu)) and choose u ∈ NC(x),
v1 ∈ NC(z1) with ∥v1∥ ≤M .

While ⟨T
(
αzα + (1− α)x

)
+ vα, x− zα⟩ < δ⟨T (x) + αu, x− zα⟩ do

α← θα and choose any vα ∈ NC(αzα + (1− α)x) with ∥vα∥ ≤M .

End While

Output: (α, zα, vα).

Again, Linesearch F is also well-defined assuming only (A1), i.e., continuity of T .

Lemma 4.1. If x ∈ C and x /∈ S∗, then Linesearch F stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch F does not stop for all α ∈ P := {1, θ, θ2, . . .}
and that

vα ∈ NC

(
αzα + (1− α)x

)
, ∥vα∥ ≤M, zα = PC

(
x− β(T (x) + αu)

)
. (4.1)

We have

⟨T (αzα + (1− α)x) + vα, x− zα⟩ < δ⟨T (x) + αu, x− zα⟩. (4.2)

By (4.1), the sequence (vα)α∈P is bounded. Thus, without loss of generality, we can assume
that it converges to some v0 ∈ NC(x) (by Fact 2.2). The continuity of the projection operator
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and the formula of zα in (4.1) imply that (zα)α∈P converges to z0 = PC(x−βT (x)). Taking
the limit in (4.2) as α→ 0, we get ⟨T (x) + v0, x− z0⟩ ≤ δ⟨T (x), x− z0⟩. It follows that

0 ≥ (1− δ)⟨T (x), x− z0⟩+ ⟨v0, x− z0⟩ ≥ (1− δ)⟨T (x), x− z0⟩ ≥
(1− δ)

β
∥x− z0∥2.

So, x = z0 = PC(x− βT (x)), i.e., x ∈ S∗, a contradiction.

Next, we present the conceptual algorithm, which is related to Algorithm 1.1 with
Strategy (c) when nonzero normal vectors are used. Here, we assume that (A1) and (A2)
hold.

Conceptual Algorithm F. Given (βk)k∈N ⊂ [β̌, β̂] 0 < β̌ ≤ β̂ < +∞, δ ∈ (0, 1), and
M > 0.

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test): If xk = PC(x
k − T (xk)), then stop. Otherwise,

Step 2 (Linesearch F): Take uk ∈ NC(x
k) with ∥uk∥ ≤M and set

(αk, z
k, vk) = Linesearch F (xk, uk, βk, δ,M), (4.3)

i.e., (αk, z
k, v̄k) satisfies

v̄k ∈ NC(αkz
k + (1− αk)x

k) with ∥v̄k∥ ≤M, αk ≤ 1, (4.4a)

zk = PC(x
k − βk(T (x

k) + αku
k)), (4.4b)

⟨T (αkz
k + (1− αk)x

k) + v̄k, xk − zk⟩ ≥ δ⟨T (xk) + αku
k, xk − zk⟩. (4.4c)

Step 3 (Projection): Set xk := αkz
k + (1− αk)x

k and xk+1 := FF (x
k).

Step 4: Set k ← k + 1 and go to Step 1.

We also consider three variants of FF in Step 3:

FF.1(x
k) =PC

(
PH(xk,vk)(x

k)
)
, (Variant F.1) (4.5)

FF.2(x
k) =PC∩H(xk,vk)(x

k), (Variant F.2) (4.6)

FF.3(x
k) =PC∩H(xk,vk)∩W (xk)(x

0), (Variant F.3) (4.7)

where, similar to (3.9),

H(xk, vk) :=
{
y ∈ Rn : ⟨T (xk) + vk, y − xk⟩ ≤ 0

}
, (4.8a)

and W (xk) :=
{
y ∈ Rn : ⟨y − xk, x0 − xk⟩ ≤ 0

}
. (4.8b)

Now, we analyze some general properties of Conceptual Algorithm F.

Proposition 4.2. Assuming that FF (x
k) is well-defined whenever xk is available. Then,

Conceptual Algorithm F is well-defined.

Proof. If Step 1 is not satisfied, then Step 2 is guaranteed by Lemma 4.1. Thus, the entire
algorithm is well-defined.

Proposition 4.3. xk ∈ S∗ if and only if xk ∈ H(xk, vk) where vk and xk are given in
Steps 2 and 3, respectively,
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Proof. If xk ∈ S∗, then xk ∈ H(xk, vk) by Lemma 2.13. Conversely, suppose xk ∈ H(xk, vk),
⟨T (xk) + vk, xk − xk⟩ ≤ 0. Using the definitions of αk and xk in Steps 2 and 3, we have

0 ≥ ⟨T (xk) + vk, xk − xk⟩ = αk⟨T (xk) + vk, xk − zk⟩ ≥ αkδ
⟨
T (xk) + αku

k, xk − zk
⟩
.

From the definition of zk in Step 2, we derive

αkδ
⟨
T (xk) + αku

k, xk − zk
⟩
≥ αkδ

β̂k

∥xk − zk∥2 ≥ αkδ

β̂
∥xk − zk∥2.

It follows that 0 ≥ ∥xk − zk∥2, i.e., xk = zk. Now from Proposition 2.10, we conclude
xk ∈ S∗.

Let (xk)k∈N and (αk)k∈N be sequences generated by Conceptual Algorithm F and
suppose that xk /∈ S∗. From the proof of Proposition 4.3, we obtain a useful algebraic
property

∀k ∈ N : ⟨T (xk) + vk, xk − xk⟩ ≥ αkδ

β̂
∥xk − zk∥2. (4.9)

Proposition 4.4. If Stopping Test is not satisfied at xk, then Conceptual Algorithm F
generates xk+1 ̸= xk.

Proof. Suppose on the contrary that xk+1 = xk. Consider three cases.
If Variant F.1 is used, then xk+1 = PC

(
PH(xk,vk)(x

k)
)
= xk. So Fact 2.3(ii) implies

∀z ∈ C : ⟨PH(xk,vk)(x
k)− xk, z − xk⟩ ≤ 0. (4.10)

Again, using Fact 2.3(ii),

∀z ∈ H(xk, vk) : ⟨PH(xk,vk)(x
k)− xk, PH(xk,vk)(x

k)− z⟩ ≤ 0. (4.11)

Note that ∅ ̸= S∗ ⊆ C∩H(xk, vk) by Proposition 4.3. So, taking any z ∈ C∩H(xk, vk), then
adding up (4.10) and (4.11), we derive ∥xk−PH(xk,vk)(x

k)∥2 = 0. Hence, xk = PH(xk,vk)(x
k),

i.e., xk ∈ H(xk, vk).
If Variant F.2 is used, then xk+1 = PC∩H(xk,vk)(x

k) = xk. So xk ∈ H(xk, vk).

If Variant F.3 is used, then xk+1 = PC∩H(xk,vk)∩W (xk)(x
0) = xk. So xk ∈ H(xk, vk).

Hence, in all cases, we have showed that xk ∈ H(xk, vk), which means xk ∈ S∗ by
Proposition 4.3. By Fact 2.9, we get xk = PC(x

k −T (xk)), i.e., Stopping Test is satisfied at
xk, a contradiction.

In view of Proposition 4.4, we will again examine only the case that Stopping Test is not
satisfied for all xk. In this case, Conceptual Algorithm F generates an infinite sequence
(xk)k∈N such that xk /∈ S∗ for all k ∈ N.

4.1 Convergence Analysis of Variant F.1

We consider the case Variant F.1 is used and the algorithm generates an infinite sequence
(xk)k∈N such that xk ̸∈ S∗ for all k ∈ N. Note that by Lemma 2.13, H(xk, vk) is nonempty
for all k. Then, the projection step (4.5) is well-defined and so is the entire algorithm.

Proposition 4.5. The following hold:
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(i) The sequence (xk)k∈N is Fejér convergent to S∗.

(ii) The sequence (xk)k∈N is bounded.

(iii) lim
k→∞

⟨T (xk) + vk, xk − xk⟩ = 0.

Proof. (i): Take x∗ ∈ S∗. Note that, by definition (xk, vk) ∈ Gph(NC). Using (4.5),
Fact 2.3(i) and Lemma 2.13, we have

∥xk+1 − x∗∥2 = ∥PC(PH(xk,vk)(x
k))− PC(PH(xk,vk)(x∗))∥2

≤ ∥PH(xk,vk)(x
k)− PH(xk,vk)(x∗)∥2 (4.12)

≤ ∥xk − x∗∥2 − ∥PH(xk,vk)(x
k)− xk∥2 ≤ ∥xk − x∗∥2. (4.13)

(ii): Follows immediately from ((i)) and Fact 2.8(i).

(iii): Take x∗ ∈ S∗. Using PH(xk,vk)(x
k) = xk −

⟨
T (xk) + vk, xk − xk

⟩
∥T (xk) + vk∥2

(
T (xk) + vk

)
,

(4.12), and the definition of xk in Step 3, we derive

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −

∥∥∥∥∥xk −
⟨
T (xk) + vk, xk − xk

⟩
∥T (xk) + vk∥2

(
T (xk) + vk

)
− xk

∥∥∥∥∥
2

= ∥xk − x∗∥2 −
⟨T (xk) + vk, xk − xk⟩2

∥T (xk) + vk∥2
.

It follows that
⟨T (xk) + vk, xk − xk⟩2

∥T (xk) + vk∥2
≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 → 0. By Fact 2.8(ii),

the right hand side goes to zero as k →∞. Since T is continuous and (xk)k∈N, (z
k)k∈N and

(xk)k∈N are bounded,
(
∥T (xk) + vk∥

)
k∈N is also bounded. So the conclusion follows.

Next, we establish our main convergence result for Variant F.1.

Theorem 4.6. The sequence (xk)k∈N converges to a point in S∗.

Proof. By Fact 2.8(iii), we show that there exists an accumulation point of (xk)k∈N belonging
to S∗. First, (xk)k∈N is bounded due to Proposition 4.5(ii). Let (xik)k∈N be a convergent
subsequence of (xk)k∈N such that, (xik), (vik), (uik), (αik)k∈N, and (βik)k∈N also converge.
Set lim

k→∞
xik = x̃, lim

k→∞
uik = ũ, lim

k→∞
αik = α̃, and lim

k→∞
βik = β̃. Using Proposition 4.5(iii),

(4.9), and taking the limit as k → ∞, we derive 0 = lim
k→∞

⟨T (xik) + ūik , xik − xik⟩ ≥

lim
k→∞

αik

β̂
δ∥xik − zik∥2 ≥ 0. Therefore,

lim
k→∞

αik∥xik − zik∥ = 0. (4.14)

Now we consider two cases.
Case 1: lim

k→∞
αik = α̃ > 0. From (4.14), the continuity of T and the projection, we obtain

x̃ = lim
k→∞

xik = lim
k→∞

zik = PC

(
x̃− β̃(T (x̃) + α̃ũ)

)
. So, x̃ ∈ S∗ by Proposition 2.10.

Case 2: lim
k→∞

αik = α̃ = 0. Define α̃ik =
αik

θ . Then, lim
k→∞

α̃ik = 0. So we can assume α̃ik

does not satisfy Armijo-type condition in Linesearch F, i.e.,⟨
T (ỹik) + ṽik , xik − z̃ik

⟩
< δ⟨T (xik) + α̃iku

ik , xik − z̃ik⟩, (4.15)
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where ỹik := α̃ik z̃
ik +(1− α̃ik)x

ik , z̃ik = PC(x
ik −βik(T (x

ik)+ α̃iku
ik)), and ṽik ∈ NC(ỹ

ik)
with ∥ṽik∥ ≤M . Hence, ỹik → x̃. Next, taking a subsequence without relabeling, we assume
that lim

k→∞
ṽik = ṽ. So ṽ ∈ NC(x̃) by Fact 2.2. Moreover, lim

k→∞
z̃ik = z̃ = PC

(
x̃− β̃T (x̃)

)
by

the continuity of T and PC . Thus, passing to the limit in (4.15), we get ⟨T (x̃) + ṽ, x̃− z̃⟩ ≤
δ⟨T (x̃), x̃− z̃⟩. It follows that

0 ≥ ⟨T (x̃) + ṽ, x̃− z̃⟩ − δ⟨T (x̃), x̃− z̃⟩
= (1− δ)

⟨
T (x̃), x̃− z̃

⟩
+
⟨
ṽ, x̃− z̃

⟩
≥ (1− δ)

⟨
T (x̃), x̃− z̃

⟩
=

(1− δ)

β̃

⟨
x̃− (x̃− β̃T (x̃)), x̃− z̃⟩ ≥ (1− δ)

β̃
∥x̃− z̃∥2 ≥ (1− δ)

β̂
∥x̃− z̃∥2 ≥ 0.

This means x̃ = z̃, which implies x̃ ∈ S∗.

4.2 Convergence Analysis of Variant F.2

We consider the case Variant F.2 is used and the algorithm generates an infinite sequence
(xk)k∈N such that xk ̸∈ S∗ for all k ∈ N.

Proposition 4.7. The sequence (xk)k∈N is Féjer convergent to S∗. Moreover, it is bounded
and lim

k→∞
∥xk+1 − xk∥ = 0.

Proof. Take x∗ ∈ S∗ ⊆ C. By Lemma 2.13, x∗ ∈ H(xk, vk) for all k. So, the projection
step (4.6) is well-defined. Then, using Fact 2.3(i) for the projection operator PH(xk,vk), we
obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2 ≤ ∥xk − x∗∥2. (4.16)

So (xk)k∈N is Féjer convergent to S∗. Thus, by Fact 2.8(i)&(ii), (xk)k∈N is bounded and
thus (∥xk − x∗∥)k∈N is a convergent sequence. By passing to the limit in (4.16) and using
Fact 2.8(ii), we get lim

k→∞
∥xk+1 − xk∥ = 0.

Again, in Variant F.2, xk is projected onto a smaller set than in Variant F.1, so,
Variant F.2 may improve the convergence.

Proposition 4.8. Let (xk)k∈N be the sequence generated by Variant F.2. Then,

(i) xk+1 = PC∩H(xk,vk)(PH(xk,vk)(x
k)).

(ii) lim
k→∞

⟨T (xk) + vk, xk − xk⟩ = 0.

Proof. (i): Since xk ∈ C but xk /∈ H(xk, vk) and C ∩Hk ̸= ∅, by Lemma 2.5, we have the
result.

(ii): Take x∗ ∈ S∗. Notice that xk+1 = PC∩H(zk,vk)(x
k) and that projections onto convex

sets are firmly-nonexpansive (see Fact 2.3(i)), we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2 ≤ ∥xk − x∗∥2 − ∥PH(xk,vk)(x
k)− xk∥2.

The rest of the proof is analogous to Proposition 4.5(iii).

Proposition 4.9. The sequence (xk)k∈N converges to a point in S∗.

Proof. Similar to the proof of Theorem 4.6.
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4.3 Convergence Analysis of Variant F.3

It is easy to check that C ∩ H(xk, vk) ∩ W (xk) is a closed convex set for each k. So,
if C ∩ H(xk, vk) ∩ W (xk) is nonempty, then the next iterate xk+1 is well-defined. The
following lemma, whose proof is similar to Lemma 3.10, guarantees the non-emptiness.

Lemma 4.10. For all k ∈ N, we have S∗ ⊂ C ∩H(xk, vk) ∩W (xk).

Proof. We proceed by induction. By definition, ∅ ̸= S∗ ⊆ C. By Lemma 2.13, S∗ ⊆
H(xk, vk), for all k. Since W (x0) = Rn, we have S∗ ⊆ H(x0, v0) ∩W (x0). Assume that
S∗ ⊆ H(xk, vk) ∩ W (xk). So xk+1 = PC∩H(xk,vk)∩W (xk)(x

0) is well-defined. Then, by

Fact 2.3(ii), we have ⟨x∗−xk+1, x0−xk+1⟩ ≤ 0 for all x∗ ∈ S∗. This implies x∗ ∈W (xk+1),
and hence, S∗ ⊆ H(xk+1, vk+1) ∩ W (xk+1). Thus, the conclusion follows by induction
principle.

The next lemma shows that the sequence (xk)k∈N remains in a ball determined by the
initial point.

Lemma 4.11. Let x = PS∗(x
0) and ρ = dist(x0, S∗). Then (xk)k∈N ⊂ B

[
1
2 (x

0 + x), 1
2ρ

]
∩

C, in particular, (xk)k∈N is bounded.

Proof. It follows from Lemma 4.10 that S∗ ⊆ H(xk, vk) ∩ W (xk), for all k ∈ N. The
remaining argument is similar to the proof of Lemma 3.11.

Theorem 4.12. All accumulation points of (xk)k∈N belong to S∗.

Proof. Since W (xk) is a halfspace with normal x0 − xk, we have xk = PW (xk)(x
0). So,

by the firm nonexpansiveness of PW (xk) and xk+1 ∈ W (xk), we have ∥xk+1 − xk∥2 ≤
∥xk+1−x0∥2−∥xk−x0∥2. Thus, (∥xk−x0∥)k∈N is monotone and nondecreasing. Moreover,
by Lemma 4.11, (∥xk − x0∥)k∈N is bounded, thus, converges. It follows that

lim
k→∞

∥xk+1 − xk∥ = 0. (4.17)

Since xk+1 ∈ H(xk, vk), we get 0 ≥ ⟨T (xk) + vk, xk+1 − xk⟩, where vk and xk are obtained
in Steps 2 and 3, respectively. By the formulas of xk in Step 3 and (4.4c), we derive

0 ≥ ⟨T (xk) + vk, xk+1 − xk⟩+ αk

⟨
T (xk) + vk, xk − zk

⟩
≥ ⟨T (xk) + vk, xk+1 − xk⟩+ αkδ⟨T (xk) + αku

k, xk − zk⟩.
(4.18)

Next, Fact 2.3(iii) implies ∥xk − zk∥2 ≤ βk⟨T (xk) + αku
k, xk − zk⟩. Thus, combining with

(4.18) yields

αkδ

βk
∥xk − zk∥2 ≤ αkδ⟨T (xk) + αku

k, xk − zk⟩

≤ −⟨T (xk) + vk, xk+1 − xk⟩ ≤ ∥T (xk) + vk∥ · ∥xk+1 − xk∥.
(4.19)

Choosing a subsequence (ik) such that the subsequences (αik)k∈N, (u
ik)k∈N, (βik)k∈N, (x

ik)k∈N
and (vik)k∈N converge to α̃, ũ, β̃, x̃, and ṽ, respectively (this is possible by the boundedness
of these sequences). Using (4.17) and taking the limit in (4.19) along (ik)k∈N, we get

lim
k→∞

αik∥xik − zik∥2 = 0. (4.20)
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Now we consider two cases,
Case 1: lim

k→∞
αik = α̃ > 0. By (4.20), lim

k→∞
∥xik−zik∥2 = 0. By continuity of the projection,

we have x̃ = PC

(
x̃− β̃(T (x̃) + α̃ũ)

)
. So, x̃ ∈ S∗ by Proposition 2.10.

Case 2: lim
k→∞

αik = 0. Similar to the proof of Theorem 4.6, we also obtain x̃ ∈ S∗.

Thus, all accumulation points of (xk)k∈N are in S∗.

Finally, by reasoning analogously to the proof of Theorem 3.13, we derive the convergence
result.

Theorem 4.13. The sequence (xk)k∈N converges to x = PS∗(x
0).

5 An Example

In this section, we apply the proposed algorithms (with and without normal vectors) to an
instance of problem (1.1). We will see that the use of normal vectors to the feasible set
might be beneficial.

Example 5.1. Let B := (b1, b2) ∈ R2 recall that the (clockwise) rotation with angle γ ∈
[−π/2, π/2] around B is given by

Rγ,B : R2 → R2 : x 7→
[

cos γ sin γ

− sin γ cos γ

]
(x−B) +B,

We consider problem (1.1) in R2 with the operator T := R−π
2 ,B
− Id where B := ( 12 , 1), and

the feasible set is given as

C :=
{
(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1, x1 ≤ 0, x2 ≥ 0

}
.

Note that operator T is Lipschitz continuous with constant L = 2, but not monotone.
Now we prove that T satisfies 1, i.e., Sdual = S∗. Let us split our analysis into two parts.
Part 1: (The primal problem has a unique solution). For x := (x1, x2) ∈ R2, consider the
operator

T (x) :=

[
0 −1
1 0

]
(x−B) +B − x =

[
−1 −1
1 −1

]
x+

[
3/2
1/2

]
. (5.1)

We will show that the primal variational inequality problem (1.1), has a unique solution.
Indeed, notice that the solution (if exists); cannot lie in the interior of C (because T (x) ̸= 0
for all x ∈ C); and also cannot lie on the two segment {0} × [0, 1] and [−1, 0] × {0} (by
direct computations). Thus, the solution must lie on the arc Γ := {(x1, x2) ∈ R2 |x2

1 + x2
2 =

1, x1 ≤ 0, x2 ≥ 0}. Using polar coordinates, set x = (cos t, sin t) ∈ Γ, t ∈ (π/2, π). Then,

T (x) =

[
− cos t− sin t+ 3

2
cos t− sin t+ 1

2

]
.

Since x∗ ∈ S∗ , the vectors x∗ and T (x∗) must be parallel. Hence,

− cos t∗ − sin t∗ +
3
2

cos t∗
=

cos t∗ − sin t∗ +
1
2

sin t∗

− sin t∗ cos t∗ − sin2 t∗ +
3
2 sin t∗ = cos2 t∗ − cos t∗ sin t∗ +

1
2 cos t∗
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3
2 sin t∗ −

1
2 cos t∗ = 1

3√
10

sin t∗ − 1√
10

cos t∗ = 2√
10

sin
(
t∗ − arcsin( 1√

10
)
)
= 2√

10
.

Since t ∈ (π/2, π) for all x ∈ C, we have t∗ = π−arcsin( 2√
10
)+arcsin( 1√

10
) ≈ 2.7786. Then,

the unique solution is x∗ = (cos t∗, sin t∗) ≈ (−0.935, 0.355).
Part 2: (The primal solution is also a solution of the dual problem). Now, we will show
that x∗ is a solution to the dual problem and as consequence of the continuity of T and
Fact 2.12 the result follows. If x∗ ∈ Sdual, ⟨T (y), y−x∗⟩ ≥ 0 for all y ∈ C. First, notice that
∥x∗∥ = 1 and

T (x∗) ≈
[
−1 −1
1 −1

] [
−0.935
0.355

]
+

[
3/2
1/2

]
≈

[
2.08
−0.79

]
≈ −2.22x∗.

So, we can write
T (x∗) = γ(−x∗) where 2 < γ ≈ 2.22. (5.3)

On the other hand, from (5.1), we can check that ⟨T (y)−T (x∗), y−x∗⟩ = −∥y−x∗∥2, ∀y ∈
R2. (This is why T is never monotone!). It follows that ⟨T (y), y − x∗⟩ = ⟨T (x∗), y − x∗⟩ −
∥y − x∗∥2. Thus, it suffices to prove

⟨T (x∗), y − x∗⟩ ≥ ∥y − x∗∥2 for all y ∈ C. (5.4)

Take y ∈ C, so ∥y∥ ≤ 1. we define z =
x∗ + y

2
. Then,

⟨z, z − x∗⟩ = 1
2 ⟨y + x∗, z − x∗⟩ = 1

4 ⟨y + x∗, y − x∗⟩ = 1
4 (∥y∥

2 − ∥x∗∥2) ≤ 0, (5.5)

implying that ⟨z − x∗, z − x∗⟩ = ⟨z, z − x∗⟩+ ⟨−x∗, z − x∗⟩ ≤ ⟨−x∗, z − x∗⟩. Combining the
last inequality with the definition of z, we get

0 ≤ ∥y − x∗∥2 = 4∥z − x∗∥2 = 4⟨z − x∗, z − x∗⟩ ≤ 4⟨−x∗, z − x∗⟩
= 2⟨−x∗, y − x∗⟩ < γ⟨−x∗, y − x∗⟩ = ⟨γ(−x∗), y − x∗⟩ = ⟨T (x∗), y − x∗⟩,

where we use (5.3) in the last inequality. This proves (5.4) and thus complete the proof.
Consequently, T satisfies 1 and the unique solution of the problem is x∗ ≈ (−0.935, 0.355).

We now apply the proposed algorithms (with and without normal vectors) to the above
problem. In Figures 1–6 below, we show the first five iterations of sequences (yk)k∈N (gen-
erated without normal vectors) and (xk)k∈N (generated with nonzero normal vectors). The
performance suggests that our approach can be used in a hybrid scheme that takes advantage
of normal vectors in early iterations.

6 Conclusion

In this paper, we have proposed two conceptual conditional extragradient algorithms that
generalize classical extragradient algorithms for solving constrained variational inequality
problems (VIP). The main idea is to use nonzero normal vectors to the feasible set to
improve the convergence. This approach uses two different linesearches extending several
known projection algorithms for VIP. These linesearches allow us to find suitable halfspaces
containing the solution set of the problem by using nonzero normal vectors of the feasible
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set. It is well-known in the literature that such procedures are very effective in the absence
of Lipschitz continuity exploiting most of the information available at each iteration to pro-
duce possibly long steplengths. Convergence results are also established assuming existence
of solutions, continuity and a weaker condition than pseudomonotonicity on the operator
enlarging the class of VIP that we can solve. This is a humble attempt in targeting more
efficient variants which may permit to find the optimal choice of normals on the feasible set.
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Several of the ideas of this paper merit further investigation, some of which would be
presented in future work. In particular, we are working on variants of the projection al-
gorithms proposed in [6] for solving nonsmooth variational inequalities. The difficulties of
extending this previous result to point-to-set operators are non-trivial, the main obstacle lies
in the impossibility to use linesearches or separating techniques. To the best of our knowl-
edge, variants of the linesearches for variational inequalities require smoothness of T : even
for nonsmooth convex optimization problems (T = ∂f), it is not possible make linesearch
because the negative subgradients are not always descent directions. Actually, a few explicit
methods have been proposed in the literature for solving nonsmooth monotone variational
inequality problems (see, e.g., [14, 23]). Moreover, future work will address further investi-
gation on the modified Forward-Backward splitting iteration for inclusion problems [4,5,39],
exploiting the additive structure of the main operator and adding dynamic choices of the
stepsizes with conditional and deflecting techniques [16,33].
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