
2019



296 X.-J. LONG, Z.-Y. PENG AND XIANFU WANG

results can be found in [13,22]. Recently, there has been an increasing interest in the study of
stable Farkas lemmas and stable duality for optimization problems. Jeyakumar and Lee [25]
obtained some characterizations of stable Farkas lemmas and the stable Lagrange duality for
cone convex optimization problems with the objective being lower semicontinuous functions
and the constraint being continuous functions. Fang et al. [16] provided necessary and suf-
ficient conditions of stable Farkas lemmas and the stable Lagrange duality for semi-infinite
convex optimization problems in locally convex spaces without any lower semicontinuity
assumptions. Sun [39] obtained stable Farkas lemmas in dual form and the stable Fenchel-
Lagrange duality for semi-infinite convex optimization problems in locally convex spaces
without lower semicontinuity assumptions.

In recent years, composite convex programming has received much attention because
it offers a unified framework for treating different kinds of optimization problems. Many
optimization problems from engineering, economics and finance involve composite convex
functions. Thus, many works on composite convex programming problems have been pub-
lished; see, e.g., [3–5,10,28,31,33,41,42] and the references therein.

In the above references, the convexity and the semicontinuity of the involved functions
play an important role in deriving the characterization of Farkas lemmas and the duality
theory for optimization problems. However, many optimization problems naturally involve
nonconvex and non-continuous functions. For example, in DC programming, the functions
are neither convex nor lower semicontinuous; see, e.g., [14, 17, 23, 39, 40]. Recently, Boncea
and Grad [1] obtained some characterizations of ε-duality theorems for nonconvex composed
optimization problems without functional constraints.

In this paper, without any convexity and lower semicontinuity assumptions, we establish
some stable Farkas lemmas and the stable duality for the following composite semi-infinite
programming problem:

(P) Minimize f(h(x)),

subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,

where T is an arbitrary index set, X and Y are locally convex spaces, C ⊂ X is a nonempty
set, K ⊂ Y is a closed convex cone, f : Y → R ∪ {+∞} is a proper K-increasing function,
h : X → Y • is a proper function, and ft : X → R ∪ {+∞}, t ∈ T , is proper functions.
Composite semi-infinite programming problems provide a unified mathematical model for a
wide range of practical problems, which includes as special cases semi-infinite programming
problems, conic programming problems, and composite convex inequality systems. However,
to the best of our knowledge, there are no stable Farkas lemma type results and stable
duality results on composite semi-infinite programming problems due to some theoretical
and technical difficulties.

The rest of the paper is organized as follows. Section 2 contains some basic definitions
and preliminary results. In Section 3, a new data qualification condition is provided and its
equivalent characterizations are established. Based on the new data qualification condition,
the stable Farkas lemma in dual form and the non-asymptotic stable Farkas lemma for
composite semi-infinite programming problems are obtained. Using the results obtained in
Section 3, the stable Fenchel-Lagrange duality and the stable Lagrange duality are given in
Section 4. It is worth mentioning that these results are obtained without any convexity and
lower semicontinuity assumptions. Our results improve the corresponding results obtained
by Fang, Li and Ng [16] and by Sun [39].
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2 Preliminaries

Throughout this paper, we assume that X and Y are locally convex spaces with X∗ and
Y ∗ being their dual spaces endowed with the weak∗-topologies w(X∗, X) and w(Y ∗, Y ),
respectively. For a subset D ⊆ X∗, we use clD for the weak∗-closure of D, and coneD for
the convex cone generated by D ∪ {0}. Given a nonempty set B ⊆ X, we denote by δB the
indicator function of B, i.e., δB(x) = 0 if x ∈ B and δB(x) = +∞ if x /∈ B.

Let K ⊆ Y be a closed convex cone. Denote by K⊕ the dual cone of K, i.e.,

K⊕ := {y∗ ∈ Y ∗ : ⟨y∗, y⟩ ≥ 0, ∀ y ∈ K},

where we denote by ⟨y∗, y⟩ = y∗(y) the value at y of the continuous linear functional y∗.
Consider the ordering ≤K in Y induced by K as

y1 ≤K y2 ⇔ y2 − y1 ∈ K, ∀ y1, y2 ∈ Y.

We add to Y a greatest element with respect to ≤K denoted by ∞K which does not belong
to Y and Y • := Y ∪ {∞K}. Then for any y ∈ Y • one has y ≤K ∞K and we consider the
following operations on Y •: y +∞K = ∞K + y = ∞K and t∞K = ∞K for all t ≥ 0. For
the problem (P), we set f(∞K) = +∞.

Let I be an arbitrary index set, {Xi : i ∈ I} be a family of subset of X, and let ℘ be
the collection of all the nonempty finite subsets of I. Then

cone

(∪
i∈I

Xi

)
=
∪
J∈℘

cone

∪
j∈J

Xj

 =
∪
J∈℘

∑
j∈J

coneXj

 .

Let us denote by R(T ) the following linear vector space [20]:

R(T ) := {λ = (λt)t∈T : λt = 0 for all t ∈ T except for finitely many λt ̸= 0}.

The nonnegative cone of R(T ) is denoted by

R(T )
+ := {λ = (λt)t∈T ∈ R(T ) : λt ≥ 0, t ∈ T}.

It is easy to see that R(T )
+ is a convex cone of R(T ). For λ ∈ R(T )

+ , the supporting set
corresponding to λ is defined by T (λ) := {t ∈ T : λt > 0}, which is a finite subset of T . Let
Z be a linear vector space. For λ ∈ R(T ) and {zt}t∈T ⊆ Z, we set∑

t∈T

λtzt :=

{ ∑
t∈T (λ) λtzt, if T (λ) ̸= ∅,

0, if T (λ) = ∅.

Let g : X → R ∪ {+∞}. We denote by dom(g) := {x ∈ X : g(x) < +∞} its effective
domain and by

epig := {(x, r) ∈ X × R : g(x) ≤ r}
its epigraph, respectively. The function g is said to be proper if dom(g) ̸= ∅. The conjugate
function of g, g∗ : X∗ → R ∪ {+∞}, is defined by

g∗(x∗) := sup{⟨x∗, x⟩ − g(x) : x ∈ dom(g)}.

The following relation is the well-known Fenchel-Young inequality

g∗(x∗) + g(x) ≥ ⟨x∗, x⟩, ∀ x ∈ X, ∀ x∗ ∈ X∗.
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Definition 2.1. A function f : Y → R ∪ {+∞} is said to be K-increasing on Y if, for
y1, y2 ∈ Y with y1 ≤K y2, we have f(y1) ≤ f(y2).

Remark 2.2. It is easy to see that if f is K-increasing on Y , then domf∗ ⊂ K⊕.

Definition 2.3. A function h : X → Y • is said to be proper if its domain dom(h) = {x ∈
X : h(x) ∈ Y } is nonempty.

Definition 2.4 ([26]). A function h : X → Y • is said to be star K-lower semicontinuous if
the function λh := λ ◦ h is lower semicontinuous for all λ ∈ K⊕.

The following lemmas will be used in the sequel.

Lemma 2.5 ([16, p. 1315]). Let φ,ψ : X → R ∪ {+∞} be two proper functions. Then

(i) epiφ∗ + epiψ∗ ⊆ epi(φ+ ψ)∗.

(ii) φ ≤ ψ ⇒ φ∗ ≥ ψ∗ ⇒ epiφ∗ ⊆ epiψ∗.

Lemma 2.6 ([7, Theorem 2.1]). Let φ,ψ : X → R ∪ {+∞} be two proper convex lower
semicontinuous functions such that domφ ∩ domψ ̸= ∅. Then

epi(φ+ ψ)∗ = cl(epiφ∗ + epiψ∗).

Lemma 2.7. Let K ⊆ Y be a closed convex cone. Let f : Y → R ∪ {+∞} be a proper
K-increasing function and h : X → Y • be a proper function. Assume that h−1(dom(f)) ̸= ∅.
For any x∗ ∈ X∗ and ξ ∈ K⊕, we have

(f ◦ h)∗(x∗) ≤ f∗(ξ) + (ξh)∗(x∗).

Proof. By the Fenchel-Young inequality, for any x∗ ∈ X∗, ξ ∈ K⊕ and x ∈ h−1(dom(f)),
(ξh)∗(x∗) + (ξh)(x) ≥ ⟨x∗, x⟩ and (f ◦ h)(x) + f∗(ξ) ≥ ⟨ξ, h(x)⟩. It follows that

(ξh)∗(x∗) + f∗(ξ) ≥ ⟨x∗, x⟩ − (f ◦ h)(x).

Therefore, the conclusion holds.

Throughout this paper, following [43], we adapt the convention that

(+∞)− (+∞) = (+∞) + (−∞) = (−∞)− (−∞) = (−∞) + (+∞) = +∞,

0 · (+∞) = +∞ and 0 · (−∞) = 0.

3 Stable Farkas-Type Results

In this section, we present some characterizations of stable Farkas lemmas for composite
semi-infinite programming problems, where the functions involved are not necessarily convex
nor lower semicontinuous.

Let A be the feasible set of the problem (P), i.e.,

A := {x ∈ C : ft(x) ≤ 0, ∀ t ∈ T}.
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In the rest of this paper, without other specifications, we always assume that h−1(dom(f))∩
A ̸= ∅. Consider the cone

K1 := cone

{∪
t∈T

epif∗t

}
+ epiδ∗C , (3.1)

which was introduced by Dinh et al. [12]. In general, K1 ⊆ epiδ∗A (see [16, (3.6)]). Dinh et
al. [12] also obtained that if each ft, t ∈ T is a proper lower semicontinuous convex function
and C is a closed convex set, then epiδ∗A = clK1. For more results on this topic, we refer
the reader to [3, 4, 8, 9, 12] and the references therein.

3.1 A New Data Qualification Condition

In this subsection, we introduce a new data qualification condition for the problem (P).
The condition not only involves the constraint set and the constraint functions; but also
the objective function. We will give its equivalent characterizations. Let us first prove the
following proposition.

Proposition 3.1. Let the functions F,G,H : X × Y → R ∪ {+∞} be defined by F (x, y) =
f(y), G(x, y) = δA(x) and H(x, y) = δ{(x,y)∈X×Y :y−h(x)∈K}(x, y), for any (x, y) ∈ X × Y .
Then

(i) F , G and H are proper functions and

dom(F ) ∩ dom(G) ∩ dom(H) ̸= ∅.

(ii) For (x∗, r) ∈ X∗ × R,

(x∗, r) ∈ epi(f ◦ h+ δA)
∗ ⇔ (x∗, 0, r) ∈ epi(F +G+H)∗.

(iii)
epiF ∗ = {0} × epif∗,

epiG∗ = {(p, 0, r) : (p, r) ∈ epiδ∗A}

and
epiH∗ =

∪
λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi(λh)∗}.

Proof. (i) By the assumptions, it is easy to see that F , G and H are proper functions. Since
h−1(dom(f)) ∩ A ̸= ∅, there exists y ∈ dom(f) such that h−1(y) ∩ A ̸= ∅. It follows that
there exists x ∈ A such that h(x) = y and so y − h(x) = 0 ∈ K. Thus, (x, y) ∈ dom(H).
Note that dom(F ) = X × dom(f) and dom(G) = A × Y . Therefore, (x, y) ∈ dom(F ) ∩
dom(G) ∩ dom(H).

(ii) As f is K-increasing, for any x∗ ∈ X∗, we can conclude that

inf
x∈X

[(f ◦ h+ δA)(x)− ⟨x∗, x⟩] = inf
x∈X,y∈Y
y−h(x)∈K

[(f(y) + δA(x)− ⟨x∗, x⟩].

It follows that

−(f ◦ h+ δA)
∗(x∗) = inf

x∈X
{(f ◦ h)(x)− ⟨x∗, x⟩+ δA(x)}
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= inf
x∈X,y∈Y
y−h(x)∈K

{f(y)− ⟨x∗, x⟩+ δA(x)}

= inf
x∈X,y∈Y

{f(y)− ⟨x∗, x⟩+ δA(x) + δ{(x,y)∈X×Y :y−h(x)∈K}(x, y)}

=− (F +G+H)∗(x∗, 0).

This implies that (ii) holds.
(iii) By the definition of conjugate functions, we have

F ∗(x∗, y∗) = sup
x∈X,y∈Y

{⟨x∗, x⟩+ ⟨y∗, y⟩ − f(y)} = sup
x∈X

⟨x∗, x⟩+ sup
y∈Y

{⟨y∗, y⟩ − f(y)},

G∗(x∗, y∗) = sup
x∈X,y∈Y

{⟨x∗, x⟩+ ⟨y∗, y⟩ − δA(x)} = sup
x∈X

{⟨x∗, x⟩ − δA(x)}+ sup
y∈Y

⟨y∗, y⟩

and

H∗(x∗, y∗) = sup
x∈X,y∈Y

{⟨x∗, x⟩+ ⟨y∗, y⟩ − δ{(x,y)∈X×Y :y−h(x)∈K}(x, y)}

= sup
x∈X,y∈Y
y−h(x)∈K

{⟨x∗, x⟩+ ⟨y∗, y⟩}.

Let k = y − h(x). Then

H∗(x∗, y∗) = sup
x∈X,k∈K

{⟨x∗, x⟩+ ⟨y∗, k + h(x)⟩}

= sup
x∈X

{⟨x∗, x⟩+ ⟨y∗, h(x)⟩}+ sup
k∈K

⟨y∗, k⟩.

It follows that

F ∗(x∗, y∗) =

{
f∗(y∗), if x∗ = 0,
+∞, otherwise,

G∗(x∗, y∗) =

{
δ∗A(x

∗), if y∗ = 0,
+∞, otherwise

and

H∗(x∗, y∗) =

{
(−y∗h)∗(x∗), if y∗ ∈ −K⊕,
+∞, otherwise.

It is easy to see that epiF ∗ = {0} × epif∗. Now let (p, b, r) ∈ epiG∗. Then G∗(p, b) ≤ r.
This is equivalent to b = 0 and δ∗A(p) ≤ r. So, (p, r) ∈ epiδ∗A. Thus, epiG∗ = {(p, 0, r) :
(p, r) ∈ epiδ∗A}. Similarly, we have

epiH∗ =
∪

λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi(λh)∗}.

The proof is complete.

If Y = X, h(x) = x for any x ∈ X and K = {0}, then we have the following corollary.

Corollary 3.2. Let dom(f) ∩ A ̸= ∅. Let the functions F,G,H : X ×X → R ∪ {+∞} be
defined by F (x, y) = f(y), G(x, y) = δA(x) and H(x, y) = δ{(x,y)∈X×X:x=y}(x, y), for any
(x, y) ∈ X×X. Then (i) F , G and H are proper functions and dom(F )∩dom(G)∩dom(H) ̸=
∅; (ii) for (x∗, r) ∈ X∗ × R, (x∗, r) ∈ epi(f + δA)

∗ ⇔ (x∗, 0, r) ∈ epi(F + G + H)∗; (iii)
epiF ∗ = {(0, p, r) : (p, r) ∈ epif∗}, epiG∗ = {(p, 0, r) : (p, r) ∈ epiδ∗A} and epiH∗ =
∪x∗∈X∗{(x∗,−x∗, r) : r ≥ 0}.
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Remark 3.3. If Y = X, h(x) = x for any x ∈ X and K = {0}, then for λ ∈ K⊕,

(λh)∗(x∗) =

{
0, if x∗ = λ;
+∞, otherwise.

In this paper, we consider the following set

M := {0} × epif∗ + {(p, 0, r) : (p, r) ∈ K1}+
∪

λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)},

where K1 is defined in (3.1). We have the following proposition holds.

Proposition 3.4. The following relation holds:

M ⊆ epi(F +G+H)∗.

Proof. From Proposition 3.1 and Lemma 2.5, we have

M ={0} × epif∗ + {(p, 0, r) : (p, r) ∈ K1}+
∪

λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)}

⊆{0} × epif∗ + {(p, 0, r) : (p, r) ∈ epiδ∗A}+
∪

λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)}

=epiF ∗ + epiG∗ + epiH∗

⊆epi(F +G)∗ + epiH∗

⊆epi(F +G+H)∗.

The proof is complete.

The following example shows that the converse inclusion does not hold in general.

Example 3.5. Let X = Y = R, K = [0,+∞), T = [0,+∞) and C = R. Define h, ft, f :
R → R ∪ {+∞} respectively by h(x) = 1− x2, ft(x) = tx, t ∈ T and

f(y) =

 0, if y < 0;
1, if y = 0;
+∞, if y > 0.

Then, X∗ = Y ∗ = R, K⊕ = [0,+∞) and A = (−∞, 0]. Moreover, f is not lower semicon-
tinuous, f∗ = δ[0,+∞), f

∗
t = δ{t} and δ∗C = δ{0}. If λ = 0, then (λh)∗ = δ{0}. If λ > 0, then

(λh)∗(x∗) = +∞ for any x∗ ∈ R. Note that for any x, y ∈ R,

(F +G+H)(x, y) =

 0, if y < 0, x ≤ −
√
1− y;

1, if y = 0, x ≤ −1;
+∞, otherwise

and for any x∗, y∗ ∈ R,

(F +G+H)∗(x∗, y∗) =

{
−x∗, if x∗ ≥ 0, y∗ ≥ 0;
+∞, otherwise.

Hence,

epif∗ = [0,+∞)× [0,+∞),



302 X.-J. LONG, Z.-Y. PENG AND XIANFU WANG

epiδ∗C = {0} × [0,+∞),

cone

{∪
t∈T

epif∗t

}
= [0,+∞)× [0,+∞),

epi(F +G+H)∗ = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ −x}

and

M = {0} × epif∗ + {(p, 0, r) : (p, r) ∈ K1}+
∪

λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)}

= {0} × [0,+∞)× [0,+∞) + [0,+∞)× {0} × [0,+∞) + {0} × {0} × [0,+∞)

= [0,+∞)× [0,+∞)× [0,+∞).

Obviously,
epi(F +G+H)∗ ⊈M.

Considering the possible relationships between M and epi(F + G + H)∗, we introduce
the following data qualification condition.

Definition 3.6. We say that the problem (P) satisfies the data qualification condition
(DQC, in brief) if

epi(F +G+H)∗ ∩ (X∗ × {0} × R) =M ∩ (X∗ × {0} × R).

Remark 3.7. By Proposition 3.4, (DQC) holds if and only if

epi(F +G+H)∗ ∩ (X∗ × {0} × R) ⊆M ∩ (X∗ × {0} × R).

The following proposition gives a sufficient condition ensuring that (DQC) holds.

Proposition 3.8. Assume that f is a proper convex, lower semicontinuous K-increasing
function, h is a proper K-convex and star K-lower semicontinuous function, ft, t ∈ T is
proper lower semicontinuous convex functions and C is a closed convex set. If M is weak∗-
closed, then (DQC) holds.

Proof. By Lemma 2.6,

epi(F +G+H)∗ =cl(epi(F +G)∗ + epiH∗)

=cl(cl(epiF ∗ + epiG∗) + epiH∗)

=cl(epiF ∗ + epiG∗ + epiH∗).

On the other hand, it is easy to see that cl{(p, 0, r) : (p, r) ∈ K1} = {(p, 0, r) : (p, r) ∈
clK1} = {(p, 0, r) : (p, r) ∈ epiδ∗A}. Note that M is weak∗-closed. Then

M =clM

=cl

{
{0} × epif∗ + cl{(p, 0, r) : (p, r) ∈ K1}+

∪
λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)}

}

=cl

{
{0} × epif∗ + {(p, 0, r) : (p, r) ∈ epiδ∗A}+

∪
λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)}

}
.

It follows from this and Proposition 3.1 that (DQC) holds. The proof is complete.
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Remark 3.9. It is worth mentioning that M is weak∗-closed can be replaced by the weaker
assumption that

clM ∩ (X∗ × {0} × R) =M ∩ (X∗ × {0} × R),

i.e., that M is closed regarding the set X∗ × {0} × R. The concept of closedness regarding
a set was introduced by Pomerol in his PhD thesis [35], [36]. Recently, Boţ has used this
concept systematically in the context of data qualifications on conjugate duality [2, Chapter
II, Section 9].

We now give an equivalent characterization of (DQC).

Theorem 3.10. The following statements are equivalent:

(i) (DQC) holds.

(ii) For any x∗ ∈ X∗, we have

(f ◦ h+ δA)
∗(x∗)

= min
λ∈R(T )

+
,ξ∈K⊕

u,vt∈X∗,t∈T (λ)

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

) .
Proof. (i) ⇒ (ii): Suppose that (DQC) holds. For any x∗ ∈ X∗, by Lemma 2.7 and the
definition of conjugate function,

f∗(ξ) + (ξh)∗(u) ≥ (f ◦ h)∗(u) ≥ ⟨u, x⟩ − (f ◦ h)(x),
f∗t (vt) ≥ ⟨vt, x⟩ − ft(x) ≥ ⟨vt, x⟩,

δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≥ ⟨x∗ − u−

∑
t∈T (λ)

λtvt, x⟩ − δC(x)

for each λ ∈ R(T )
+ , ξ ∈ K⊕, t ∈ T (λ), u, vt ∈ X∗ and x ∈ h−1(dom(f)) ∩ A ̸= ∅. It follows

that

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≥ ⟨x∗, x⟩ − (f ◦ h)(x).

This implies that

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≥ (f ◦ h+ δA)

∗(x∗). (3.2)

If (f ◦ h + δA)
∗(x∗) = +∞, the conclusion holds trivially by (3.2). Now let (f ◦ h +

δA)
∗(x∗) ∈ R. Note that (x∗, (f ◦ h+ δA)

∗(x∗)) ∈ epi(f ◦ h+ δA)
∗. By Proposition 3.1(ii),

(x∗, 0, (f ◦ h+ δA)
∗(x∗)) ∈ epi(F +G+H)∗.

This together with (DQC) yields

(x∗, 0, (f ◦ h+ δA)
∗(x∗)) ∈M ∩ (X∗ × {0} × R).
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Then there exist ξ′ ∈ K⊕, λ′ ∈ RT
+, (ξ

′, f∗(ξ′)+ η′) ∈ epif∗ with η′ ≥ 0, (u′, α′) ∈ epi(ξ′h)∗,
(w′, γ′) ∈ epiδ∗C and (v′t, β

′
t) ∈ epif∗t with t ∈ T (λ′) such that

(x∗, 0, (f ◦ h+ δA)
∗(x∗)) = (0, ξ′, f∗(ξ′) + η′) + (u′,−ξ′, α′) +

∑
t∈T (λ′)

λ′t(v
′
t, 0, β

′
t) + (w′, 0, γ′),

which gives x∗ = u′ +
∑

t∈T (λ′) λ
′
tv

′
t + w′ and

(f ◦ h+ δA)
∗(x∗) = f∗(ξ′) + η′ + α′ +

∑
t∈T (λ′)

λ′tβ
′
t + γ′

≥ f∗(ξ′) + (ξ′h)∗(u′) +
∑

t∈T (λ′)

λ′tf
∗
t (v

′
t) + δ∗C(w

′)

= f∗(ξ′) + (ξ′h)∗(u′) +
∑

t∈T (λ′)

λ′tf
∗
t (v

′
t) + δ∗C

(
x∗ − u′ −

∑
t∈T (λ′)

λ′tv
′
t

)
.

Combining this with (3.2), we have

(f ◦ h+ δA)
∗(x∗)

=f∗(ξ′) + (ξ′h)∗(u′) +
∑

t∈T (λ′)

λ′tf
∗
t (v

′
t) + δ∗C

(
x∗ − u′ −

∑
t∈T (λ′)

λ′tv
′
t

)

= min
λ∈R(T )

+
,ξ∈K⊕

u,vt∈X∗,t∈T (λ)

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

) .
Hence, (ii) holds.

(ii) ⇒ (i): As M ⊆ epi(F + G + H)∗, we only need to prove that epi(F + G + H)∗ ∩
(X∗×{0}×R) ⊆M ∩ (X∗×{0}×R). Let (x∗, 0, r) ∈ epi(F +G+H)∗∩ (X∗×{0}×R). By
Proposition 3.1(ii), (x∗, r) ∈ epi(f ◦h+δA)∗, i.e., (f ◦h+δA)∗(x∗) ≤ r. From the hypothesis
we know that there exist ξ′ ∈ K⊕, λ′ ∈ RT

+ and u′, v′t ∈ X∗ with t ∈ T (λ′) such that

(f ◦ h+ δA)
∗(x∗) = f∗(ξ′) + (ξ′h)∗(u′) +

∑
t∈T (λ′)

λ′tf
∗
t (v

′
t) + δ∗C

(
x∗ − u′ −

∑
t∈T (λ′)

λ′tv
′
t

)
.

This implies

f∗(ξ′) + (ξ′h)∗(u′) +
∑

t∈T (λ′)

λ′tf
∗
t (v

′
t) + δ∗C

(
x∗ − u′ −

∑
t∈T (λ′)

λ′tv
′
t

)
≤ r,

and so

δ∗C

(
x∗ − u′ −

∑
t∈T (λ′)

λ′tv
′
t

)
≤ r − f∗(ξ′)− (ξ′h)∗(u′)−

∑
t∈T (λ′)

λ′tf
∗
t (v

′
t),

i.e., x∗ − u′ −
∑

t∈T (λ′)

λ′tv
′
t, r − f∗(ξ′)− (ξ′h)∗(u′)−

∑
t∈T (λ′)

λ′tf
∗
t (v

′
t)

 ∈ epiδ∗C .
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It follows that

(x∗, 0, r) =(0, ξ′, f∗(ξ′)) +
∑

t∈T (λ′)

λ′t(v
′
t, 0, f

∗
t (v

′
t)) + (u′,−ξ′, (ξ′h)∗(u′))

+ (x∗ − u′ −
∑

t∈T (λ′)

λ′tv
′
t, 0, r − f∗(ξ′)− (ξ′h)∗(u′)−

∑
t∈T (λ′)

λ′tf
∗
t (v

′
t))

∈{0} × epi(f)∗ + {(p, 0, s) : (p, s) ∈ cone

{∪
t∈T

epif∗t

}
+

∪
λ∈K⊕

{(p,−λ, s) : (p, s) ∈ epi((λh)∗)}+ {(p, 0, s) : (p, s) ∈ epiδ∗C}

=M,

which implies that epi(F +G+H)∗ ∩ (X∗ × {0} ×R) ⊆M ∩ (X∗ × {0} ×R). The proof is
complete.

The following example illustrates Theorem 3.10, where the function involved are possibly
neither convex nor lower semicontinuous.

Example 3.11. Let Q and Q+ denote the set of rational numbers and the set of nonnegative
rational numbers respectively. Let X = Y = R, K = (−∞, 0], T = (−∞, 0] and C = Q.
Define f, h, ft : R → R ∪ {+∞} respectively by f = δ[0,+∞), h = δQ+

and ft(x) = tx,
t ∈ T . Obviously, C is not a convex set and h is neither convex nor lower semicontinuous..
Moreover, we have X∗ = Y ∗ = R, K⊕ = (−∞, 0], A = Q+ and f ◦ h + δA = δQ+

. By a
simple computation, f∗ = δ(−∞,0], (f ◦ h + δA)

∗ = δ(−∞,0], f
∗
t = δ{t} and δ∗C = δ{0}. If

λ = 0, then (λh)∗ = δ{0}. If λ < 0, then (λh)∗(x∗) = +∞ for any x∗ ∈ R. It is easy to see
that for any x, y ∈ R,

(F +G+H)(x, y) =

{
0, if x ∈ Q+, y = 0;
+∞, otherwise

and for any x∗, y∗ ∈ R,

(F +G+H)∗(x∗, y∗) =

{
0, if x∗ ≤ 0, y∗ ∈ R;
+∞, otherwise.

It follows that

epif∗ = (−∞, 0]× [0,+∞),

epiδ∗C = {0} × [0,+∞),

epi(f ◦ h+ δA)
∗ = (−∞, 0]× [0,+∞),

cone

{∪
t∈T

epif∗t

}
= (−∞, 0]× [0,+∞),

and

epi(F +G+H)∗ = (−∞, 0]× (−∞,+∞)× [0,+∞).
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Note that

M = {0} × epif∗ + {(p, 0, r) : (p, r) ∈ K1}+
∪

λ∈K⊕

{(p,−λ, r) : (p, r) ∈ epi((λh)∗)}

= {0} × (−∞, 0]× [0,+∞) + (−∞, 0]× {0} × [0,+∞) + {0} × {0} × [0,+∞)

= (−∞, 0]× (−∞, 0]× [0,+∞).

Therefore,

epi(F +G+H)∗ ∩ (X∗ × {0} × R) =M ∩ (X∗ × {0} × R)

and (ii) of Theorem 3.10 holds.

3.2 Stable Farkas Lemmas

In this subsection, we obtain some stable Farkas lemmas for the problem (P). In the fol-
lowing theorem we give a stable Farkas lemma in dual form for the problem (P). Stable
Farkas lemmas in dual form for convex and/or lower semicontinuous functions have been
investigated in [5, 6, 13,14,17,31,34,39,40].

Theorem 3.12. For the problem (P), (DQC) holds if and only if the following statements
are equivalent:

(i) For every x∗ ∈ X∗ and every α ∈ R,

x ∈ C, ft(x) ≤ 0, t ∈ T ⇒ f(h(x)) ≥ ⟨x∗, x⟩+ α.

(ii) For every x∗ ∈ X∗ and every α ∈ R, there exist ξ ∈ K⊕, λ ∈ RT
+ and u, vt ∈ X∗ with

t ∈ T (λ) such that

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≤ −α.

Proof. (⇒) Suppose that (DQC) holds. We will prove (i)⇔(ii). If (i) holds, then

(f ◦ h+ δA)(x) ≥ ⟨x∗, x⟩+ α, ∀ x ∈ X,

or equivalently,

⟨x∗, x⟩ − (f ◦ h+ δA)(x) ≤ −α, ∀ x ∈ X.

This implies that

(f ◦ h+ δA)
∗(x∗) ≤ −α. (3.3)

Since (DQC) holds, by Theorem 3.10(ii), there exist ξ ∈ K⊕, λ ∈ RT
+ and u, vt ∈ X∗ with

t ∈ T (λ) such that

(f ◦ h+ δA)
∗(x∗) = f∗(ξ) + (ξh)∗(u) +

∑
t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
.

This equation, together with (3.3), yields (ii).
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Conversely, assume that (ii) holds. Then for any x∗ ∈ X∗ and any α ∈ R, there exist
ξ ∈ K⊕, λ ∈ RT

+ and u, vt ∈ X∗ with t ∈ T (λ) such that

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≤ −α.

By the definition of conjugate function, for any x ∈ X and y ∈ Y , we have

−α ≥f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≥⟨ξ, y⟩ − f(y) + ⟨u, x⟩ − (ξh)(x) +

∑
t∈T (λ)

λt (⟨vt, x⟩ − ft(x))

+ ⟨x∗ − u−
∑

t∈T (λ)

λtvt, x⟩ − δC(x)

=⟨ξ, y⟩ − f(y)− (ξh)(x)−
∑

t∈T (λ)

λtft(x) + ⟨x∗, x⟩ − δC(x).

Taking y = h(x) in above inequality, we have

f(h(x)) +
∑

t∈T (λ)

λtft(x) + δC(x) ≥ ⟨x∗, x⟩+ α, ∀ x ∈ X. (3.4)

From (3.4), one gets

f(h(x)) ≥ ⟨x∗, x⟩+ α, ∀ x ∈ A.

(⇐) Assume that (i)⇔(ii) holds. We now prove that (DQC) holds. AsM ⊆ epi(F +G+
H)∗, we only need to prove that epi(F+G+H)∗∩(X∗×{0}×R) ⊆M ∩(X∗×{0}×R). Let
(x∗, 0, r) ∈ epi(F+G+H)∗∩(X∗×{0}×R). By Proposition 3.1(ii), (x∗, r) ∈ epi(f ◦h+δA)∗,
i.e., (f ◦ h+ δA)

∗(x∗) ≤ r. It follows that

⟨x∗, x⟩ − (f ◦ h+ δA)(x) ≤ r, ∀ x ∈ X.

This implies

f(h(x)) ≥ ⟨x∗, x⟩ − r, ∀ x ∈ A.

Thus, there exist ξ ∈ K⊕, λ ∈ RT
+ and u, vt ∈ X∗ with t ∈ T (λ) such that

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≤ r.

That is

δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≤ r − f∗(ξ)− (ξh)∗(u)−

∑
t∈T (λ)

λtf
∗
t (vt),

or equivalently,x∗ − u−
∑

t∈T (λ)

λtvt, r − f∗(ξ)− (ξh)∗(u)−
∑

t∈T (λ)

λtf
∗
t (vt)

 ∈ epiδ∗C .
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It follows that

(x∗, 0, r) =(0, ξ, f∗(ξ)) +
∑

t∈T (λ)

λt(vt, 0, f
∗
t (vt)) + (u,−ξ, (ξh)∗(u))

+ (x∗ − u−
∑

t∈T (λ)

λtvt, 0, r − f∗(ξ)− (ξh)∗(u)−
∑

t∈T (λ)

λtf
∗
t (vt))

∈{0} × epi(f)∗ + {(p, 0, s) : (p, s) ∈ cone

{∪
t∈T

epif∗t

}
+

∪
λ∈K⊕

{(p,−λ, s) : (p, s) ∈ epi((λh)∗)}+ {(p, 0, s) : (p, s) ∈ epiδ∗C}

=M,

which implies that epi(F +G+H)∗ ∩ (X∗ × {0} ×R) ⊆M ∩ (X∗ × {0} ×R). The proof is
complete.

Next, we obtain a non-asymptotic stable Farkas lemma of the problem (P). Non-asymptotic
stable Farkas lemmas for convex and/or lower semicontinuous functions have been investi-
gated in [11,12,16,22–25].

Theorem 3.13. If (DQC) holds, then for every x∗ ∈ X∗ and every α ∈ R the following
statements are equivalent:

(i) x ∈ C, ft(x) ≤ 0, t ∈ T ⇒ f(h(x)) ≥ ⟨x∗, x⟩+ α.

(ii) (x∗, 0,−α) ∈M .

(iii) There exists λ ∈ RT
+ such that

f(h(x)) +
∑
t∈T

λtft(x) ≥ ⟨x∗, x⟩+ α, ∀ x ∈ C.

Proof. (i) ⇒ (ii): It is a straightforward consequence of Proposition 3.1(ii) and (DQC).
(ii) ⇒ (iii): Let (x∗, 0,−α) ∈M . By Proposition 3.1(ii) and (DQC), one has (x∗,−α) ∈

epi(f ◦ h + δA)
∗. It follows that (f ◦ h + δA)

∗(x∗) ≤ −α. By Theorem 3.10(ii), there exist
ξ ∈ K⊕, λ ∈ RT

+ and u, vt ∈ X∗ with t ∈ T (λ) such that

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≤ −α. (3.5)

By the definition of conjugate functions, for any x ∈ X, we have

f∗(ξ) + (ξh)∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≥ ⟨x∗, x⟩ − f(h(x))

−
∑

t∈T (λ)

λtft(x)− δC(x).

(3.6)
From (3.5) and (3.6), we get

f(h(x)) +
∑

t∈T (λ)

λtft(x) + δC(x) ≥ ⟨x∗, x⟩+ α.
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This implies that (iii) holds.
Since the implication (iii) ⇒ (i) is obvious, the proof is complete.

Example 3.14. Let X, Y , K, T , C, f , h and ft be as in Example 3.11. Then (DQC) holds.
For every x∗ ∈ R and every α ∈ R,

[x ∈ C, ft(x) ≤ 0, t ∈ T ⇒ f(h(x)) ≥ ⟨x∗, x⟩+ α]

⇒ x∗ ≤ 0 and α ≤ 0

⇒ (x∗, 0,−α) ∈M

⇒ there exists λ ∈ RT
+ such that f(h(x)) +

∑
t∈T

λtft(x) ≥ ⟨x∗, x⟩+ α, ∀ x ∈ C.

Therefore, Theorem 3.13 holds.

3.3 A Special Case

In this subsection, we consider a particular case of the composite semi-infinite programming
problem (P) with Y = X, h(x) = x for any x ∈ X and K = {0} when (P) reduces to the
following semi-infinite programming problem:

(P0) Minimize f(x),

subject to ft(x) ≤ 0, t ∈ T,

x ∈ C.

Semi-infinite programming problem (P0) has been considered recently in several papers with
various requirements of f , ft, t ∈ T , and spaces due to its extensive applications in many
fields such as reverse Chebyshev approximation, robust optimization, minimax problems,
design centering and disjunctive programming; see, e.g., [20, 37, 38]. A large number of
results have appeared in the literature; see, e.g., [11, 12, 16, 18, 29, 30, 32] and the references
therein.

Since Y = X, h(x) = x for any x ∈ X and K = {0}, the set M becomes

M ′ := {0} × epif∗ + {(p, 0, r) : (p, r) ∈ K1}+
∪

λ∈X∗

{(λ,−λ, r) : r ≥ 0}.

Definition 3.15. We say that the problem (P0) satisfies the data qualification condition
(DQC)0 if

epi(F +G+H)∗ ∩ (X∗ × {0} × R) =M ′ ∩ (X∗ × {0} × R),

where the functions F,G,H are defined in Corollary 3.2.

Corollary 3.16. For the problem (P0), (DQC)0 holds if and only if the following statements
are equivalent:

(i) For every x∗ ∈ X∗ and every α ∈ R,

x ∈ C, ft(x) ≤ 0, t ∈ T ⇒ f(x) ≥ ⟨x∗, x⟩+ α.

(ii) For every x∗ ∈ X∗ and every α ∈ R, there exist λ ∈ RT
+ and u, vt ∈ X∗ with t ∈ T (λ)

such that

f∗(u) +
∑

t∈T (λ)

λtf
∗
t (vt) + δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

)
≤ −α.
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Remark 3.17. In [39, Theorem 4.6], Sun obtained a stable Farkas lemma in dual form for
the problem (P0). He assumes that f, ft are convex and C is a convex set in [39]. However,
Corollary 3.16 does not require these assumptions. The following example shows that there
are situations in which Corollary 3.16 can be applied while Theorem 4.6 of [39] does not
apply.

Example 3.18. Let X = R, T = {0, 1, 2, 3, · · · }, K = {0} and C = Q. Define ft, f : R →
R ∪ {+∞} respectively by ft(x) = δQ(tx), t ∈ T and

f(x) =

{
0, if x > 0;
1, if x ≤ 0.

By a simple computation, X∗ = R, K⊕ = R, A = Q, f∗ = δ{0}, f
∗
t = δ{0} and δ∗C = δ{0}.

It follows that

M ′ = {0} × epif∗ + {(p, 0, r) : (p, r) ∈ K1}+
∪

λ∈X∗

{(λ,−λ, r) : r ≥ 0}

= {0} × {0} × [0,+∞) + {0} × {0} × [0,+∞) +
∪

λ∈X∗

{(λ,−λ, r) : r ≥ 0}

=
∪

λ∈X∗

{(λ,−λ, r) : r ≥ 0}.

Note that

(F +G+H)∗(x∗, y∗) =

{
0, if x∗ + y∗ = 0;
+∞, otherwise.

Then
epi(F +G+H)∗ =

∪
λ∈X∗

{(λ,−λ, r) : r ≥ 0}.

This implies that (DQC)0 holds. It is easy to see that Corollary 3.16 holds. However,
Theorem 4.6 in [39] is not applicable since C is not a convex set and ft is not convex for
any t ∈ T .

Corollary 3.19. For the problem (P0), if (DQC)0 holds, then for every x∗ ∈ X∗ and α ∈ R
the following statements are equivalent:

(i) x ∈ C, ft(x) ≤ 0, t ∈ T ⇒ f(x) ≥ ⟨x∗, x⟩+ α.

(ii) (x∗, 0,−α) ∈M ′.

(iii) There exists λ ∈ RT
+ such that

f(x) +
∑

t∈T (λ)

λtft(x) ≥ ⟨x∗, x⟩+ α, ∀ x ∈ C.

Remark 3.20. In [16, Corollary 4.6], Fang et al. obtained a non-asymptotic stable Farkas
lemma for the problem (P0) under the assumptions that f, ft are convex functions and C is
a convex set. However, Corollary 3.19 removes these assumptions. Example 3.4 shows that
Corollary 3.19 can be applied in situations where Corollary 4.6 of [16] does not apply. We
also point out that Corollary 3.19 improves Theorem 2 of Dinh et al. [12].



NONCONVEX COMPOSITE SEMI-INFINITE PROGRAMMING PROBLEMS 311

4 Stable Duality

In this section, using results obtained in Section 3, we derive some stable duality results for
composite semi-infinite programming problems, in which the functions involved need not be
convex and lower semicontinuous.

First, we obtain a stable Fenchel-Lagrange duality for the problem (P).

Theorem 4.1 (Stable Fenchel-Lagrange Duality). The following statements are equiva-
lent:

(i) (DQC) holds.

(ii) For any x∗ ∈ X∗, we have

inf
x∈A

{f(h(x))− ⟨x∗, x⟩}

= max
λ∈R(T )

+
,ξ∈K⊕

u,vt∈X∗,t∈T (λ)

−f∗(ξ)− (ξh)∗(u)−
∑

t∈T (λ)

λtf
∗
t (vt)− δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

) .
Proof. From Theorem 3.10(ii), we only need to show that

inf
x∈A

{f(h(x))− ⟨x∗, x⟩} = −(f ◦ h+ δA)
∗(x∗).

In fact, by the definition of conjugate function,

inf
x∈A

{f(h(x))− ⟨x∗, x⟩} = inf
x∈X

{f(h(x)) + δA(x)− ⟨x∗, x⟩}

= − sup
x∈X

{⟨x∗, x⟩ − (f(h(x)) + δA(x))}

= −(f ◦ h+ δA)
∗(x∗).

The proof is complete.

If Y = X, h(x) = x for any x ∈ X and K = {0}, then we have the following corollary.

Corollary 4.2. For the problem (P0), (DQC)0 holds if and only if for any x∗ ∈ X∗,

inf
x∈A

{f(x)− ⟨x∗, x⟩} = max
λ∈R(T )

+
,u∈X∗

vt∈X∗,t∈T (λ)

−f∗(u)− ∑
t∈T (λ)

λtf
∗
t (vt)− δ∗C

(
x∗ − u−

∑
t∈T (λ)

λtvt

) .
Remark 4.3. Corollary 4.2 extends Theorem 4.5 of Sun [39] to a non-convex case.

Next, we derive a stable Lagrange duality for the problem (P).

Theorem 4.4 (Stable Lagrange Duality). If (DQC) holds, then for any x∗ ∈ X∗, we have

inf
x∈A

{f(h(x))− ⟨x∗, x⟩} = max
λ∈R(T )

+

inf
x∈C

{
f(h(x)) +

∑
t∈T

λtft(x)− ⟨x∗, x⟩

}
.
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Proof. Assume that (DQC) holds. Let α := infx∈A{f(h(x)) − ⟨x∗, x⟩}. Then f(h(x)) −
⟨x∗, x⟩ ≥ α, for all x ∈ A. By Theorem 3.13, there exists λ ∈ RT

+ such that

(∀ x ∈ C) f(h(x)) +
∑
t∈T

λtft(x)− ⟨x∗, x⟩ ≥ α,

which implies that

inf
x∈A

{f(h(x))− ⟨x∗, x⟩} = α ≤ max
λ∈R(T )

+

inf
x∈C

{f(h(x)) +
∑
t∈T

λtft(x)− ⟨x∗, x⟩}. (4.1)

On the other hand, for every x ∈ A and λ ∈ RT
+, we have

f(h(x))− ⟨x∗, x⟩ ≥ f(h(x)) +
∑
t∈T

λtft(x)− ⟨x∗, x⟩.

It follows that

inf
x∈A

{f(h(x))− ⟨x∗, x⟩} ≥ inf
x∈A

{f(h(x)) +
∑
t∈T

λtft(x)− ⟨x∗, x⟩}

≥ inf
x∈C

{f(h(x)) +
∑
t∈T

λtft(x)− ⟨x∗, x⟩},

from which

inf
x∈A

{f(h(x))− ⟨x∗, x⟩} ≥ max
λ∈R(T )

+

inf
x∈C

{f(h(x)) +
∑
t∈T

λtft(x)− ⟨x∗, x⟩}. (4.2)

Combining (4.1) and (4.2) we get the conclusion.

Corollary 4.5. For the problem (P0), if (DQC)0 holds, then for every x∗ ∈ X∗ we have

inf
x∈A

{f(x)− ⟨x∗, x⟩} = max
λ∈R(T )

+

inf
x∈C

{
f(x) +

∑
t∈T

λtft(x)− ⟨x∗, x⟩

}
.

Remark 4.6. Corollary 4.5 extends Theorem 5.2 of Fang et al. [16] to a non-convex case.
Example 3.18 shows that Corollary 4.5 may apply in situations where Theorem 5.2 of Fang
et al. [16] cannot be applied.
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plicateurs de Lagrange et Stabilité, PhD Thesis, Paris 6, 1980.
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