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3, we summarize Yuan and Stoer’s method briefly and propose our subspace method in detail.
In section 4, the global and local linear convergence are established. Numerical experiments
are reported in section 5.

2 Notations, Definitions and Preliminary Results

In this section, we introduce the notations and definitions which will be used throughout
the paper. For any x, y ∈ Rn, the inner product is denoted by xT y or ⟨x, y⟩. We use M to
denote a Riemannian manifold. For x ∈ M, TxM denotes the tangent space of M at x. The
inner product defined on TxM is denoted by ⟨·, ·⟩x, and when no confusion arises, we will
also omit the subscript and only use ⟨·, ·⟩ for simplicity. The tangent bundle TM := ∪xTxM
consists of all tangent vectors to M.

For a smooth function f : M → R, the derivative of f at x ∈ M, denoted by Df(x), is

an element of the dual space to TxM which satisfies Df(x)v = limt→0
f(x+tv)−f(x)

t := vf
for all v ∈ TxM, where vf is a tangent vector to R at f(x). That is, let f : M → R be
a smooth mapping, Df(x) is a mapping from TxM to Tf(x)R ≃ R. The gradient of f at x
(see [5]), denoted by grad f(x), is defined by

⟨grad f(x), v⟩ = Df(x)v, ∀ v ∈ TxM.

The concept of retraction has played an important role in both theoretic and computa-
tional aspects.

Definition 2.1 ( [5, p. 55]). A retraction on a manifold M is a smooth mapping R from the
tangent bundle TM onto M with the following properties. Let Rx denote the restriction of
R to TxM.

1. Rx(0x) = x, where 0x denotes the zero element of TxM.
2. With the canonical identification T0x(TxM) ≃ TxM, Rx satisfies

DRx(0x) = idTxM

where idTxM denotes the identity mapping on TxM.

In the remainder of this paper, we will omit the subscript TxM and use id to denote the
identity mapping idTxM. For a retraction Rx, define the composite map

fRx
= f ◦Rx : TxM → R.

Then DfRx
(0) = Df(x). We use D2fRx

to denote the Hessian of fRx
.

Definition 2.2 ( [14, p. 608]). We say that fRx is uniformly convex on the f(x0)-sublevel
set of f , if there exists 0 < m < M <∞ such that

m∥v∥2 ≤ D2fRx
(p)(v, v) ≤M∥v∥2, ∀ v ∈ TxM (2.1)

for all p ∈ R−1
x ({x̃ ∈ M : f(x̃) ≤ f(x0)}).

Definition 2.3 ([5, Chapter 8]). We will consider the transport of a vector from one tangent
space TxM into another one TyM, that is, consider isomorphisms Tx,y : TxM −→ TyM.
For a retraction Rx, the vector transport T Rx

x,y is defined by

T Rx
x,y u := DRx(v)[u], ∀ u ∈ TxM,
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i.e.

T Rx
x,y u =

d

dt
Rx(v + tu)

∣∣
t=0

, ∀ u ∈ TxM,

where v = R−1
x (y).

If no confusion, we omit the subscript Rx and use Tx,y to denote T Rx
x,y .

For x ∈ M, v ∈ TxM, assume that R−1
y exists, where y = Rx(v). Then fRx = fRy ◦

R−1
y ◦Rx, and

DfRx
(v) = DfRy

(0)DRx(v) = Df(y)Tx,y, (2.2)

grad fRx
(v) = T ∗

x,ygrad f(y), (2.3)

where T ∗
x,y is the adjoint of Tx,y (defined by ⟨u, Tx,yv⟩ = ⟨T ∗

x,yu, v⟩ for all v ∈ TxM, u ∈
TyM).

2.1 Wolfe conditions and BFGS scheme

Given x ∈ M, for p ∈ TxM, if ⟨p, grad f(x)⟩ < 0, we say that p is a descent direction of f
at x.

Definition 2.4 ((Wolfe conditions) [14, p. 600]). If the following conditions hold

f(Rx(αp)) ≤ f(x) + αb1Df(x)p, (2.4)

Df(Rx(αp))Tx,Rx(αp)p ≥ b2Df(x)p, (2.5)

where 0 < b1 < b2 < 1, 0 < α ≤ 1, we say that α satisfies the Wolfe conditions. Note that
the above conditions are equivalent to

f(Rx(αp)) ≤ f(x) + αb1DfRx(0)p, (2.6)

⟨grad f(Rx(αp)), Tx,Rx(αp)p⟩ ≥ b2⟨grad f(x), p⟩. (2.7)

Replacing (2.7) by

|⟨grad f(Rx(αp)), Tx,Rx(αp)p⟩| ≤ −b2⟨grad f(x), p⟩, (2.8)

we obtain the Strong Wolfe conditions.

Assume that xk is the current iterate and pk ∈ Txk
M. Let xk+1 = Rxk

(αkpk), where
αk > 0. Define

ŝk := αkpk = R−1
xk

(xk+1). (2.9)

Let Txk,xk+1
be the vector transport from Txk

M to Txk+1
M, and let

sk := Txk,xk+1
ŝk ∈ Txk+1

M, (2.10)

yk := grad f(xk+1)− Txk,xk+1
grad f(xk) ∈ Txk+1

M. (2.11)

Then the generalization of the secant condition on M endowed with a vector transport T is

Bk+1sk = yk, (2.12)

where the operator Bk+1 : Txk+1
M 7−→ Txk+1

M. The BFGS scheme on M is as follows

Bk+1p = B̂kp−
⟨sk, B̂kp⟩
⟨sk, B̂ksk⟩

B̂ksk +
⟨yk, p⟩
⟨yk, sk⟩

yk, ∀ p ∈ Txk+1
M, (2.13)

with B̂k = Txk,xk+1
◦Bk ◦ T −1

xk,xk+1
, see [5].
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3 Subspace Method on Riemannian Manifolds

In this section, we generalize Yuan and Stoer’s subspace method from Rn to a Riemannian
manifold M. Now we take some effort to describe Yuan and Stoer’s subspace method briefly.
For detail, the reader can refer to [20].

3.1 Yuan and Stoer’s subspace method

For a twice continuously differentiable function f defined on Rn, the quadratic approximate
of f at iterate xk+1 is

f(x) ≈ f(xk+1) + gTk+1(x− xk+1) +
1

2
(x− xk+1)

TBk+1(x− xk+1),

where gk+1 is the gradient of f at xk+1 and Bk+1 is an approximation to the Hessian
∇2f(xk+1). Then, to get the descent direction pk+1, the most general method is to minimize
φk+1(p) subject to p ∈ Rn. However, Yuan and Stoer consider the following problem

min
p∈Ωk

φk+1(p), (3.1)

where Ωk = span{gk+1, pk} and pk is the search direction at xk.
Assume that Bk+1 satisfies the secant equation Bk+1sk = yk. The reader can refer to [20]

about the definition of sk, yk. Substituting p by µgk+1 + νsk in (3.1), we obtain that

min
(µ,ν)∈R2

(
∥gk+1∥2
⟨gk+1, sk⟩

)T (
µ
ν

)
+

1

2
(µ, ν)

(
ρk ⟨gk+1, yk⟩

⟨yk, gk+1⟩ ⟨yk, sk⟩

)(
µ
ν

)
(3.2)

where ρk = ⟨Bk+1gk+1, gk+1⟩. This method has several advantages: Firstly, the solution
pk+1 of (3.2) can be easily computed. Secondly, pk+1 obtains the optimal decrease in the
subspace span{gk+1, pk}, while the search direction of the nonlinear conjugate gradient
method usually does not. Therefore Yuan and Stoer’s method is at least as effective as
the nonlinear conjugate gradient method.

3.2 Generalization of Yuan and Stoer’s method

When generalizing Yuan and Stoer’s method from Rn to M, the main difficulty is the
following: since pk ∈ Txk

M and grad f(xk+1) belongs to another tangent space Txk+1
M,

the situation results in the nonexistence of span{grad f(xk+1), pk}. Fortunately, the strategy
of transporting pk from Txk

M to Txk+1
M can remedy this problem. Consider the quadratic

approximation of f at xk+1:

min
p∈Txk+1

M
m̂xk+1

(p) = f(xk+1) + ⟨grad f(xk+1), p⟩+
1

2
⟨Bk+1p, p⟩, (3.3)

where Bk+1 is unknown. But it has to satisfy the secant condition (2.12). Let pk be the
search direction at xk. Then pk ∈ Txk

M.
To generalize Yuan and Stoer’s method, we need to transport pk to the space Txk+1

M.
Define Ωk := span{grad f(xk+1), Txk,xk+1

pk}. Then we obtain a minimization problem on
a two dimensional subspace Ωk:

min
p∈Ωk

m̂xk+1
(p).
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In the remainder of this paper, we use the notation

gk = grad f(xk), ∀k ≥ 0

Since sk = Txk,xk+1
ŝk = αkTxk,xk+1

pk, if p ∈ Ωk, then p = µgk+1 + νsk for some µ, ν ∈ R.
Substituting it into (3.3), we obtain a function

ψ(µ, ν) := m̂xk+1
(µgk+1 + νsk), (3.4)

which is just (3.2) except that the inner product ⟨·, ·⟩ is defined on Txk+1
M and a constant

term f(xk+1).
As in [20], we consider separately the two cases: (1) gk+1 and sk are collinear; (2) gk+1

and sk are not collinear.
For the first case, if there exists a λ such that gk+1 = λsk, then as in [20, (2.8)], the next

search direction is set to be

pk+1 = −⟨gk+1, sk⟩
⟨yk, sk⟩

sk. (3.5)

For the second case, assume that ρk satisfies the relation

ρk⟨yk, sk⟩ − ⟨gk+1, yk⟩2 > 0, (3.6)

the unique solution of ψ(µ, ν) is(
µk+1

νk+1

)
=

−1

ρk⟨yk, sk⟩ − ⟨gk+1, yk⟩2

(
⟨yk, sk⟩∥gk+1∥2 − ⟨gk+1, yk⟩⟨gk+1, sk⟩
ρk⟨gk+1, sk⟩ − ⟨gk+1, yk⟩∥gk+1∥2

)
.

Thus, the search direction pk+1 can be chosen as

pk+1 =µk+1gk+1 + νk+1sk

=
1

ρk⟨yk, sk⟩ − ⟨gk+1, yk⟩2
[
(⟨gk+1, yk⟩⟨gk+1, sk⟩ − ⟨yk, sk⟩∥gk+1∥2)gk+1

+ (⟨gk+1, yk⟩∥gk+1∥2 − ρk⟨gk+1, sk⟩)sk
]
. (3.7)

Note that the above formula has been derived in [20], we only give it for completeness.
Of course, different values of ρk give different pk+1. There are two choices of ρk supplied

by Yuan and Stoer: one is

ρk =
⟨yk, sk⟩
∥sk∥2

(
∥gk+1∥2 −

⟨gk+1, sk⟩2

∥sk∥2
)
+

⟨gk+1, yk⟩2

⟨yk, sk⟩
, (3.8)

which is obtained from ρk = ⟨Bk+1gk+1, gk+1⟩, where

Bk+1p =
⟨yk, sk⟩
∥sk∥2

(
p− ⟨sk, p⟩

∥sk∥2
sk
)
+

⟨yk, p⟩
⟨yk, sk⟩

yk. (3.9)

corresponding to (2.13) when B̂k = ⟨yk,sk⟩
∥sk∥2 id.

The other is

ρk = 2
⟨gk+1, yk⟩2

⟨yk, sk⟩
, (3.10)

which is based on the interval of ρk.
Now we state the overall algorithm.
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Algorithm: Subspace quasi-Newton optimization method on Riemannian manifolds
Require: Riemannian manifold M; vector transport T on M with associated

retraction R; real-valued function f on M.
Goal: Find a minimizer of f .
Parameters: ϵ ≥ 0, 0 < b1 < b2 < 1 .
Input: Initial iterate x0 ∈ M.
Output: Point x∗ such that ∥gradf(x∗)∥ ≤ ϵ .
Step 1: k=0; set p0 = −grad f(x0);
Step 2: Compute a step length αk satisfying the strong Wolfe conditions;

set xk+1 = Rxk
(αkpk);

compute gk+1 = grad f(xk+1);
if ∥gk+1∥ ≤ ϵ then stop.
else go to step 3;

Step 3: If ⟨gk+1, Txk,xk+1
pk⟩ are collinear,

then define pk+1 by (3.5) and go to step 5;
else go to step 4;

Step 4: Choose ρk satisfying (3.6) ;
compute pk+1 by (3.7) ;

Step 5: k:=k+1, go to Step 2.

4 Convergence Analysis

In this section, we show that our algorithm is globally convergent. Under some conditions,
the local linear convergence of our method can also be established. To prove the convergence
results, we always assume that:
Assumption A: f is twice continuously differentiable and bounded below.
Assumption B: Txk,xk+1

is an isometry for all k ≥ 1, where xk is the iterate
generated by our subspace algorithm.

Given a descent direction p, the following result tells us that a step length satisfying the
Wolfe conditions always exists.

Lemma 4.1 (Feasible step length, e.g. [12]). If p ∈ TxM is a descent direction at x ∈ M,
then there exists α > 0 that satisfies Wolfe conditions (2.6) and (2.7).

In the following lemma, we prove that if αk satisfies the Wolfe conditions, then pk is
always a descent direction at xk for all k ≥ 1.

Lemma 4.2. Assume that Txk,xk+1
is an isometry. If pk is a descent direction at xk and

αk satisfies the Wolfe conditions, then ⟨yk, sk⟩ > 0 and pk+1 is a descent direction at xk+1.

Proof. From (2.10), (2.11), and the Wolfe condition (2.7), it follows that

⟨yk, sk⟩ = ⟨gk+1 − Txk,xk+1
gk, Txk,xk+1

ŝk⟩
= ⟨gk+1, Txk,xk+1

ŝk⟩ − ⟨gk, ŝk⟩
≥ b2⟨gk, ŝk⟩ − ⟨gk, ŝk⟩
= αk(b2 − 1)⟨gk, pk⟩ > 0, (4.1)

where the last inequality follows from b2 < 1 and the assumption that pk is a descent
direction at xk.



A SUBSPACE METHOD FOR OPTIMIZATION ON RIEMANNIAN MANIFOLDS 285

If gk+1 and sk are collinear, from (3.5) and (4.1), it follows that ⟨gk+1, pk+1⟩ < 0. Now
assume that gk+1 and sk are not collinear. Since (µk+1, νk+1) is the optimal solution of
ψ(µ, ν) defined by (3.4), we have

−⟨gk+1, pk+1⟩ =2[ψ(0, 0)− ψ(µk+1, νk+1)]

≥2
[
ψ(0, 0)− ψ(−∥gk+1∥2

ρk
, 0)

]
=
∥gk+1∥4

ρk
. (4.2)

Whatever ρk is defined by (3.8) or (3.10), we have ρk > 0, which together with (4.2) implies
the second assertion.

Note that throughout this subsection ŝk, sk and yk are defined by (2.9), (2.10) and (2.11).
The following theorem treats the case ρk is defined by (3.10).

Theorem 4.3. Choosing ρk by (3.10). Assume that fRxk
is uniformly convex on the f(x0)-

sublevel set of f . If there exist M̂, δ̂ > 0 such that

δ̂min{1, ∥gk+1∥}⟨yk, sk⟩ ≤ ρk⟨yk, sk⟩ − ⟨gk+1, yk⟩2 ≤ M̂⟨yk, sk⟩, ∀ k, (4.3)

then
lim inf
k→∞

∥grad f(xk)∥ = 0.

Proof. If not, there is δ > 0 such that

∥gk∥ ≥ δ, ∀k ≥ 0 (4.4)

By the Wolfe conditon (2.6), for any k, we have

f(xk+1) ≤ f(xk) + b1DfRxk
(0)(ŝk) = f(xk) + b1⟨gk, ŝk⟩.

Since {f(xk)} is a non-increasing sequence and f is bounded below, it follows from the above
inequality that

∞∑
k=1

−⟨gk, ŝk⟩ < +∞. (4.5)

From (4.1), it follows that
⟨yk, sk⟩ ≥ (b2 − 1)⟨gk, ŝk⟩. (4.6)

By Lemma 4.2, we have ⟨yk, sk⟩ > 0 and ⟨gk, ŝk⟩ < 0. Therefore, the inequality (4.6)
becomes

(b2 − 1)
⟨gk, ŝk⟩
⟨yk, sk⟩

≤ 1.

Multiplying it by −⟨gk, ŝk⟩ on two sides, we obtain

(1− b2)
⟨gk, ŝk⟩2

⟨yk, sk⟩
≤ −⟨gk, ŝk⟩,

which, along with (4.5), yields
∞∑
k=1

⟨gk, ŝk⟩2

⟨yk, sk⟩
< +∞. (4.7)
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From (2.2), it follows that

⟨gk+1, sk⟩ = Df(xk+1)sk = DfRxk
(ŝk)ŝk. (4.8)

By (2.10) and (2.11), we have

⟨yk, sk⟩ = (DfRxk
(ŝk)−DfRxk

(0))ŝk = D2fRxk
(θŝk)(ŝk, ŝk),

in which θ ∈ [0, 1]. By (4.2) and (2.9), we have ⟨gk, θŝk⟩ = αkθ⟨gk, pk⟩ ≤ −αkθ
∥gk∥4

ρk−1
< 0,

which yields that f(Rxk
(θŝk)) < f(x0). Since fRxk

is uniformly convex on the f(x0)-sublevel
set of f , we have

m∥ŝk∥2 ≤ ⟨yk, sk⟩ ≤M∥ŝk∥2,

which implies that

⟨yk, sk⟩ = O(∥sk∥2) = O(∥ŝk∥2). (4.9)

By (4.7) and (4.9), we have
∞∑
k=1

⟨gk, pk⟩2

∥pk∥2
< +∞. (4.10)

Substituting (4.8) into (2.8), we can get |⟨gk+1, sk⟩| ≤ −b2⟨gk, ŝk⟩, which together with (4.6)
yields

|⟨gk+1, sk⟩| ≤
b2

1− b2
⟨yk, sk⟩. (4.11)

Similar as in [14, p. 620], we can define the averaged Hessian Gk and ŷk as

Gk :=

∫ 1

0

D2fRxk
(tŝk)dt, ŷk := DfRxk

(ŝk)−DfRxk
(0).

Then ⟨yk, sk⟩ = ŷkŝk, Gk(ŝk, ·) = ŷk and in addition to (2.2), (2.3), we get

∥ŷk∥ = max
v∈Txk

M

(DfRxk
(ŝk)−DfRxk

(0))v

∥v∥

= max
v∈Txk

M

DfRxk
(ŝk)v −DfRxk

(0)v

∥v∥

= max
v∈Txk

M

⟨gk+1, Txk,xk+1
v⟩ − ⟨gk, v⟩

∥v∥

= max
v∈Txk

M

⟨gk+1, Txk,xk+1
v⟩ − ⟨Txk,xk+1

gk, Txk,xk+1
v⟩

Txk,xk+1
v

= max
Txk,xk+1

v∈Txk+1
M

⟨yk, Txk,xk+1
v⟩

∥Txk,xk+1
v∥

= ∥yk∥.

Let Ĝk be the Lax-Milgram representation of Gk. Then we have

∥yk∥2

⟨yk, sk⟩
=

∥ŷk∥2

ŷkŝk
=
Gk(

√
Ĝkŝk,

√
Ĝkŝk)

∥
√
Ĝkŝk∥2

≤M. (4.12)
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From (3.10) and (4.3), it follows that

2δ̂ ≤ ρk ≤ 2M̂. (4.13)

By (3.7) and (4.3), we have

∥pk+1∥ ≤ 1

δ̂min{1, ∥gk+1∥}⟨yk, sk⟩
[
3∥yk∥∥sk∥∥gk+1∥3 + ρk|⟨gk+1, sk⟩|∥sk∥

]
. (4.14)

By (4.5), ⟨gk, pk⟩ is bounded, which together with αk ≤ 1 implies that

∥ŝk∥ = αk∥pk∥ = O
( ∥pk∥
−⟨gk, pk⟩

)
. (4.15)

With the above inequalities in hand, now we prove that the sequence {∥pk∥/(−⟨gk, pk⟩)} is
decreasing. By (4.2), we know that

∥pk+1∥
−⟨gk+1, pk+1⟩

≤ ρk∥pk+1∥
∥gk+1∥4

,

which together with (4.4) and (4.14) implies that

∥pk+1∥
−⟨gk+1, pk+1⟩

≤ ρk
⟨yk, sk⟩

· 1

δ̂min{1, ∥gk+1∥}
[
3
∥yk∥∥sk∥
∥gk+1∥

+ ρk
|⟨gk+1, sk⟩|∥sk∥

∥gk+1∥4
]

≤ ρk
⟨yk, sk⟩

[O(∥yk∥∥sk∥) +O(ρk · |⟨gk+1, sk⟩| · ∥sk∥)]

≤ ρk
⟨yk, sk⟩

[O(
√
M⟨yk, sk⟩∥sk∥) +O(ρk · b2

1− b2
⟨yk, sk⟩ · ∥sk∥)](by (4.11), (4.12))

≤O(
∥sk∥√
⟨yk, sk⟩

) +O(∥sk∥) (by (4.13))

=O(
∥ŝk∥√
⟨yk, sk⟩

) +O(∥ŝk∥)

=O(
√

∥ŝk∥ ·
∥ŝk∥√
⟨yk, sk⟩

) +O(∥ŝk∥)

≤O
(√

∥ŝk∥ ·

√
∥ŝk∥

−(1− b2)⟨gk, ŝk⟩

)
+O(∥ŝk∥) (by (4.6))

≤O
(√

∥ŝk∥

√
∥pk∥

−⟨gk, pk⟩
)
+O(

√
∥ŝk∥ ·

√
∥ŝk∥)

≤O
(√

∥ŝk∥

√
∥pk∥

−⟨gk, pk⟩
)

(by (4.15))

≤O
(√

−⟨gk, ŝk⟩
∥pk∥

−⟨gk, pk⟩
)
. (4.16)

Note that by (4.5), the term
√
−⟨gk, ŝk⟩ in (4.16) tends to zero as k goes to infinity. Thus

∥pk+1∥
−⟨gk+1,pk+1⟩ ≤ ∥pk∥

−⟨gk,pk⟩ for all sufficiently large k. Therefore ⟨gk,pk⟩2
∥pk∥2 ≥ τ for some τ > 0,

which contradicts (4.10). The proof is complete.
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Now we study the case that ρk is chosen from (3.8). The following result will be useful
in our analysis.

Lemma 4.4. Assume that fRxk
is uniformly convex on the f(x0)-sublevel set of f . Let Bk

be defined by (3.9). Then Bk is positive definite. Moreover, ∥Bk∥ and ∥B−1
k ∥ is uniformly

bounded.

Proof. Note that Bk+1 is just the one step RBFGS update from ⟨yk,sk⟩
∥sk∥2 id. By (4.9), there

exist m,M > 0 such that m < ⟨yk,sk⟩
∥sk∥2 < M . For any unit p(∥p∥ = 1), we have

⟨Bk+1p, p⟩ =
⟨yk, sk⟩
∥sk∥2

(⟨p, p⟩ − ⟨sk, p⟩2

∥sk∥2
) +

⟨yk, p⟩2

⟨yk, sk⟩

=
⟨yk, sk⟩
∥sk∥2

(1− ⟨sk, p⟩2

∥sk∥2
) +

⟨yk, p⟩2

⟨yk, sk⟩
.

Since 0 < ⟨sk,p⟩2
∥sk∥2 ≤ 1, we have

0 <
⟨yk, p⟩2

⟨yk, sk⟩
≤ ⟨Bk+1p, p⟩ ≤

⟨yk, sk⟩
∥sk∥2

+
⟨yk, p⟩2

⟨yk, sk⟩
≤ ⟨yk, sk⟩

∥sk∥2
+

∥yk∥2

⟨yk, sk⟩
≤ 2M,

in which the last inequality follows from (4.12). Furthermore, ∥Bk+1∥ ≥ ∥yk∥2

⟨yk,sk⟩ ≥ m. Then

∥Bk+1∥ and ∥B−1
k+1∥ are positive definite and uniformly bounded.

Let f∗ := minx∈M f(x). The following theorem, which tells us f(xk)− f∗ converges to
zero linearly, is another main result of this subsection.

Theorem 4.5. Choosing ρk by (3.8). Assume that fRxk
is uniformly convex on the f(x0)-

sublevel set of f , the sequence {xk} is formed by the Riemannian subspace quasi-Newton
algorithm, there exists a constant µ ∈ (0, 1) such that

f(xk)− f∗ ≤ µk(f(x0)− f∗).

Proof. Let Bk be defined by (3.9). Define θk and qk by

θk = arccos
⟨Bkŝk, ŝk⟩
∥ŝk∥∥Bkŝk∥

, qk =
⟨Bkŝk, ŝk⟩
∥ŝk∥2

=
⟨Bkpk, pk⟩

∥pk∥2
. (4.17)

From (2.7), it follows that −DfRxk
(αkpk)pk ≤ −b2Df(xk)pk, which together with

−DfRxk
(αkpk)pk = −Df(xk)pk − αk

∫ 1

0

D2fRxk
(tαkpk)(pk, pk)dt

≥ −Df(xk)pk − αkM∥pk∥2

implies that −b2Df(xk)pk ≥ −Df(xk)pk − αkM∥pk∥2. Thus,

αk ≥ b2 − 1

M
· Df(xk)pk

∥pk∥2
=
b2 − 1

M
· ⟨gk, pk⟩
∥pk∥2

.

By our subspace algorithm, we have the relation ⟨Bkpk, pk⟩ = −⟨gk, pk⟩. It follows from
(4.17) that

αk ≥ 1− b2
M

· ⟨Bkpk, pk⟩
∥pk∥2

=
1− b2
M

qk.
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By (2.4), (4.2) and Lemma 4.4, we have

f(xk)− f(xk+1) ≥ −αkb1Df(xk)pk

≥ αkb1
∥gk∥4

ρk−1
= αkb1

∥gk∥2

⟨Bkgk, gk⟩
∥gk∥2

≥ b1
1− b2
M2

qk
cos2 θk

cos2 θk∥gk∥2. (4.18)

Now we prove that there exists β > 0 such that cos θk ≥ β for all k. Since Bk is defined

by (3.9), it is one-step RBFGS update from Λ = λ id, where λ = ⟨yk−1,sk−1⟩
∥sk−1∥2 . Let B̄k+1 be

the BFGS update of Bk. Then

tr(
1

λ
B̄k+1 − id) = tr(

1

λ

[
Bk − ⟨Bkŝk, ·⟩Bkŝk

⟨Bkŝk, ŝk⟩
+
ŷk(·)yk
⟨yk, sk⟩

]
− id)

= tr(
1

λ
Bk − id)− ∥Bkŝk∥2

λ⟨Bkŝk, ŝk⟩
+

∥yk∥2

λ⟨yk, sk⟩

= tr(
1

λ
Bk − id)− ⟨Bkŝk, ŝk⟩

λ∥ŝk∥2
∥Bkŝk∥2∥ŝk∥2

⟨Bkŝk, ŝk⟩2
+

∥yk∥2

λ⟨yk, sk⟩

≤ tr(
1

λ
Bk − id)− qk

λ cos2 θk
+
M

λ

≤ tr(
1

λ
Λ− id)− ∥Λŝk−1∥2

λ⟨Λŝk−1, ŝk−1⟩
+

∥yk−1∥2

λ⟨yk−1, sk−1⟩
− qk
λ cos2 θk

+
M

λ

≤ −1 +
M

λ
− qk
λ cos2 θk

+
M

λ

≤ 2M

λ
− qk
λ cos2 θk

− 1. (4.19)

By the proof of [14, p.621], we have

det(
1

λ
B̄k+1) ≥

m

qk
det(

1

λ
Bk) ≥

m

qk

m∥ŝk−1∥2

⟨Λŝk−1, ŝk−1⟩
≥ m

λ

m

qk
. (4.20)

Let Φ(B) := tr(B− id)− log detB. By Lidskii’s theorem (see [15, Thm. 3.5]), if B is positive
definite, then ψ(B) ≥ 0. Combining this inequality with (4.19) and (4.20) yields

0 ≤ Φ(
1

λ
B̄k+1) ≤

2M

λ
− qk
λ cos2 θk

− log(
m

λ
· m
qk

)− 1

≤ 2M

λ
− 2logm− 2 + log(λ2 cos2 θk) + 1− qk

λ cos2 θk
+ log

qk
λ cos2 θk

.

By (4.9), λ is bounded. Then we have

log(λ2 cos2 θk) + 1− qk
λ cos2 θk

+ log
qk

λ cos2 θk
≥ C

for some real number C. Let g(z) := 1 − z + logz, where z > 0. Then g(z) < 0 for any
z > 0, which implies

1− qk
λ cos2 θk

+ log
qk

λ cos2 θk
< 0.
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From the above two inequalities, it follows that

log(λ2 cos2 θk) ≥ C. (4.21)

Then there exists β > 0 such that cos θk ≥ β for all k. And there exists κ such that
qk

cos2 θk
≥ κ.

By (4.18) and cos θk ≥ β, we have

f(xk)− f(xk+1) ≥ b1κβ
2 1− b2
M2

∥gk∥2. (4.22)

Note that y ∈ M is in the neighborhood of x, there exists t ∈ [0, 1] such that

f(y)− f(x) = Df(x)R−1
x (y) +

1

2
D2fRx(tR

−1
x (y))(R−1

x (y), R−1
x (y))

≥ Df(x)R−1
x (y) +

m

2
∥R−1

x (y)∥2

≥ − 1

2m
∥Df(x)∥2 = − 1

2m
∥g(x)∥2.

Since y ∈ M is arbitrary, we have f(x) − f∗ ≤ ∥g(x)∥2/(2m). Combining it with (4.22)
yields

f(xk)− f(xk+1) ≥ 2mb1κβ
2 1− b2
M2

(f(xk)− f∗), (4.23)

which implies that

f(xk)− f(x∗) ≤ µk(f(x0)− f(x∗)),

where µ = 1− 2mb1κβ
2 1−b2

M2 .

Next we prove the local linear convergence of the subspace algorithm. In the proof of
the last result, we adopt the notation F (x) = Ω(G(x)) as x → x∗, which means that there
exist l, L > 0 and a neighborhood N of x∗ such that l∥F (x)∥ ≤ ∥G(x)∥ ≤ L∥F (x)∥ for all
x ∈ N .

Theorem 4.6. Suppose that the assumptions of Theorem 4.5 hold. Assume that xk con-
verges to an optimal solution x∗. There exists a K such that for all k ≥ K, there exist τ > 0
and µ ∈ (0, 1) such that

dist(xk, x
∗) ≤ τµk−Kdist(xK , x

∗).

Proof. There exists a neighborhood U of x∗ such that, for all x ∈ U ,

f(x)− f(x∗) =
1

2
D2fRx∗ (tR

−1
x∗ (x))(R−1

x∗ (x), R−1
x∗ (x))

for some t ∈ (0, 1), which together with (2.1) implies that f(x) − f(x∗) = Ω(∥R−1
x∗ (x)∥2).

From the proof of [5, Prop. 7.1.3] it follows that ∥R−1
x∗ (x)∥ = Ω(dist(x, x∗)), and therefore

f(x)− f(x∗) = Ω(dist(x, x∗)2). (4.24)

Since {xk} converges to x∗, there is a K such that, for all k > K, xk belongs to U . By
(4.23), we have

f(xk)− f(x∗) ≤ µ(f(xk−1)− f(x∗)) ≤ µk−K(f(xK)− f(x∗)).

Then the assertion follows from (4.24).
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5 Numerical Results

In this section, we demonstrate the effectiveness of our Riemannian subspace quasi-Newton
algorithm on some test problems. All of our tests are carried out in MATLAB R2014a on a
Thinkpad notebook Intel Core i5 with 2.53GHz CPU and 4.00GB RAM .

Since the convergence of first-order methods may slow down as the iterates approach a
stationary point, it is critical to detect this and stop properly. In addition, it is tricky to
correctly predict whether an algorithm is temporarily or permanently trapped in a region
when its convergence speed has reduced. Hence, it is usually beneficial to have flexible
termination rules. In our implementation, in addition to checking the norm of the gradient
∥gradf(x)∥ ≤ ϵg, we also compute the relative changes of objective function values of the
two consecutive iterates and terminate it as soon as

f(xk)− f(xk+1)

|f(xk)|+ 1
≤ ϵf . (5.1)

The default values of ϵf , ϵg are 10−8, 10−5. The max iteration is 1000.
Given a symmetric matrix A ∈ Rn×n, the p-largest eigenvalue problem can be formulated

as

max
X∈Rn×p

tr(XTAX)

s.t. XTX = Ip.

We form a few randomly generated dense Wishart matrices assembled as A = ĀĀT , where
Ā ∈ Rn×n is a matrix whose elements are sampled from the standard Gaussian distribution.
The initial iterateX0 is given by applying Matlab’s function orth to a matrix whose elements
are drawn from the standard normal distribution using Matlab’s function randn.

The objective function is constrained on the Stiefel manifold St(p, n) = {X ∈ Rn×p :
XTX = Ip}. The tangent space is TXSt(p, n) = {Z ∈ Rn×p : XTZ + ZTX = 0}. We select
the gradient, retraction and vector transport as follows. Define the function

f̄ : Rn×p → R : X 7→ tr(XTAX).

Let f denote the restriction of f̄ to the Stiefel manifold. We have Df̄(X)[Z] = 2tr(ZTAX),
hence gradf̄(X) = 2AX. Then the gradient of f is equal to the projection of gradf̄(X) onto
TXSt(p, n):

gradf(X) = PXgradf̄(X) = (I −XXT )gradf̄(X) +Xskew(XT gradf̄(X)),

where skew(S) := 1
2 (S − ST ). The retraction is

RX(ξ) := qf(X + ξ),

where qf(S) denotes the Q factor of the decomposition of S as S = QR, where Q belongs
to St(p, n) and R is an upper triangular matrix with strictly positive diagonal elements.
Since the isometry condition can be dropped on compact manifolds (see [14]), we choose the
vector transport as below

TX1,X2
ξ = (I −X2X

T
2 )ξ +X2skew(X

T
2 ξ) ∈ TX2

St(p, n),

where X2 = RX1(η), ξ, η ∈ TX1St(p, n).



292 HEJIE WEI

We conduct our numerical experiments on the problem above. For simplicity, we describe
the Riemannian subspace quasi-Newton algorithm as RSQN 1 and RSQN 2, where we choose
ρk by (3.10) and (3.8) respectively. The Riemannian steepest descent method is abbreviated
as ‘RSD’ and the Riemannian Conguate Gradient method is called ‘RCG’ for short (see [5,8]).
We record the average numerical performance and list them in Table 1, 2 in which ‘iter’
represents the iteration number, ‘CPU’ represents the required time, ‘obj’ represents the
objective function value, ‘nf’ represents the number of the function evaluations and ‘ng’
represents the number of gradient evaluations.

Table 1: Numerical results of RSD and RSQN1
n, p RSD 　 RSQN1 　

CPU iter obj nf ng CPU iter obj nf ng
n = 100, various p (I)

p = 3 0.25 113 542.0168 367 114 0.07 46 542.0168 192 192
p = 5 0.35 132 874.2449 444 133 0.10 50 874.2449 195 195
p = 10 0.40 148 1586.8262 484 149 0.12 50 1586.8262 192 192

p = 5, various n (II)
n = 100 0.37 145 873.6855 440 146 0.09 43 873.6855 172 172
n = 500 3.96 336 4768.8005 961 337 0.42 81 4768.8005 236 236
n = 1000 14.72 448 9716.6753 1188 449 1.26 103 9716.6753 219 219

n = 100, p = 5, various cond(A) (III)
O(104) 0.27 106 864.3154 343 107 0.10 50 864.3154 194 194
O(105) 0.29 109 864.9386 367 110 0.10 48 864.9386 189 189
O(106) 0.40 147 882.5408 479 148 0.09 49 882.5408 178 178

Table 2: Numerical results of RCG and RSQN2
n, p RCG 　 RSQN2 　

CPU iter obj nf ng CPU iter obj nf ng
n = 100, various p (I)

p = 3 0.12 53 542.0168 154 54 0.07 47 542.0168 180 180
p = 5 0.16 58 874.2449 168 59 0.08 48 874.2449 170 170
p = 10 0.20 64 1586.8262 186 65 0.12 57 1586.8262 212 212

p = 5, various n (II)
n = 100 0.17 59 873.6855 172 60 0.08 43 873.6855 151 151
n = 500 1.12 93 4768.8005 261 94 0.35 79 4768.8005 176 176
n = 1000 3.71 108 9716.6753 301 109 1.17 101 9716.6753 196 196

n = 100, p = 5, various cond(A) (III)
O(104) 0.16 58 864.3154 167 59 0.10 51 864.3154 195 195
O(105) 0.16 55 864.9386 164 56 0.09 48 864.9386 168 168
O(106) 0.17 60 882.5408 172 61 0.09 49 882.5408 178 178

Table 1, 2 contain the results with various n, p and cond(A) for the RSD, RSQN1, RCG,
RSQN2 over random tests. For a fixed n, it is clear that from Table 1(I), 2(I), our subspace
algorithms, RSQN1 and RSQN2, perform more efficient than RSD, and RCG in terms of
CPU time and iterations for small p. Since we adopt the Wolfe line search in our subspace
methods, RSQN1 and RSQN2 require more gradient evaluations than RCG. For a fixed p,
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Table 1(II), 2(II) show that the advantage of the RSQN1, RSQN2 is more obvious especially
when n grows larger in terms of CPU time, iterations and the number of function evaluations,
which indicate the efficiency of the subspace method. For n = 100, p = 5, we investigate the
influence of the condition number of the random matrix A on the algorithm in Table 1(III),
2(III). It is clear that the CPU time, iterations, the number of function evaluations of our
algorithm keep stable as the condition numbers grow. Overall, our algorithm is efficient and
stable in most cases, even for ill-conditioned problems.
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