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In recent years, some nonlinear dynamical systems have been proposed to describe the
above mentioned microbial process. A widely cited model was proposed by Zeng et al. [38],
in which the concentrations of biomass, glycerol and products in reactor were considered.
Xiu et al. altered the model by leading in an excess term to describe the continuous culture
and fed-batch fermentation in [30]. Yuan et al. consider a nonlinear time-delay dynamic sys-
tem with uncertain system parameters [34] and a nonlinear enzyme-catalytic time-delayed
switched dynamical system [35]to characterize the process of batch fermentation, respec-
tively. Based on the literature [30], Gao et al. studied the parameters identification problem
of the nonlinear dynamical system in microbial continuous cultures in [4] and proposed a
nonlinear impulsive system of fed-batch culture in [5]; Li et al. [9] proved the existence of
optimal solution in continuous cultures; Ma et al. [18] established a model to research Hopf
bifurcation and chaos analysis; Ye et al. [32] analyzed the stability of the nonlinear dynami-
cal system in microbial continuous cultures; Li et al. [10] studied an algorithm of the optimal
control model for the continuous cultures which the step-size is determined by Armijio line
search and the direction is found by the gradient method. On the other hand, based on
the parameter identification in [39], Zhai et al. [37] further studied the optimal control for a
microbial continuous culture based on the biology robustness which used a parallel particle
swam optimization algorithm. The fermentation of glycerol by K. pneumoniae under anaer-
obic conditions is a complex bioprocess and time delays exist in the process. Liu et al. [14]
proposed a novel mathematical model including nonlinear time-delay system to describe
the batch fermentations of glycerol by K. pneumoniae, and investigated some important
properties. And in 2018 Liu et al. [15] develop gradient-based optimization algorithms to
determine the unknown time-delays and system parameters. Lian et al. [12] considered the
oscillatory behavior in microbial continuous cultures with time delay. Li et al. [11] account a
finite time delay between the biomass formation and the operating conditions in the kinetic
system, studied the stability and Hopf bifurcation of a delay differential system. Wang et
al. [29] proposed a modified particle swarm algorithm to solve the stochastic optimal control
problem based on the theory of swarm intelligence algorithm. Nonetheless, there are few
papers dedicated to the optimal control problem of time-delay dynamic system in microbial
continuous fermentation.

In this article we consider a nonlinear time-delay dynamic system to describe the process
of continuous fermentation of glycerol bioconversion to 1,3-PD induced by K. pneumoniae.
Our aim is that how to get the highest concentration of 1,3-PD by controlling the operating
conditions. Therefore, we propose an optimal control model, taking the dilution rate and the
feeding glycerol concentration as control variables, the concentration of 1,3-PD at the fixed
terminal time as objective function. The optimal control problem governed by a nonlinear
time-delay dynamic system, is subject to continuous state inequality constraints for ensuring
that the concentrations of biomass, glycerol, and reaction products lie in specified limits.
In the literatures [10] and [37], the dilution rate and the feeding glycerol concentration are
selected as fixed constants during the process of continuous fermentation, which can’t be
adjusted in the culture process according to the actual fermentation conditions. Since the
continuous culture is a-long-time process control problem, we choosing the dilution rate and
the feeding glycerol concentration as a continuous function of time t. In order to solve this
kind of problem, we use control parameterization method [13,31,33], so as to make the whole
process control based on time is transformed into a multi-stage control [19]. Next, we adopt
an sensitivity-based adaptive refinement control vector parameterization approach proposed
by Liu et al. [27]. Starting from a coarse discretization grid, if the corresponding sensitivities
are high, the new points are inserted, and the points are eliminated if the sensitivities are
low. In this algorithm, the number of stages and the length of each stage’s interval are
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both self-adapted. Moreover, different initial values may have different effects on the results
in this algorithm. In order to solving this problem, we embed the above algorithm into
an improved particle swarm optimization algorithm [3]. In this way, a high-quality global
solution can be obtained. Numerical results are presented to show the effectiveness of the
algorithm.

The rest of this paper is organized as follows. Section 2 introduces the nonlinear time-
delayed dynamic system in continuous fermentation. Section 3 gives the optimal control
model and its approximation problem. Section 4 constructs a sensitivity-base adaptive con-
trol vector parameterization approach and a particle swarm optimization algorithm to solve
the optimal control problem, while Section 5 illustrates the numerical results. And the
conclusions are presented in Section 6.

2 Nonlinear Time-Delayed Dynamical System of Continuous Cul-
ture in Microbial Fermentation

In continuous fermentation, glycerol is added to the reactor continuously and the broth in
reactor pours out at the same rate. During the process of the culture, the volume of the
fermentation broth remains constant. According to the fermentation process, we assume
that

H1 The concentrations of reactants are uniform in reactor, nonuniform space distribution
are ignored.

H2 During the process of continuous culture, the substrate added to the reactor only
includes glycerol and the fermentation broth is exported by the dilution rate D.

Under the above assumptions H1 and H2, considering that the growth rate of microor-
ganisms is not only related to the concentration of microorganisms at this time, but also
related to the concentration at the previous time. So, a time delay should be taken into ac-
count in modelling the fermentation process. In continuous microbial cultures mass balance
of biomass, substrate and products can be described as the following nonlinear time-delayed
dynamical system [11] :

 ẋ1(t) = µx1(t− τ)−Dx1(t),
ẋ2(t) = D(cs0 − x2(t))− q2x1(t− τ), t ∈ [0, tf ],
ẋi(t) = qix1(t− τ)−Dxi(t), i = 3, 4, 5,

(2.1)

with initial conditions x(t) = x0, for t ∈ [−τ, 0]. x0 is the initial value for the state variable,
which x0 := (x10, x20, 0, 0, 0)

T ∈ R5, x10, x20 are known values selected by experience.
Among them,x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t))

T is the state vector whose components
are, respectively, the concentrations of biomass, glycerol, 1,3-PD, acetate and ethanol in
the reactor at time t; tf is the terminal moment; τ is the time-delay argument of the
fermentation process, with the constant value 0.26. The elements of the control variable
u = (D, cs0)

T ∈ R2 are dilution rate, glycerol concentration in feed. The specific growth
rate of cells µ, specific consumption rate of substrate q2 and specific formation rate of product
qi, i = 3, 4, 5, are expressed by the following equations on the basis of previous work [38].

µ = µm
x2(t)

x2(t) + ks

∏
(1− xi(t)

x∗
i

), (2.2)
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q2 = m2 +
µ

Y2
∆q2

x2(t)

x2(t) + k2
, (2.3)

q3 = m3 + µY3 +∆q3
x2(t)

x2(t) + k3
, (2.4)

q4 = m4 + µY4 +∆q4
x2(t)

x2(t) + k4
, (2.5)

q5 = q2(
b1

c1 +Dx2(t)
+

b2
c2 +Dx2(t)

). (2.6)

Under anaerobic conditions at 370C and pH 7.0, the maximum specific growth rate
µm and Monod saturation constant ks are 0.67h−1 and 0.28mmol/L, respectively. Sat-
uration constants for substrate and products in kinetic equations with excess terms are
k2 = 11.43mmol/L, k3 = 15.50mmol/L, k4 = 86.71mmol/L. c1 = 0.06, c2 = 50.45.

It should be noted that there exist critical concentrations, and out of range will cease to
grow of biomass, glycerol, 1,3-PD, acetate and ethanol. As a result it is biologically mean-
ingful to restrict the concentrations of biomass, glycerol and products in a set W defined
as

x(t) ∈ W := [x∗, x
∗] =

5∏
i=1

[xi∗, x
∗
i ] ⊂ R5

+,

with x∗ = [0.001, 100, 0, 0, 0]T , x∗ = [10, 2039, 939.5, 1026, 360.9].

Table 1: The parameters in Eqs.(3)-(5)
Substrate/Products mi Yi ∆qi

i = 2 2.1854 0.0082 31.2328
i = 3 -2.2942 75.477 24.2336
i = 4 -1.1345 30.8599 5.0099

Since the continuous culture is a-long-time process control problem, the control variable
u are considered as a continuous function of time t, that is u(t). The control function u(t)
to be identified range in

u(t) = [D(t), cs0(t)]
T ∈ Uad = [0.05, 0.67]× [100, 1800],

mi, Yi and ∆qi are parameters whose values can be referred to the literature [4,28] as shown
in Table1. b1 = 0.03, b2 = 4.56. Let

f(t, u(t), x(t), x(t− τ)) : = (f1(t, u(t), x(t), x(t− τ)), ..., f5(t, u(t), x(t), x(t− τ)))T

= (µx1(t− τ)−D(t)x1(t), D(t)(cs0(t)− x2(t))
−q2x1(t− τ), q3x1(t− τ)−D(t)x3(t), q4x1(t− τ)
−D(t)x4(t), q5x1(t− τ)−D(t)x5(t))

T .

(2.7)

Thus, we can formulate the continuous cultures as follows:{
ẋ(t) = f(t, u(t), x(t), x(t− τ)), t ∈ [0, tf ],
x(t) = x0, t ∈ [−τ, 0].

(2.8)

In view of the mechanism of bio-dissimilation of glycerol to 1,3-PD, we assume that
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H3 x0 ∈ W , and for u ∈ Uad, there exists at least one steady state of the system (2.8) and
the number of steady states is finite.

Under the assumption (H3), we can easily obtain the following properties of the system
(2.8).
Property 1. Suppose u ∈ Uad, then the system (2.8) has a unique solution, denoted by
x(t;u), and x(t;u) is continuous in u on Uad.
Property 2. Suppose u ∈ Uad, then the function f given by (2.8) satisfies that f ∈
C(0, tf ;R

5) and f is a locally Lipschitz continuous in x on W .

3 Optimal Control Models

3.1 Optimal control problem

In continuous fermentation, it is desired that the concentration of 1,3-PD should be max-
imized at fixed terminal time. This is achieved by manipulating the dilution rate and the
glycerol concentration of glycerol in feed. The optimal control problem is to choose an
optimal control strategy such that the concentration of 1,3-PD at the terminal time is max-
imized. Thus, the optimal control problem(P1) can be formulated as:

min J0(u) = −x3(tf )
s.t. ẋ(t) = f(t, u(t), x(t), x(t− τ)), t ∈ [0, tf ]

x(t) = x0, t ∈ [−τ, 0]
x(t) ∈ W,u ∈ Uad.

Theorem 3.1. There exists an optimal solution of (P1), that is, u∗ ∈ Uad so that

J0(u
∗) ≤ J0(u),∀u ∈ Uad.

Proof. see [4] Theorem 1.

3.2 Problem approximation

Since the constraint in (P1) is a continuous state inequality constraint [7, 8], (P1) can be
viewed as a semi-infinite programming problem. An efficient algorithm for solving optimiza-
tion problem of this type is to use the constraints transcript technology [6, 16, 20, 22]. We
briefly introduce the application of this algorithm to the problem (P1).

Let

gi(t, u(t), x(t)) = xi(t)− x∗
i ,

g5+i(t, u(t), x(t)) = x∗i − xi(t), i = 1, 2, ..., 5.

The condition x(t) ∈ W is equivalently transformed to

G(u) = 0, (3.1)

where

G(u) =

∫ tf

0

10∑
i=1

max{0, gi(t, u(t), x(t))}dt.
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Then, the objective function in (P1) is augmented as follows:

J1 = J0 + ρ

∫ tf

0

10∑
i=1

max{0, gi(t, u(t), x(t))}dt, (3.2)

where ρ > 0 is the given penalty parameter. However,the equality constraint (3.1) is non-
differentiable at the points when gi = 0. Consequently, standard optimization routines
would have difficulties in dealing with this type problem. The following smooth function is
therefore introduced to approximate the non-smooth max operator [27],

φδ(x) =
1

2
(x+

√
x2 + 4δ2), (3.3)

where the smoothing paratemeter δ is a very small positive number. For any x ∈ R, φδ(x)
has the following properties [27]:

lim
δ→0

φδ(x) = max{x, 0}, (3.4)

0 < φδ(x)−max{x, 0} < δ. (3.5)

Then the augmented objective function (3.2) can be reformulated as

J2 = J0 + ρ

∫ tf

0

10∑
i=1

φδ(gi(t, u(t), x(t)))dt, (3.6)

Then (P1) can be approximated by the following problem (P2):

min J2 = −x3(tf ) + ρ
∫ tf
0

10∑
i=1

φδ(gi(t, u(t), x(t)))dt

s.t. ẋ = f(t, u(t), x(t), x(t− τ)), t ∈ [0, tf ]
x(t) = x0, t ∈ [−τ, 0]
u(t) ∈ Uad,
t ∈ [0, tf ].

Theorem 3.2. Let u∗
δ be the optimal solution of the approximate problem (P2). Suppose

that there exists an optimal solution u∗ of the original problem (P1). Then

lim
δ→0

J2(u
∗
δ) = J0(u

∗).

Proof. By the equations (3.4)(3.5), we can get that

lim
δ→0

φδ(x) = max{x, 0},

so
lim
δ→0

J2(u
∗
δ) = J1(u

∗),

The objective function J1 is equivalent to that of problem (P1). Thus,we have

lim
δ→0

J2(u
∗
δ) = J0(u

∗).
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4 Computational Approaches

4.1 Control vector parameterization

In order to solve problem (P2), we adopt the method of control vector parameterization
[13, 31, 33], in which the control variables ui(t)(i = 1, 2) are discretized. For each i = 1, 2,
the ith component ui of the control u is a piecewise constant function over the interval [0, tf ]
with jump points at t0, t1, ..., tp. In other words, ui takes a constant until the next switching
time is reached, at this jump point, ui changes instantaneously to another constant, the
whole time-based process control is transformed into a multi-stage control. Mathematically,
ui may be expressed as:

ui(t) ≈ ûi(t) =

p∑
k=1

σi,kχk(t), (4.1)

where σi,k is the value of ui(t) in the kth subinterval [tk−1, tk),û = [û1, û2] and χk is defined
as

χk(t) =

{
1, if t ∈ [tk−1, tk),
0, otherwise,

(4.2)

the time tk, k = 1, .., p are such that 0 = t0 < t1 < · · · < tp−1 < tp = tf . Let σ =
[σ1, σ2]

T , in which σ1 = [σ1,1, σ1,2, ..., σ1,p], σ2 = [σ2,1, σ2,2, ..., σ2,p]. Define Ξad = {σ =
[σ1,1, ..., σ1,p, σ2,1, ..., σ2,p]

T : 0.05 ⩽ σ1,i ⩽ 0.67, 100 ⩽ σ2,i ⩽ 1800, i = 1, ..., p}. u ∈ Uad is
equivalent to σ ∈ Ξad [22]. In this way, (P3) can be reformulated as an NLP problem, in
which σ is regarded as the decision vector.

We may now specify the approximate problem (P3) as follows:
Problem (P3) Find a control parameter vector σ ∈ Uad to minimize the cost function
J(σ).

min J = −x3(tf | σ) + ρ
∫ tf
0

10∑
i=1

φδ(gi(t, σ, x(t)))dt

s.t. ẋ = f̃(t, σ, x(t), x(t− τ)), t ∈ [0, tf ]
x(t) = x0, t ∈ [−τ, 0]
σ ∈ Ξad,
t ∈ [0, tf ].

where

f̃(t, σ, x(t), x(t− τ)) = f(t,

p∑
k=1

σi,kχk(t), x(t), x(t− τ))

Theorem 4.1. Let û∗ be the optimal control of the approximate problem (P3). Suppose that
the original problem (P1) has an optimal control u∗. Then,

lim
p→∞

J(û∗) = J(u∗)

Proof. see [22] Theorem 6.5.1.

To solve the problem(P) as a mathematical programming problem, we require the gra-
dient formulae for the function J . We shall derive the required formulae as follows [23,31]:

Let the corresponding Hamiltonian function for the cost function be defined by

H(t, x(t|τ), σ, λ) = £(t, σ, x(t)) + λT f̃(t, σ, x(t), x(t− τ)) (4.3)
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where

£(t, σ, x(t)) = ρ

10∑
i=1

φδ(gi(t, σ, x(t))),

f̃(t, σ, x(t), x(t− τ)) = f(t,

p∑
k=1

σi,kχk(t), x(t), x(t− τ))

and

λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t))
T (4.4)

is the solution of the costate system

˙λ(t) = −∂H(t, x(t|τ), σ, λ)T

∂x
(4.5)

with the boundary continuous

λ(tf ) = (0, 0, 0, 0, 0)T . (4.6)

The gradient of J is computed form

∂J

∂σ
=

∫ tf

0

∂H(t, x(t|τ), σ, λ)
∂σ

dt (4.7)

During actual computation, very often the control parametrization is carried out on an
partition of the interval [0, tf ], i.e.,

ûi(t) =

p∑
k=1

σi,kχk(t), i = 1, 2

As such, each component of (4.7) can be written in a more specific form:

∂J

∂σi,j
=

∫ tj

tj−1

∂H(t, x(t|τ), σ, λ)
∂ûi

dt, j = 1, ..., p. (4.8)

4.2 Sensitivity-based adaptive refinement strategy

In the process of control vector parameterization, in order to select a suitable discretization
level of time grids, we adopt a sensitivity-based adaptive refinement method.

Let J∗l, û∗l
i = [σ∗l

i,1, ..., σ
∗l
i,p], (i = 1, 2), ∆l = [tl0, ..., t

l
p]

T as the optimal objective function
value, the optimal solution and the corresponding discretization time grid found in iteration

l. ∆l
′

:= [tl
′

0 , ..., t
l
′

2p]
T is obtained by bisecting each subinterval in ∆l with initial control

variable ûl
′

1 = [σ∗l
1,1, σ

∗l
1,1, .., σ

∗l
1,p, σ

∗l
1,p]

T , ûl
′

2 = [σ∗l
2,1, σ

∗l
2,1, .., σ

∗l
2,p, σ

∗l
2,p]

T . Suppose J∗l
′

, û∗l
′

1 =

[σ∗l
′

1,1, ..., σ
∗l

′

1,2p], û
∗l

′

2 = [σ∗l
′

2,1, ..., σ
∗l

′

2,2p] are the optimal objective function value and the optimal

solution in iteration l
′
, respectively. The refinement strategy is to find a new discretization

grid to make it better adapted to the solution.

Let the sensitivity of σl
′

i,j as follows:

si,j =

∣∣∣∣ ∂J

∂σl′

i,j

∣∣∣∣, which σl
′

i,j = σ∗l
i,⌊(j+1)/2⌋, (4.9)
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where ⌊ j+1
2 ⌋ denotes the maximum integer that does not exceed j+1

2 . Suppose σ∗l−1
i,K and

σ∗l
i,K are the optimal control values in time interval K := [tl

′

2k−2, t
l
′

2k] in iteration l − 1 and
iteration l, respectively.

For a given value ε1 > 0, if ∣∣σ∗l
i.K − σ∗l−1

i,K

∣∣ < ε1, (4.10)

then let
si,2k−1 = 0 and si,2k = 0. (4.11)

If the following conditions

si,2k−1 > λ1s̄i or si,2k > λ1s̄i (4.12)

are established, where

s̄i =
1

2p

2p∑
j=1

si,j , (4.13)

then the grid point tl
′

2k−1 in ∆l
′

is reserved; otherwise, eliminate it. When both tl
′

2k−1 and

tl
′

2(k+1)−1 are removed, the grid point tl
′

2k is also eliminated if

si,2k−1 < λ2s̄i, si,2k < λ2s̄i, si,2k+1 < λ2s̄i, si,2(k+1) < λ2s̄i, and
∣∣σ∗l

i,k+1 − σ∗l
i,k

∣∣ < ε2,
(4.14)

where λ1, λ2 and ε2 are given constants, and λ1 > 0, λ2 ∈ (0, λ1], ε2 > 0.
The main steps of the sensitivity-based adaptive control vector parameterization algo-

rithm are as follows:

Algorithm A

Step 0. Given the initial values û0 = [û01, û02]
T , û0 is the initial value for all subintervals,

given time grids ∆0, the maximum number of iterations lmax ≥ 1, error tolerance
ξ > 0, constants ρ > 0, δ > 0, ε1 > 0, ε2 > 0, λ1 > 0, λ2 ∈ (0, λ1].

Step 1. Set l = 0.

Step 2. Let ûl as the starting point and ∆l as the starting time grids. By using the quadratic
sequence programming algorithm to solve the NLP to get the optimal objective func-
tion value J∗l and the optimal solution û∗l.

Step 3. If l = lmax or |J
∗l−J∗l−1

J∗l | < ξ(l > 0), stop; otherwise, go to Step4.

Step 4. Refine time grids.

Step 4.1. Bisecting each subinterval in ∆l to get the temporary grids ∆l
′

and the

corresponding control variables ûl
′

,

Step 4.2. Compute the sensitivity according to (4.9), (4.10) and (4.11).

Step 4.3. Eliminate unnecessary grid points according to (4.12) (4.13) and (4.14).

Step 4.4. Let ûl+1 = ûl
′

, ∆l+1 = ∆l
′

.

Step 5. Set l = l + 1. If l = lmax, stop; otherwise, go to Step 2.
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4.3 Particle swarm optimization algorithm

In the algorithm A, different initial values will produce different results, thus this algorithm
will likely get trapped at a local solution. In order to overcome this difficulty, we embed
algorithm A into an improved particle swarm optimization (PSO) algorithm [3] to solve thee
problem(P2). The conventional PSO algorithm converges quickly in the initial stages, but
slows down when approaching the optimal solution [17]. So we adopt the improved PSO
algorithm proposed in the literature [3], which can quickly converge to the optimal solution.

The parameters in Algorithm B are defined below:

• Let N denote the total number of particles in the swarm.

• c1 and c2 are the cognitive and social scaling parameters.

• ωmax and ωmin are the maximum and minimum inertia weights.

• Vmax and Vmin are vectors containing the maximum and minimum particle velocities.

• Kmax is the maximum number of iteration.

• d1 and d2 are control factors.

• k is the iteration index.

Algorithm B

Step 0. Initialize the parameters N, l, c1, c2, d1, d2, ωmax, ωmin, Vmax, Vmin,Kmax.

Step 1. Randomly generate N particles with uniform distribution on Uad. Denote the posi-
tion and velocity of particles by û0

n = [ûn
01, û

n
02] ∈ Uad and vn = [vn1 , v

n
2 ], respectively,

where vni ∈ [V i
min, V

i
max], i = 1, 2, V i

min and V i
max denote the ith components of the

Vmin and Vmax. Set the Jn
pbest is the best objective value found by the nth individ-

ual particle, û0
n∗ = [ûn∗

01 , û
n∗
02 ] is the best position found by the nth individual parti-

cle. Let Jgbest denote the best objective value found by any member of the swarms,
û0
∗ = [û∗

01, û
∗
02] denote the best position found by any member of the swarms.

Step 2. Let k = 1, Jn
pbest → +∞, Jgbest → +∞

Step 3. For each n = 1, 2, ..., N , put û0
n into the algorithm A to calculate the corresponding

objective function values J(û0
n)

Step 4. If J(û0
n) < Jn

pbest, then set Jn
pbest = J(û0

n) and û0
n∗ = û0

n.

Step 5. If Jn
pbest < Jgbest, then set Jgbest = Jn

pbest and û0
∗ = û0

n∗.

Step 6. If k ≤ Kmax, then go to Step 7; otherwise, stop.

Step 7. Update the inertia term according to the following formula:

ω = (ωmax − ωmin − d1) exp{
1

Kmax + d2(k − 1)
}.

Step 8. For each n = 1, ..., N ,i = 1, 2 compute

vni = ωvni + c1r1(û
n∗
0i − ûn

0i) + c2r2(û
∗
0i − ûn

0i),

where r1, r2 obey the uniform distribution on [0, 1].
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Step 9. For each n = 1, 2, ...N update the velocity of the nth particle according to the
following formula:

vni =

 V i
min, if vni < V i

min,
vni , if vni ∈ [V i

min, V
i
max],

V i
max, if vni > V i

max,

where i = 1, 2.

Step 10. For each n = 1, 2, ..., N ,i = 1, 2 compute

ûn
0i = ûn

0i + vni .

Step 11. For each n = 1, 2, ..., N , update the position of the nth particle according to the
following formula:

ûn
0i =

 U i
min, if ûn

0i < U i
min,

ûn
0i, if ûn

0i ∈ [U i
min, U

i
max],

U i
max, if ûn

0i > U i
max,

where ûn
0i, U

i
min and U i

max denote the ith components of the û0
n, Umin and Umax,

respectively.

Step 12. Set k = k + 1, and return go to Step 3.

5 Numerical Results

For the parameters in the algorithm A, we choose the following values:

ρ = 104, δ = 10−10, ε1 = 10−6, ε2 = 10−3, λ1 = 0.25, λ2 = 0.2, ξ = 10−4, lmax = 20.

And the parameters of the algorithm B are selected as follows:

c1 = 2, c2 = 2, d1 = 0.2, d2 = 0.7, ωmax = 0.7, ωmin = 0.4, N = 8, Kmax = 20.

In this paper, the initial state x0 = (0.1, 400, 0, 0, 0)T . The whole continuous fermentation
was implemented with enough substrate.The total fermentation time is taken as 100h. Table
2 gives a few examples for different initial values produce different results by algorithm A.

The first column in Table 2 is the initial value û0 in the algorithm A, the second column
is the computing concentration of 1,3-PD at the terminal time. As it can be seen, the
results produced by different initial values have great difference. In order to avoid falling
into local minimum, we embed algorithm A into the algorithm B to obtain a global optimal
solution. Owing to the algorithm we adopt is a combination algorithm of improved particle
swarm optimization and algorithm A, taking into account the complexity of the gradient
computational in the algorithm A, we choose the number of particles in the swarm as
N = 8. Too small number of particles make the result not good enough. Too large number
of particles make the calculation speed slow. So we take the number as N = 8. Using this
algorithm, we get the concentration of 1,3-PD at the terminal time is 871.7830 mmol/L. By
this algorithm, the detailed evolution of time grids is presented in Fig 1, we can see that the
optimal time point partition can be found with twice iteration, a high-quality solution can
be obtained with low computational cost. The optimal dilution rate and feeding glycerol
concentration strategy are shown in Fig 2 and Fig 3, respectively. Moreover, the changes
of the trajectories of each substance concentrations are shown in Fig 4. The computational
results verify the validity of this optimization algorithm.
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Table 2: The results using algorithm A

û0 value

(0.574, 1074.1) 497.7442
(0.594, 982.29) 561.8418
(0.49, 569.243) 280.9148
(0.08, 152) 781.7031

(0.639, 1067.8) 539.4966
(0.5, 861) 483.0262
(0.1, 1287) 762.8610
(0.45, 607) 319.3546
(0.47, 435) 210.4031
(0.2, 1300) 764.5957
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Figure 1: Evolution of the time grids

6 Conclusions

In this paper, we study the optimal control problem of a nonlinear time-delayed dynamical
system in microbial continuous fermentation. In order to obtain the higher concentration,
we embed a sensitivity-based control vector parameterization adaptive refinement method
into an improved particle swarm optimization algorithm to find the optimal dilution rate and
feeding glycerol concentration. Through numerical calculation, we obtain the concentration
of 1,3-PD at the terminal time and corresponding optimal control stagety, which illustrates
the validity and the effectiveness of this optimization algorithm.
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Figure 2: Dilution rate
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Figure 3: Feeding glycerol concentration
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Figure 4: The trajectories of each substance concentrations
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