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are required for this process. A kinetic model describing substrate consumption and produc-
tion formation is proposed in [28]. This model is further modified to describe the excessive
influence behavior in the process of glycerol conversion in [23]. An enzyme-catalytic kinetic
model is proposed in [16]. Based on these mathematical model, parameter identification and
optimal control problems are discussed in [2, 7, 18, 20, 21, 24, 25, 27]. Recently, stability of
these nonlinear dynamical systems are widely discussed. Stability of an impulsive system is
considered in [29]. ϕ0-stability of an impulsive system is investigated in [30]. The strong sta-
bility of a nonlinear multistage system is discussed in [31]. However, time-delays are ignored
in the above nonlinear dynamic systems. In fact, like most real systems, batch bioreactors
are also influenced by time-delays. As a result, a nonlinear time-delay system is proposed to
formulate the batch process in [11]. For this system, parameter identification and optimal
control problems are discussed in [3, 8–10, 12–14, 17, 26]. However, stability analysis of the
nonlinear time-delay system has not been reported in the literature.

In this paper, we consider the strong stability of nonlinear time-delay system arising in
1,3-PD batch fermentation. We first discuss the nonlinear time-delay system and its some
important properties. Then, the corresponding linear variational system is presented. On
this basis, the strong stability of the nonlinear time-delay system is proved.

The rest of this paper is organized as follows. Section 2 gives the nonlinear time-delay
system. Section 3 provides the linear variational system. Strong stability of the nonlinear
time-delay system is proved in Section 5. Finally, Section 6 provides the main conclusions.

2 Nonlinear Time-Delay System

• In denotes the set {1, 2, · · · , n}.

• R denotes the set of real numbers.

• R+ denotes the set of nonnegative real numbers.

• x(t), xτ (t) = x(t− τ) ∈ R5
+ denote the state and delayed state vectors.

• τ > 0 denotes a given state-delay.

• x0 ∈ R5
+ denotes the initial state trajectory vector.

• t0 denotes the starting moment of the batch culture.

• tf denotes the terminal moment of the batch culture.

• D0 := [t0, tf ].

• B1([−τ, tf ], R5
+) = {f : [−τ, tf ] → R5

+|f is bounded and continuously differ- ential.}

• φ ∈ B1([−τ, 0], R5
+) denotes the history function.

• C(D0, R
5) denotes the set of continuous functions from D0 to R5.

• C1(D0, R
5) denotes the set of continuously differentiable functions from D0 to R5.

• µm denotes the maximum specific growth rate.

• k2 denotes the Monod saturation constant.

• m2 denotes the maintenance term of substrate consumption under substrate-limited
conditions.

• Y2 denotes the maximum growth yield.
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Table 1: The time-delay and kinetic parameters in system (2.1) [11].
τ µm k2 m2 Y2

0.26 0.994 0.368 3.24 0.0085
m3 Y3 m4 Y4 m5

3.679 76 0.491 35.54 7.309
Y5 n2 n3 n4 n5

14.78 1 3 3 3

• mi, i = 3, 4, 5, denote the maintenance terms of 1,3-PD, acetate and ethanol under
substrate-limited conditions, respectively.

• Yi, i = 3, 4, 5, denote the maximum yields of 1,3-PD, acetate and ethanol, respectively.

Based on the previous work [11], mass balance relationships for biomass, glycerol, 1,3-
PD, acetate and ethanol in the batch process can be expressed as the following nonlinear
time-delay system: 

ẋ(t) = h(x(t), xτ (t)), t ∈ D0,

x(0) = x0,

x(t) = φ(t), t ∈ [−τ, 0],
(2.1)

where

h(x(t), xτ (t)) = [µx1(t− τ), q2x1(t), q3x1(t− τ), q4x1(t− τ), q5x1(t− τ)]

= [µxτ1(t), q2x1(t), q3xτ1(t), q4xτ1(t), q5xτ1(t)]. (2.2)

In (2.2), µ is the specific growth rate of cells. q2 is the consumption rate of substrate.
qi, i = 3, 4, 5 are the specific formation rates of 1,3-PD, acetate and ethanol, respectively.
These quantities are defined by:

µ := µm

( x2(t)

x2(t) + k2

) 5∏
i=2

(
1− xi(t)

x∗i

)ni

, (2.3)

q2 := m2 + µ/Y2, (2.4)

qi := mi + µYi, i = 3, 4, 5. (2.5)

Under anaerobic conditions at 37◦C and pH 7.0, the time-delay and kinetic parameters in
system (2.1) are listed in Table 1.

Since each component of the state trajectory vector represents a certain substance con-
centration, the concentrations of biomass, glycerol and products should be restricted in a
certain range according to the practical fermentation process. Thus, the admissible set of
state trajectory vector is defined by

x(t), xτ (t) ∈Wa = [x∗, x
∗] =

5∏
i=1

[x∗i, x
∗
i ] ⊂ R5

+, (2.6)

where x∗ and x∗ are, respectively, the lower and upper bounded of the state trajectory
vector, and defined by

x∗ = [0.01, 150, 0, 0, 0], x∗ = [15, 2039, 939.5, 1026, 360.9].



252 Y. LIU, C. LIU, J. YUAN, E. FENG, Z. XIU, L. CHANG AND M. HUANG

According to the experiment process, we define the admissible set of initial state trajec-
tory vectors as

W0 = [0.01, 0.25]× [150, 520]× {0} × {0} × {0} ⊂ R5
+. (2.7)

Note that, in the sequel, the norm of vector x ∈ Rn is ∥x∥ :=
∑n

i=1 |xi|; the norm
of matrix A = [aij ]n×n ∈ Rn×n is ∥A∥ := max1≤j≤n

∑n
i=1 |aij |; and the norm of vector

function x : D0 → Rn is ∥x(t)∥ := maxt∈D0

∑n
i=1 |xi(t)|.

For system (2.1), we give the following important properties. The proofs of Properties
1-3 are similar to that given for Theorems 1 and 2 in [11].

Property 1. The function h(x(t), xτ (t)) defined in system (2.1) is Lipschitz continuous in
Wa. Furthermore, it satisfies the linear growth condition, namely, there exists a constant
L > 0, such that

∥h(x(t), xτ (t))∥ ≤ L(∥x(t)∥+ ∥xτ (t)∥+ 1), ∀x(t), xτ (t) ∈Wa.

Property 2. For each (x0, φ) ∈W0×B1([−τ, 0], R5
+), system (2.1) admits a unique solution

in D0 ⊂ R+. Namely, x(t) = x(t|t0, x0, φ) satisfies

x(t) = x0 +

∫ t

t0

h(x(s), xτ (s))ds, ∀t ∈ D0, (2.8)

and x(t) = φ(t),∀t ∈ [−τ, 0].
The solution set S0 of system (2.1) for an initial condition (t0, x0, φ) ∈ D0 × W0 ×

B1([−τ, 0], R5
+) is defined as

S0 = {x(t|t0, x0, φ) ∈ C(D0, R
5)|x(t|t0, x0, φ) is the solution of system (2.1)

for (t0, x0, φ) ∈ D0 ×W0 ×B1([−τ, 0], R5
+)}. (2.9)

Property 3. For each (t0, x0, φ) ∈ D0 ×W0 ×B1([−τ, 0], R5
+), the solution x(t|t0, x0, φ) of

system (2.1) is continuous in (x0, φ) ∈W0 ×B1([−τ, 0], R5
+).

Let
S0a = {x(t|t0, x0, ϕ) ∈ S0|x(t|t0, x0, φ) ∈Wa}. (2.10)

Then, the sets S0 and S0a have the following property.

Property 4. Sets S0 and S0a defined in (2.9) and (2.10) are all compact in C1(D0, R
5
+)).

Proof. It follows from (2.7) that the set W0 is nonempty and compact. By Property 3,
the mapping x0 ∈ W0 7→ x(t|t0, x0, φ) ∈ S0 is continuous. Thus, S0 is a nonempty sub-
set in C1(D0, R

5
+)). Let {xk(t|t0, xk0 , φ)}∞k=1 be any sequence of S0a. Since S0a ⊆ S0,

{xk(t|t0, xk0 , φ)}∞k=1 is the sequence of compact set S0. Thus, there exists a convergent subse-

quence, denoted by {xkj (t|t0, x
kj

0 , φ)}∞kj=1, satisfying x
kj (t|t0, x

kj

0 , φ) → x̄(t|t0, x̄0, φ), x
kj

0 →
x̄0, as kj → ∞. In view of xkj (t|t0, x

kj

0 , φ) ∈ S0a, we obtain{
ẋkj (t|t0, x

kj

0 , φ) = h(xkj (t), x
kj
τ (t)), t ∈ D0,

xkj (t|t0, x
kj

0 , φ) = φ(t), t ∈ [−τ, 0].

Since xkj (t|t0, x
kj

0 , φ) ∈Wa, x∗i ≤ xkj (t|t0, x
kj

0 , φ) ≤ x∗i , i ∈ I5.

By Properties 1 and 2, xkj (t|t0, x
kj

0 , φ) is continuously differential in t, t0 and x
kj

0 .
It follows that ˙̄x(t|t0, x̄0, φ) = h(x̄(t|t0, x̄0, φ), x̄τ (t|t0, x̄0, φ)) as kj → ∞. Furthermore,
we obtain that x̄(t|t0, x̄0, φ) ∈ S0a according to the definition of S0a. This means that
{xk(t|t0, xk0 , φ)}∞k=1 is convergent in S0a and its limitation satisfies x̄(t|t0, x̄0, φ) ∈ S0a. Thus,
the set S0a is compact in C1(D0 ×W0 ×B1([−τ, 0], R5

+)).



STRONG STABILITY OF TIME-DELAY SYSTEM 253

3 Linear Variational System

In this section, we will construct the corresponding linear variational system of system (2.1)
since the partial derivation of function h(x(t), xτ (t)) is continuous in x(t) and xτ (t).

Let x(t) = x(t|t0, x0, φ) ∈ S0a be the solution of system (2.1) with the initial condition
(t0, x0, φ) ∈ D0×W0×B1([−τ, 0], R5). Furthermore, we consider another solution of system
(2.1):

z(t) + x(t|t0, x0, φ), t ∈ [−τ, tf ], (3.1)

with the initial condition (t0, x0, φ) ∈ D0 ×W0 ×B1([−τ, 0], R5
+). It satisfies that

ż(t) + ẋ(t|t0, x0, φ) = h(z(t) + x(t|t0, x0, φ), zτ (t) + xτ (t|t0, x0, φ)), t ∈ D0,

z(t0) + x(t0|t0, x0, φ) = x0,

z(t) + x(t|t0, x0, φ) = φ(t), t ∈ [−τ, 0].
(3.2)

In (3.2), the differentiation with respect to t is

ż(t) +
dx(t|t0, x0, φ)

dt
= ż(t) + h(x(t|t0, x0, φ), xτ (t|t0, x0, φ))

= h(z(t) + x(t|t0, x0, φ), zτ (t) + xτ (t|t0, x0, φ)), t ∈ D0,

and we have

ż(t) = h(z(t) + x(t|t0, x0, φ), zτ (t) + xτ (t|t0, x0, φ))− h(x(t|t0, x0, φ), xτ (t|t0, x0, φ))
= h(z(t) + x(t), zτ (t) + xτ (t))− h(x(t), xτ (t) + zτ (t)) + h(x(t), zτ (t) + xτ (t))

− h(x(t), xτ (t))

=
∂h(x(t), xτ (t) + zτ (t))

∂x(t)
z(t) +

∂h(x(t), xτ (t))

∂xτ (t)
zτ (t) + o(∥z(t)∥+ ∥zτ (t)∥).

The above equation becomes

ż(t) =
∂h(x(t), xτ (t))

∂x(t)
z(t) +

∂h(x(t), xτ (t))

∂xτ (t)
zτ (t), t ∈ D0, (3.3)

when ∥z(t)∥, ∥zτ (t)∥ are sufficiently small and close to zero. System (3.3) is called the linear
variational system corresponding to the solution of the system (2.1).

Let m > 0 be an integer and satisfy mτ ≤ tf < (m + 1)τ . The interval of D0 ⊂ R+

can be divided into m + 1 subinterval, that is, [0, τ), [τ, 2τ), . . . , [(m − 1)τ,mτ), [mτ, tf ].
In view of system (2.1), we consider three cases of system (3.3) on the subintervals of
[(j − 1)τ, jτ) ⊂ D0, j ∈ Im and [mτ, tf ] as follows:
Case 1. When j = 1, i.e. t ∈ [0, τ), system (3.3) is

ż(t) =
∂h(x(t), xτ (t))

∂x(t)
z(t) +

∂h(x(t), xτ (t))

∂xτ (t)
zτ (t), t ∈ [0, τ). (3.4)

The function zτ (t) = z(t − τ) = φ(t) is given on t ∈ [t0, τ), so the second part of (3.4) is
known. Thus, system (3.4) is a non-homogeneous linear system on z(t), and the correspond-
ing homogeneous linear system is

ż(t) =
∂h(x(t), xτ (t))

∂x(t)
z(t), t ∈ [0, τ). (3.5)
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By Theorem 3.3 in [5], the matrix ∂x(t|t0,x0,φ)
∂x0

∈ R5×5 is the fundamental matrix solution of

system (3.5) with initial state ∂x(t|t0,x0,φ)
∂x0

= I, where I ∈ R5×5 is an unit matrix.
By Theorem 1.1 in [5], the fundamental matrix solution of system (3.4) on [0, τ) is

Φ1,i(t|t0, x0, φ)

=
∂x(0|t0, x0, φ)

∂x0
ei +

∫ t

0

∂x(s|t0, x0, φ)
∂x0

· ∂h(x(s|t0, x0, φ), xτ (s|t0, x0, φ))
∂xτ (t)

zτ (s)ds,

t ∈ [0, τ), t0 = 0, i ∈ I5, (3.6)

where ei ∈ R5 is the ith column of unit matrix, and the terminal state of system (3.4)
on [0, τ) is Φ1,i(τ |t0, x0, φ) ∈ R5×5, i ∈ I5. Thus, Φ1(t|t0, x0, φ) = [Φ1,1(t|t0, x0, φ), . . . ,
Φ1,5(t|t0, x0, φ)] ∈ R5×5 is the fundamental matrix solution of system (3.4).
Case 2. When j = 2, i.e. t ∈ [τ, 2τ), zτ (t) of system (3.3) on [τ, 2τ) ⊂ D0 has been decided
by [t0, τ). Thus, zτ (t) is given. As a result, system (3.3) is non-homogeneous linear system
with respect to z(t) on [τ, 2τ). Using the similar method as for Case 1, the fundamental
matrix solution of system (3.3) on [τ, 2τ) ⊂ D0 is

Φ2,i(t|τ, x0, φ) =
∂x(τ |t0, x0, φ)

∂x0
Φ1,i(τ |t0, x0, φ)

+

∫ t

τ

∂x(s|t0, x0, φ)
∂x0

· ∂h(x(s|t0, x0, φ), xτ (s|t0, x0, φ))
∂xτ (t)

zτ (s)ds

t ∈ [τ, 2τ), t0 = τ, i ∈ I5. (3.7)

Thus, Φ2(t|τ, x0, φ) = [Φ2,1(t|τ, x0, φ), . . . ,Φ2,5(t|τ, x0, φ)] ∈ R5×5 is the fundamental matrix
solution of non-homogeneous linear system (3.3) for t ∈ [τ, 2τ). At the same time, the
fundamental matrix solution at the terminal time 2τ on [τ, 2τ) is Φ2,i(2τ |τ, x0, φ), i ∈ I5.
Case 3. When j ≥ 3 and j ≤ m+ 1, i.e. t ∈ [(j − 1)τ, jτ) ⊂ D0, due to the time-delay, the
system (3.3) is still a non-homogeneous linear system of z(t) on [(j − 1)τ, jτ) ⊂ D0.

Similar to Cases 1 and 2, the fundamental matrix solution of non-homogeneous linear
system (3.3) on [(j − 1)τ, jτ) ⊂ D0 is

Φj,i(t|(j − 1)τ, x0, φ)

=
∂x((j − 1)τ |t0, x0, φ)

∂x0
Φj−1,i((j − 1)τ |t0, x0, φ)

+

∫ t

(j−1)τ

∂x(s|t0, x0, φ)
∂x0

· ∂h(x(s|t0, x0, φ), xτ (s|t0, x0, φ))
∂xτ (t)

zτ (s)ds,

t ∈ [(j − 1)τ, jτ) ⊂ D0, t0 = (j − 1)τ, i ∈ I5, j ∈ {3, 4, . . . ,m+ 1}, (3.8)

and

Φj(t|(j − 1)τ, x0, φ)

= [Φj1(t|(j − 1)τ, x0, φ), . . . ,Φj5(t|(j − 1)τ, x0, φ)] ∈ R5×5, t ∈ [(j − 1)τ, jτ).

According to (3.6), (3.7) and (3.8), the fundamental matrix solution of system (3.3) on
D0 is

Φi(t|t0, x0, φ) =
m+1∑
j=1

χ[(j−1)τ,jτ)(t) · Φj,i(t|(j − 1)τ, x0, φ) ∈ R5×5, i ∈ I5, t ∈ D0,
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where

χ[(j−1)τ,jτ)(t) =

{
1, t ∈ [(j − 1)τ, jτ),

0, otherwise.

Let
Φ(t|t0, x0, φ) = [Φ1(t|t0, x0, φ), . . . ,Φ5(t|t0, x0, φ)] ∈ R5×5, t ∈ D0. (3.9)

Then, Φ(t|t0, x0, φ) is the fundamental matrix solution of system (3.3) for x(t|t0, x0, φ) of
system (2.1).

By Theorem 2.6.4 in [6], we give the following lemma.

Lemma 3.1. Let x(t|t0, x0, φ) and x(t|t0, y0, ψ) be the solutions of system (2.1) with the
given initial conditions of (t0, x0, φ) and (t0, y0, ψ) ∈ D0 ×W0 ×B1([−τ, 0], R5

+). Then,

x(t|t0, y0, ψ)− x(t|t0, x0, φ)

=

∫ 1

0

Φ(t|t0, x0 + s(y0 − x0), φ+ s(ψ − φ))ds · (y0 − x0), t ∈ D0, (3.10)

where Φ(t|t0, x0 + s(y0 − x0), φ + s(ψ − φ)) ∈ R5×5 is the fundamental matrix solutions of
system (3.3) corresponding to solution x(t|t0, x0 + s(y0 −x0), φ+ s(ψ−φ)) for system (2.1)
with the initial condition of (t0, x0 + s(y0 − x0), φ+ s(ψ−φ)) ∈ D0 ×W0 ×B1([−τ, 0], R5

+).

4 Strong Stability of Nonlinear Time-Delay System

In this section, we will discuss the strong stability of nonlinear time-delay system in batch
fermentation of glycerol to 1,3-PD. First, we introduce the definition of the strong stability
for a dynamic system.

Definition 4.1. Let x(t|t0, x0, φ) be the solution of system (2.1) with initial condition
(t0, x0, φ) ∈ D0 ×W0 ×B1([−τ, 0], R5

+). For any ε > 0, there exists a δ(ε) > 0 such that for
any (y0, ψ) ∈W0 ×B1([−τ, 0], R5

+), the following inequality holds:

∥x(t|t0, x0, φ)− x(t|t0, y0, ψ)∥ < ε, ∀ ∥φ− ψ∥ < δ(ε), ∥x0 − y0∥ < δ(ε),

where x(t|t0, y0, ψ) denotes the solution of system (2.1) with initial condition (t0, y0, φ) ∈
D0 ×W0 × B1([−τ, 0], R5

+). Then, the solution x(t|t0, x0, φ) of system (2.1) is said to be
strongly stable.

Recall that the function h(x(t), xτ (t)) in system (2.1) is continuously differentiable in
x(t), xτ (t) ∈ Wa. According to the comparison principle in [6], we obtain the following
theorem.

Theorem 4.2. Let x(t|t0, x0, φ) be the solution of system (2.1) with the initial condition
(t0, x0, φ) ∈ D0×W0×B1([−τ, 0], R5

+) and Φ(t|t0, x0, φ) ∈ R5×5 be the fundamental matrix
solutions of system (3.3). Then, Φ(t|t0, x0, φ) is bounded in D0.

Proof. Let Φ(t|t0, x0, φ) = [Φ1(t|t0, x0, φ), . . . ,Φ5(t|t0, x0, φ)] ∈ R5×5 be the fundamental
matrix solution of system (3.3). Thus, for each t ∈ D0, (t0 = 0)

Φ̇i(t|t0, x0, φ) =
∂h(x(t), xτ (t))

∂x(t)
Φi(t|t0, x0, φ) +

∂h(x(t), xτ (t))

∂xτ (t)
Φτi(t|t0, x0, φ),

Φi(t0|t0, x0, φ) = ei, (4.1)



256 Y. LIU, C. LIU, J. YUAN, E. FENG, Z. XIU, L. CHANG AND M. HUANG

Φi(t|t0, x0, φ) = ϕ(t), t ∈ [−τ, t0], ϕ(0) = ei, i ∈ I5,

where ei ∈ R5 is the ith column of the identity matrix I ∈ R5×5; ϕ(t) is a given function.
Since h(x(t), xτ (t)) is continuously differentiable in x(t), xτ (t) ∈ Wa and Wa ⊂ R5 is a

compact set, ∂h(x(t),xτ (t))
∂x(t) and ∂h(x(t),xτ (t))

∂xτ (t)
are bounded in Wa. Namely, there exists a

constant M > 0 such that for all t ∈ D0,∥∥∥∥∂h(x(t), xτ (t))∂x(t)
)

∥∥∥∥ ≤M and

∥∥∥∥∂h(x(t), xτ (t))∂xτ (t)

∥∥∥∥ ≤M.

Let

ui(t) = argmin
{
∥vi(t)∥ |vi(t) ∈ C1(D0, R+),

max
1≤j≤5

∥Φij(t|t0, x0, φ)∥ ≤ vi(t),∀t ∈ D0,

max
1≤j≤5

∥Φij(t− τ |t0, x0, φ)∥ ≤ viτ (t) := vi(t− τ),∀t ∈ D0

}
,

Wi(t, ui(t)) = 5M · ui(t) + 5M · uiτ (t), i ∈ I5.

Obviously, Wi(t, ui(t)) is continuous in D0 × R+. Thus, there exists a unique solution
ui(t) ≥ 1, t ∈ D0, to the following system{

u̇i(t) =Wi(t, ui(t)), t ∈ D0,

ui(0) = 1.
(4.2)

For the right-hand side of system (4.1), we obtain that due to ∥Φi(t|t0, x0, φ)∥ = ∥ei∥ = 1
and ∥ui(0)∥ = 1,∥∥∥∥∂h(x(t), xτ (t))∂x(t)

Φi(t|t0, x0, φ) +
∂h(x(t), xτ (t))

∂xτ (t)
Φτi(t|t0, x0, φ)

∥∥∥∥
≤

∥∥∥∥∂h(x(t), xτ (t))∂x(t)

∥∥∥∥ · ∥Φi(t|t0, x0, φ)∥+
∥∥∥∥∂h(x(t), xτ (t))∂xτ (t)

∥∥∥∥ · ∥Φτi(t|t0, x0, φ)∥

≤ 5M · ui(t) + 5M · uiτ (t) =Wi(t, ui(t)), t ∈ D0, i ∈ I5.

Comparing system (4.1) and (4.2) and by Theorem 6.1 and Corollary 6.3 in [6], we have

∥Φi(t|t0, x0, φ)∥ ≤ ui(t) ≤ max
t∈D0

ui(t), ∀t ∈ D0. (4.3)

Since ui(t) ∈ C1(D0, R+), ui(t) is bounded in D0. Name, there exists a mi > 0, such that
∥ui(t)∥ ≤ mi <∞, i ∈ I5. Furthermore, by (4.3), we have

∥Φi(t|t0, x0, φ)∥ ≤ ui(t) ≤ mi, i ∈ I5,

∥Φ(t|t0, x0, φ)∥ = max
s∈D0

∥Φ(s|t0, x0, φ)∥ = max
s∈D0

5∑
i=1

|Φi(s|t0, x0, φ)|

≤
5∑

i=1

mi =M0,∀t ∈ D0,

which completes the proof.
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Based on Theorem 4.2, we can prove the following theorem.

Theorem 4.3. Let x(t|t0, x0, φ) be the solution of system (2.1) with the initial condition
(t0, x0, φ) ∈ D0 ×W0 ×B1([−τ, 0], R5

+). Then, the solution x(t|t0, x0, φ) is strongly stable.

Proof. Let x(t|t0, x0, φ) and x(t|t0, y0, ψ) be two solutions of system (2.1) with initial con-
ditions (t0, x0, φ), (t0, y0, ψ) ∈ D0 ×W0 × B1([−τ, 0], R5

+), respectively. For any ε > 0, let
δ(ε) = ε

M0
. Then, suppose that (y0, ψ) ∈ W0 × B1([−τ, 0], R5

+) satisfies ∥x0 − y0∥ < δ(ε)
and ∥φ− ψ∥ < δ(ε). By Lemma 1, we have

x(t|t0, y0, ψ)− x(t|t0, x0, φ) =
∫ 1

0

Φ(t|t0, x0 + s(y0 − x0), φ+ s(ψ − φ)) · (y0 − x0)ds.

Hence,

∥x(t|t0, y0, ψ)− x(t|t0, x0, φ)∥

≤ ∥(y0 − x0)∥
∫ 1

0

∥Φ(t|t0, x0 + s(y0 − x0), φ+ s(ψ − φ))∥ds

≤M0 · ε/M0 = ε.

By Definition 4.1, we obtain that x(t|t0, x0, φ) is strongly stable.

5 Conclusions

This paper has studied the strong stability of the solution for a nonlinear time-delay system
arising in 1,3-PD batch fermentation. We first discuss the nonlinear time-delay system and
its some properties. Then, the fundamental matrix solution corresponding linear variational
system of the nonlinear time-delay system is discussed. Finally, we prove the strong stability
of the nonlinear time-delay system. In the future, our effort will focus on robust optimal
control of nonlinear time-delay systems.
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[4] B. Gütinzel, Mikrobielle herstellung von 1,3-propandiol durch clostridium butyricum
und adsorptive abtremutng von diolen, Ph.D. Dissertation, TU Braunschweig, Ger-
many, 1991.

[5] D. Hou, Ordinary Differential Equations, People’s Education Press, Beijing, 1980.

[6] V. Lakshmikantham, S. Leela, Differential and Intergral Inequalities: Theory and
Applications, Academic Press, New York, 1969.



258 Y. LIU, C. LIU, J. YUAN, E. FENG, Z. XIU, L. CHANG AND M. HUANG

[7] B. Li, K.L. Teo and G.R. Duan, Optimal control computation for discrete time time-
delayed optimal control problem with all-time-step inequality constraints, Int. J. In-
novat. Comput. Infor. Control 6 (2010) 3157–3175.

[8] B. Li, K.L. Teo, C.C. Lim and G.R. Duan, An optimal PID controller design for
nonlinear optimal constrained control problems, Discrete Cont. Dyn.-B 16 (2011) 1101–
1117. 148-158.

[9] B. Li, C. Xu, K.L. Teo and J. Chu, Time optimal Zermelo’s navigation problem with
moving and fixed obstacles, Appl. Math. Comput. 224 (2013) 866–875.

[10] B. Li, C.J. Yu, K.L. Teo, G.R. Duan, An exact penalty function method for continuous
inequality constrained optimal control problem, J. Optimiz. Theory Appl. 151 (2011)
260–291.

[11] C. Liu, Modeling and parameter identification for a nonlinear time-delay system in
microbial batch fermentation, Appl. Math. Model. 37 (2013) 6899–6908.

[12] C. Liu, Z. Gong and K.L. Teo, Robust parameter estimation for nonlinear multistage
time-delay systems with noisy measurement data, Appl. Math. Model. 53 (2018) 353–
368.

[13] C. Liu, Z. Gong, K.L. Teo, R. Loxton and E. Feng, Bi-objective dynamic optimization
of a nonlinear time-delay system in microbial batch process, Optim. Lett. 12 (2018)
1249–1264.

[14] C. Liu, Z. Gong, H.W.J. Lee and K.L. Teo, Robust bi-objective optimal control
of 1,3-propanediol microbial batch production process, J. Process Contr., (2018),
https://doi.org/10.1016/j.jprocont.2018.10.001.

[15] K. Menzel, A. Zeng and W. Deckwer, High concentration and productivity of 1,3-
propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae, Enzym.
Microb. Technol. 20 (1997) 82–86.

.

[16] Y. Sun, W. Qi, H. Teng, Z. Xiu and A. Zeng, Mathematical modeling of glycerol fer-
mentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway
and transport of glycerol and 1,3-propanediol across cell membrane, Biochem. Eng. J.
38 (2008) 22–32.

[17] S. Tao, C. Wu, Z. Sheng and X. Wang, Space-time repetitive project scheduling
considering location and congestion, J. Comput. Civ. Eng. 32 (2018) 04018017.

[18] L. Wang, G. Cheng, E. Feng, T. Su and Z. Xiu, Analysis and application of biological
robustness as performance index in microbial fermentation, Appl. Math. Model. 39
(2015) 2048–2055.

[19] J. Wang, J. Ye, E. Feng, H. Yin and Z. Xiu, Modeling and identification of a nonlinear
hybrid dynamical system in batch fermentation of glycerol, Math. Comput. Model. 54
(2011) 618–624.

[20] L. Wang, J. Yuan, C. Wu and X. Wang, Practical algorithm for stochastic optimal
control problem about microbial fermentation in batch culture, Optim. Lett., (2017),
https://doi.org/10.1007/s11590-017-1220-z.



STRONG STABILITY OF TIME-DELAY SYSTEM 259

[21] J. Wang, J. Ye, E. Feng, H. Yin and Z. Xiu, Modeling and identification of a nonlinear
hybrid dynamical system in batch fermentation of glycerol, Math. Comput. Model. 54
(2011) 618–624.

[22] Z. Xiu, B. Song, L. Sun, A and Zeng, Theoretical analysis of effects of metabolic overflow
and time delay on the performance and dynamic behavior of a twostage fermentation
process, Biochem. Eng. J. 11 (2002) 101–109.

[23] Z. Xiu and A. Zeng, Mathematical modeling of kinetics and research on multiplicity of
glycerol bioconversion to 1,3-propanediol, J. Dalian Univ. Technol. 40 (2000) 428–433

[24] F. Yang, K.L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings, VISUAL
MISER: An efficient user-friendly visual program for solving optimal control problems,
J. Ind. Manag. Optim. 12 (2016) 781–810.

[25] J. Ye, A. Li and J. Zhai, A measure of concentration robustness in a biochemical
reaction network and its application on system identification, Appl. Math. Model. 58
(2018) 270–280.

[26] Y. Yu, Optimal control of a nonlinear time-delay system in batch fermentation process,
Math. Probl. Eng., 2014 (2014) Article ID 478081.

[27] J. Yuan, Y. Zhang, J. Ye, J. Xie, K.L. Teo, X. Zhu, E. Feng, H. Yin and Z. Xiu, Robust
parameter identification using parallel global optimization for a batch nonlinear enzyme-
catalytic time-delayed process presenting metabolic discontinuities, Appl. Math. Model.
46 (2017) 554–571.

[28] A. Zeng, A. Ross, H. Biebl, C. Tag and B. Günzel, W. Deckwer, Multiple produce
inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae
in fermentation, Biotechnol. Bioeng.,44 (1994) 902–911.

[29] H. Zhao and E. Feng, Stability of impulsive system by perturbing Lyapunov functions,
Appl. Math. Lett. 20 (2007) 194–198.

[30] H. Zhao and E. Feng, ϕ0-Stability of an impulsive system obtained from perturbing
Lyapunov functions, Nonlin. Anal. 66 (2007) 962–967.

[31] J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of a nonlinear multi-
stage dynamic system in batch culture of glycerol bioconversion to 1,3-propanediol,
Math. Model. Anal. 21 (2016) 159–173.

Manuscript received 29 March 2018
revised 29 June 2018

accepted for publication 30 August 2018

Yang Liu
School of Mathematical Sciences, Dalian University of Technology
Dalian 116024, Liaoning, China
School of Information Engineering, Dalian University
Dalian 116622, Liaoning, China
E-mail address: liuyang@dlu.edu.cn



260 Y. LIU, C. LIU, J. YUAN, E. FENG, Z. XIU, L. CHANG AND M. HUANG

Chongyang Liu
School of Mathematics and Information Science
Shandong Technology and Business University
Yantai 264005, Shandong, China
E-mail address: liu chongyang@yahoo.com

Jinlong Yuan
Department of Mathematics, School of Science
Dalian Maritime University
Dalian 116026, Liaoning, China
E-mail address: yuanjinlong0613@163.com

Enmin Feng
School of Mathematical Sciences
Dalian University of Technology
Dalian 116024, Liaoning, China
E-mail address: zhlxiu@dlut.edu.cn

Zhilong Xiu
School of Life Science and Biotechnology
Dalian University of Technology
Dalian 116024, Liaoning, China
E-mail address: zhlxiu@dlut.edu.cn

Liang Chang
School of Physics, Dalian University of Technology
Dalian 116024, Liaoning, China
E-mail address: changl@dlut.edu.cn

Ming Huang
Department of Mathematics, School of Science
Dalian Maritime University
Dalian 116026, Liaoning, China
E-mail address: huangming0224@163.com


