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literature. Numerical experiments will be employed to show its efficiency in solving large-
scale problems.

The rest of this paper is organized as follows. In next section, a new three-term Dai-
Liao-Type conjugate gradient method is proposed. Then, a new algorithm is developed and
its global convergence is also established in Section 3. Section 4 is devoted to numerical
experiments. Some conclusions are drawn in the last section.

2 Design of a New Three-Term Conjugate Gradient Method

Consider the following unconstrained optimization problem:

min f(x), x ∈ Rn, (2.1)

where f : Rn → R is continuously differentiable such that its gradient is available. Let
g : Rn → Rn denote the gradient function of f , and let gk denote the value of g at xk.

Let x0 ∈ Rn be an initial point. A sequence of approximate solutions of (2.1), {xk }, is
often generated by

xk+1 = xk + αkdk,

where k ≥ 0, αk is called a step size obtained by some line search rule and dk is a search
direction [17]. In the classical conjugate gradient methods, dk is given by

dk =

{
−gk, if k = 0,
−gk + βkdk−1, if k > 0.

(2.2)

In (2.2), βk is called the conjugate parameter. With a different choice of βk, the obtained
method has distinct numerical performance. In [12], the following eight choices are presented:

βHS
k =

gTk+1yk

dTk yk
, βFR

k =
∥gk+1∥2

∥gk∥2
,

βD
k =

gTk+1∇2fkdk

dTk∇2fkdk
, βPRP

k =
gTk+1yk

∥gk∥2
,

βCD
k =

∥gk+1∥2

−dTk gk
, βLS

k =
gTk+1yk

−dTk gk
,

βDY
k =

∥gk+1∥2

dTk yk
, βHZ

k =
1

dTk yk

(
yk − 2dk

∥yk∥2

dTk yk

)T

gk+1,

where yk = gk+1 − gk, ∥ · ∥ is the Euclidean norm, defined by ∥a∥ =
√∑n

i=1 a
2
i for an

n-dimensional vector a = (a1, . . . , an)
T , and ∇2fk is the Hessian matrix of the objective

function at xk. Based on the above eight forms, there have been a lot of weighted βk

constructed by using different denominators and numerators. It has been proved [13] that
βHZ
k can ensure that the obtained search direction dk is sufficiently descent, and if dTk yk ̸= 0,

then gTk dk ≤ − 7
8∥gk∥

2 holds. On this basis, an algorithm, called the CG DESCENT, is
developed with a specific line search strategy. It has been reported that the numerical
performance of the CG DESCENT algorithm is impressive, particularly for solving large-
scale problems.

For development of new algorithms, Dai and Liao [6] proposed a new conjugacy condition
as follows:

dTk+1yk = −tkg
T
k+1sk, (2.3)
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where sk = xk+1 − xk(= αkdk) and tk > 0. Then, a conjugate gradient algorithm (DL) was
developed where the conjugate parameter is

βDL
k =

gTk (yk−1 − tsk−1)

dTk−1yk−1
.

Given different values of t, different algorithms can be developed. Clearly, if t = 2∥yk∥2

sTk yk
,

then βDL
k = βHZ

k .
Recently, Deng and Wan [9] constructed a new form of βk as follows:

βk =
gTk (yk−1 − sk−1)

dTk−1

(
I − gkg

T
k

∥gk∥2

)
yk−1

. (2.4)

Denote

yk−1 =

(
I − gkg

T
k

∥gk∥2

)
yk−1. (2.5)

Then,

βk =
gTk (yk−1 − sk−1)

dTk−1yk−1
(2.6)

is very similar to

βk =
gTk (yk−1 − sk−1)

dTk−1yk−1
.

For this reason, we call βk in (2.6) a conjugate parameter of the Dai-Liao-Type. It has been
shown [9] that this βk can improve efficiency of the algorithm as yk−1 is replaced by yk−1.

On the other hand, in order to further improve the efficiency of the classical conjugate
gradient method, a type of three-term conjugate gradient methods have been presented and
widely studied.

The first general three-term conjugate gradient method was proposed in [4], which de-
termines the search direction as follows:

dk+1 = −gk+1 + βkdk + γkdt, (2.7)

where βk = βHS
k (or βFR

k , βDY
k etc. ), dt (t ≤ k − 1) is a restart direction, and

γk =


0, t = k − 1,
gTk+1yt

dTt yt
, t < k − 1.

(2.8)

Then, in [20], Nazareth developed another three-term conjugate gradient algorithm, where
the search direction is given by

dk+1 = −yk +
yTk yk
yTk dk

dk +
yTk−1yk

yTk−1dk−1
dk−1 (2.9)

with d−1 = d0 = 0. It has been proved that if f is a convex quadratic function, then for
any stepsize αk, the search directions generated by (2.9) are conjugate with respect to the
coefficient matrix of quadratic term. In [26], a descent modified Polak-Ribiére-Polyak (PRP)
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conjugate gradient algorithm was developed, where the search direction was obtained by the
following three-term formula:

dk+1 = −gk+1 +
gTk+1yk

gTk gk
dk −

gTk+1dk

gTk gk
yk.

A remarkable property of the above methods is that the constructed directions are sufficiently
descent, i.e., it satisfies that gTk dk = −∥gk∥2 for any k ≥ 0.

Andrei in [1,2] investigated the following two types of descent three-term gradient meth-
ods:

dk+1 = −gk+1 −
((

1 +
∥yk∥2

yTk sk

)
sTk gk+1

yTk sk
− yTk gk+1

yTk sk

)
sk − sTk gk+1

yTk sk
yk, (2.10)

dk+1 = −gk+1 −
((

1 + 2
∥yk∥2

yTk sk

)
sTk gk+1

yTk sk
− yTk gk+1

yTk sk

)
sk − sTk gk+1

yTk sk
yk. (2.11)

It has been shown that the two search directions in (2.10) and (2.11) satisfy the Dai-Liao’s
conjugacy condition (2.3).

Motivated by the ideas in [1, 9], we choose a search direction by

dk+1 = −gk+1 +
gTk+1(yk − sk)

dTk yk
dk +

gTk+1dk

dTk yk
(sk − yk), (2.12)

where yk is defined as in (2.5), and I is an n-th order unit matrix.
As pointed in [9], dTk yk is not always greater than 0. To overcome this disadvantage, as

done in [9], we can modify

βk =


gTk+1 (yk − sk)

dTk yk
, if dTk yk > η∥gk+1∥2;

gTk+1yk

∥gk+1∥2
= βPRP

k , otherwise.

(2.13)

In this paper, replacing the piecewise format (2.13), a weighted denominator is used. It
says that

βk =
gTk+1(yk − sk)

|dTk yk|+ µ∥gk+1∥2
, (2.14)

and

θk =
gTk+1dk

|dTk yk|+ µ∥gk+1∥2
, (2.15)

where µ > 0 is a constant. Consequently, the proposed new three-term conjugate gradient
method in this paper determines a search direction by

dk+1 = −gk+1 + βkdk + θk(sk − yk), (2.16)

where βk and θk are defined by (2.14) and (2.15), respectively.

3 Development of Algorithm and its Convergence

In this section, we shall develop a new algorithm and analyze its convergence.
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3.1 Development of algorithm

Due to requirement of establishing global convergence, many conjugate gradient algorithms
need the Wolfe line search to choose a step size, rather than the Armijo line search with
more lower computational cost (see [10,16] and the references therein). Specifically, for the
Armijo step size αk, only the following inequality is required to be satisfied:

f(xk+1) = f(xk + αkdk) ≤ f(xk) + δαkg(xk)
T dk. (3.1)

If the Wolfe step size is adopted, then one needs to find an αk such that the following two
inequalities are simultaneously satisfied:{

f(xk+1) = f(xk + αkdk) ≤ f(xk) + δαkg(xk)
T dk

g(xk+1)
T dk ≥ σg(xk)

T dk.
(3.2)

If (3.2) is replaced by {
f(xk+1) ≤ f(xk) + δg(xk)

T dk
|g(xk+1)

T dk| ≤ σ|g(xk)
T dk|,

(3.3)

then the step size satisfies the strong Wolfe conditions.

The three-term conjugate gradient methods (2.10) and (2.11) proposed in [1, 2, 10, 16]
were proved to be globally convergent in the case that the step size satisfies the strong Wolfe
conditions for the strong convex or uniquely convex optimization problems. As the step size
is obtained by the Armijo line search or the optimization is nonconvex, establishment of
global convergence is often difficult for the conjugate gradient algorithms [23, 24]. As one
of main contributions in this paper, we attempt to prove the global convergence of our
algorithm (see Algorithm 3.1) under the following modified Armijo-type line search:

f(xk+1) < f(xk) + δ1αkg
T
k dk − δ2α

2
k∥dk∥2 (3.4)

With the above preparation, we are in a position to present an overall framework of our
algorithm.

Algorithm 3.1 (New Dai-Liao Type of Three-term Conjugate Gradient Algorithm
(DLTTCG)).

Step 1. Select a starting point x0 ∈ domf and compute f0 = f(x0) and g0 = ∇g(x0),
d0 = −g0. Set k := 0.

Step 2. If ∥gk∥∞ < ϵ, then the algorithm stops. Otherwise, go to Step 3.

Step 3. Determine a step size αk by the line search (3.4).

Step 4. Compute xk+1 = xk + αkdk, fk+1 = f(xk+1), gk+1 = g(xk+1). Set sk =
xk+1 − xk, yk = gk+1 − gk.

Step 5. Compute βk and θk as defined by (2.14) and (2.15), respectively.

Step 6. Determine a new search direction by (2.16).

Step 7. Set k := k + 1. Return to Step 2.

In Algorithm 3.1, ∥ · ∥∞ denotes the infinity norm of a vector, defined by

∥x∥∞ := max
1≤k≤n

|xk|.
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3.2 Global convergence

In this section, we are going to study the global convergence of Algorithm 3.1.
We first state the following mild assumptions, which are required to prove the main

results in this paper.

Assumption 3.2. The level set Ω = {x ∈ Rn | f(x) ≤ f(x0)} is bounded.

Assumption 3.3. In some neighborhood N of Ω, f is continuously differentiable and its
gradient is Lipschitz continuous, namely, there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N. (3.5)

Since the sequence { f(xk) } is decreasing, the sequence {xk} generated by Algorithm
3.1 is clearly contained in a bounded region by Assumption 3.2. Therefore, there exists
a convergent subsequence of {xk}. Without loss of generality, we suppose that {xk} is
convergent. On the other hand, from Assumptions 3.2 and 3.3, it is easy to see that there
is a constant γ1 > 0 such that ∥g(x)∥ ≤ γ1, ∀x ∈ Ω. Thus, the sequence { gk } is bounded.

Proposition 3.4. Let f : Rn → R be a continuously differentiable function. Suppose that
d is a descent direction of f at x. Then, there exists a nonnegative integer number j0 such
that

f(x+ αd) ≤ f(x) + δ1αg
T d− δ2α

2∥d∥2, (3.6)

where α = ρj0 , g is the gradient of f at x, all of δ1 > 0, δ2 > 0 and ρ ∈ (0, 1) are given
constant scalars.

Proof. The proof can be completed similar to [9].

Lemma 3.5. Let dk+1 be given by (2.16), where βk be given by (2.14) and θk be given by
(2.15). Then, the following equality

gTk+1dk+1 = −∥gk+1∥2 (3.7)

holds for any k ≥ 0.

Proof. By the formulas (2.14), (2.15) and (2.16), we have

dk+1 = −gk+1 + βkdk + θk(sk − yk),

where

βk =
gTk+1(yk − sk)

|dTk yk|+ µ∥gk+1∥2
,

and

θk =
gTk+1dk

|dTk yk|+ µ∥gk+1∥2
.

It is clear that

gTk+1dk+1 = −∥gk+1∥2 +
gTk+1(yk − sk)

|dTk yk|+ µ∥gk+1∥2
gTk+1dk +

gTk+1dk

|dTk yk|+ µ∥gk+1∥2
gTk+1(sk − yk)

= −∥gk+1∥2.

Furthermore, from
∥gk+1∥2 = |gTk+1dk+1| ≤ ∥gk+1∥∥dk+1∥,

it follows that
∥gk+1∥ ≤ ∥dk+1∥.
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Lemma 3.6 (see [9]). Let {αk } and { dk } be the two sequences of step lengths and search
directions generated by Algorithm 3.1, respectively. Then,

lim
k→∞

α2
k∥dk∥2 = 0.

Lemma 3.7. Let the search direction dk+1 be given by (2.16), where βk is computed as
in (2.14), and θk is computed as in (2.15). Assume that gk ≥ ϵ for all k > 0. Then,
∥dk+1∥ ≤ M .

Proof. Without loss of generality, take 0 < ϵ < 1. By Lemma 3.6, we have

lim
k→∞

αk∥dk∥ = 0.

It implies that there exists an N > 0 large enough such that as k > N , it holds that

αk∥dk∥ <
µϵ3

2γ1(L+ 1)
.

Thus,

∥dk+1∥ ≤ ∥gk+1∥+
∥gk+1∥(∥yk∥+ ∥sk∥)∥

µ∥gk+1∥2
∥dk∥+

∥gk+1∥∥dk∥
µ∥gk+1∥2

(∥yk∥+ ∥sk∥)

≤ γ1 +
2γ1(L+ 1)αk∥dk∥

µϵ2
∥dk∥

< γ1 + ϵ∥dk∥
< γ1 + ϵ(γ1 + ϵ∥dk−1∥)
< γ1 + γ1ϵ+ ϵ2∥dk−1∥
...
< γ1(1 + ϵ+ ϵ2 + . . .+ ϵk−N ) + ϵk−N+1∥dN∥
<

γ1
1− ϵ

+ ∥dN∥ = M1.

(3.8)

Set M = max{∥d1∥, . . . , ∥dN−1∥,M1}. Then, dk < M for all k > 0.
The following result, often being called the Zoutendijk condition, is often used to prove

global convergence of many conjugate gradient methods in the literature. It was first given
by Zoutendijk [27]. For Algorithm 3.1, we can prove that it also holds.

Lemma 3.8. Under Assumptions 3.2 and 3.3, it holds that

∞∑
k=0

∥gk∥4

∥dk∥2
< ∞.

Proof. From the line search rule (3.4) and Assumption 3.2, there exists a constant M such
that

n−1∑
k=0

(
−δ1αkg

T
k dk + δ2α

2
k∥dk∥2

)
≤

n−1∑
k=0

(f(xk)− f(xk+1)) = f(x0)− f(xn) < 2M.

With Assumption 3.3, there exists a constant m > 0 such that the inequality

αk ≥ m
∥gk∥2

∥dk∥2
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holds for all k sufficiently large ( The proof can be completed as in [9]). Then, from Lemma
3.5 and the last inequality, we have

2M >
∑n−1

k=0

(
−δ1αkg

T
k dk + δ2α

2
k∥dk∥2

)
=

∑n−1
k=0

(
δ1αk∥gk∥2 + δ2α

2
k∥dk∥2

)
≥

∑n−1
k=0

(
δ1m

∥gk∥2

∥dk∥2
∥gk∥2 + δ2m

2 ∥gk∥4

∥dk∥4
∥dk∥2

)
=

∑n−1
k=0 (δ1 + δ2m)

∥gk∥4

∥dk∥2
m.

Thus, the desired result has been proved.
With the above preparation, we are in a position to state the main result in this paper.

Theorem 3.9. Suppose that f in Problem (2.1) is continuous differentiable. Let { gk }
be the gradient sequence generated by Algorithm 3.1. Under Assumptions 3.2 and 3.3, the
following result holds:

lim inf
k→∞

∥gk∥ = 0. (3.9)

Proof. Suppose that (3.9) does not hold true, then there exists a positive ϵ > 0 such that
for all k, ∥gk∥ ≥ ϵ. It follows from Lemma 3.7 that

∥gk∥4

∥dk∥2
>

ϵ4

M2
.

Therefore, the series
∑∞

k=0
∥gk∥4

∥dk∥2 diverges, which contradicts the result of Lemma 3.8. We

have completed the proof.

4 Numerical Experiments

In this section, we shall report the numerical performance of Algorithm 3.1.
We test Algorithm 3.1 (DLTTCG) by using it to solve the 75 benchmark test problems

from [3], some of them are from CUTEr [5], and the dimension of these problems changes
from 1000 to 10000.

We compare its numerical performance with the spectral conjugate gradient method
[9] (ISCG), improved three-term conjugate gradient method [7] (ITTCG), the three-term
conjugate gradient algorithm TTCG in [2], which has been reported to be very efficient
for solution of nonconvex unconstrained optimization problems. Among these algorithms,
either the search direction or the line search strategy is different from each other.

The code of the computer procedure is written in Fortran 77, and is implemented on PC
with 2.2 GHz CPU processor, 2 GB RAM memory.

The parameters in Algorithm 3.1 and those in ISCG are specified by

ϵ = 10−6, ρ = 0.3, δ1 = 0.4, δ2 = 0.001, µ = 0.01.

We report a part of numerical results in Table 1. In Table 1, we use the following
notations:
DIM: the number of the decision variables;
NI: the number of iterations;
NF: the number of function evaluations;
NG: the number of gradient evaluations;
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Table 1: Comparison of efficiency with other similar algorithms on several functions
Function name DIM NI NF NG CT (s) f(x∗) ∥g∥∞
Extended DLTTCG 1000 23 69 15 1 0.206544E-10 0.526199E-05
Trigonometric TTCG 3000 27 83 19 4 0.497671E-12 0.114275E-05
ET1 ISCG 3000 39 332 40 91 0.234521E-11 0.981482E-06

ITTCG 3000 26 83 21 7 0.561228E-11 0.273425E-05

DLTTCG 1000 11 33 10 0 0.110914E-10 0.258598E-05
Extended TTCG 1000 12 34 9 0 0.503148E-11 0.221926E-04
Beale(CUTE) ISCG 1000 37 257 38 3 0.825614E-09 0.922361E-06

ITTCG 1000 13 38 11 0 0.304568E-14 0.428524E-07

DLTTCG 4000 10 33 10 1 0.370407E+04 0.132389E-05
Extended TTCG 4000 10 33 10 2 0.370407E+04 0.130330E-05
Penalty ISCG 3000 63 640 64 18 0.275597E+04 0.977183E-06

ITTCG 4000 12 67 12 3 0.370407E+04 0.268024E-06

DLTTCG 1000 175 393 43 4 0.168679E-12 0.758708E-05
Perturbed TTCG 1000 175 393 42 3 0.168679E-12 0.758708E-05
Quadratic ISCG 1000 308 2079 309 25 0.199440E-12 0.805935E-06

ITTCG 1000 178 400 43 3 0.939630E-13 0.478450E-05

DLTTCG 5000 456 956 43 65 0.125025E+07 0.902263E-05
Raydan 1 TTCG 5000 460 962 41 43 0.125025E+07 0.898480E-05

ISCG 5000 352 523 53 33 0.200100E+06 0.398174E-06
ITTCG 5000 456 956 43 80 0.125025E+07 0.902262E-05

DLTTCG 10000 3 10 3 0 0.100000E+05 0.102475E-06
Raydan 2 TTCG 10000 3 10 3 2 0.100000E+05 0.102474E-06

ISCG 10000 11 59 12 25 0.100000E+05 0.279742E-06
ITTCG 10000 3 10 3 1 0.100000E+05 0.102474E-06

Generalized DLTTCG 1000 21 65 18 0 0.997210E+03 0.172830E-05
Tridiagonal 1 TTCG 1000 21 65 18 2 0.997210E+03 0.166437E-05

ISCG 1000 40 292 41 5 0.997210E+03 0.968906E-06
ITTCG 1000 21 65 18 3 0.997210E+03 0.168276E-05

DLTTCG 6000 7 25 7 1 0.211515E-06 0.817618E-05
Extended TTCG 6000 7 25 7 2 0.208347E-06 0.807885E-05
Tridiagonal 1 ISCG 6000 20 137 21 8 0.742657E-07 0.447987E-06

ITTCG 6000 7 25 7 2 0.208347E-06 0.807876E-05

Extended Three DLTTCG 1000 6 16 3 0 0.127963E+04 0.416950E-06
Expo Terms TTCG 1000 6 17 4 2 0.127963E+04 0.287946E-06

ISCG 1000 29 184 30 24 0.127963E+04 0.394938E-06
ITTCG 1000 6 17 4 0 0.127963E+04 0.120028E-06

DLTTCG 1000 148 420 106 6 0.998722E+03 0.108036E-05
Extended TTCG 1000 200 575 159 8 0.998722E+03 0.160087E-05
Powell ISCG 1000 228 1343 229 91 0.998722E+03 0.931805E-06

ITTCG 1000 160 465 124 10 0.998722E+03 0.142503E-05

Extended DLTTCG 3000 29 82 23 1 0.228334E-06 0.829745E-05
PSC1 TTCG 3000 47 132 37 3 0.452658E-06 0.169631E-04

ISCG 3000 165 1208 166 18 0.116912E-07 0.449221E-06
ITTCG 3000 29 82 23 3 0.231706E-06 0.904152E-05

Extended DLTTCG 7000 15 48 14 3 0.206364E-09 0.199160E-04
Block-Diagonal TTCG 7000 15 47 13 1 0.337463E-09 0.254638E-04
BD1 ISCG 7000 34 676 35 176 0.695153E-09 0.568374E-06

ITTCG 7000 14 43 11 3 0.336856E-10 0.965515E-05

Full DLTTCG 4000 6 24 5 0 0.399573E+03 0.119886E-08
Hessian FH1 TTCG 4000 7 22 6 2 0.399573E+03 0.139806E-06

ISCG 4000 25 51 16 42 0.365311E-10 0.938157E-06
ITTCG 4000 7 22 6 1 0.399573E+03 0.139806E-06

DLTTCG 1000 94 228 39 1 0.322069E-10 0.665089E-05
Extended TTCG 1000 95 231 40 3 0.321849E-10 0.665840E-05
Cliff ISCG 1000 74 589 75 8 0.311101E-10 0.936330E-06

ITTCG 1000 95 228 37 2 0.321849E-10 0.664675E-05

Quadratic DLTTCG 1000 23 70 22 2 0.216079E-11 0.117293E-04
Diagonal TTCG 1000 32 93 28 0 0.229541E-10 0.981426E-05
Perturbed ISCG 1000 187 1409 188 11 0.434022E-11 0.436977E-06

ITTCG 1000 28 82 25 2 0.163897E-12 0.175115E-04

NONDQUAR DLTTCG 9000 9 33 9 2 0.359900E+05 0.136621E-09
TTCG 9000 10 83 10 3 0.359900E+05 0.732281E-07
ISCG 1000 36 307 37 3 0.399000E+04 0.805117E-06
ITTCT 9000 10 83 10 6 0.359900E+05 0.732282E-07

Tridiagonal DLTTCG 7000 35 118 29 10 0.277561E-16 0.210357E-06
White TTCG 7000 36 123 32 10 0.548907E-17 0.937149E-07
&(c=4) Holst ISCG 7000 61 519 62 25 0.741549E-11 0.990192E-06

ITTCG 7000 37 127 34 15 0.172696E-20 0.165586E-08

Diagonal DLTTCG 1000 336 716 43 6 -0.100012E+01 0.434333E-05
Double TTCG 1000 335 716 45 4 -0.100012E+01 0.463235E-05
Borded ISCG 1000 336 3171 337 18 -0.100012E+01 0.985584E-06

ITTCG 1000 335 716 45 6 -0.100012E+01 0.464332E-05

TRIDIA DLTTCG 5000 2 6 1 0 0.396588E+05 0.137555E-09
(CUTE) TTCG 5000 2 6 1 0 0.396588E+05 0.137555E-09

ISCG 1000 15 61 6 5 0.793176E+04 0.393404E-06
ITTCG 5000 2 6 1 0 0.396588E+05 0.137555E-09

ARWHEAD DLTTCG 4000 30 84 17 1 0.155852E+04 0.173839E-05
(CUTE) TTCG 4000 30 121 18 3 0.155852E+04 0.174265E-05

ISCG 1000 35 203 36 1 0.389339E+03 0.883496E-06
ITTCG 4000 30 159 20 5 0.155853E+04 0.173891E-05

NONDIA DLTTCG 2000 90 393 73 6 0.798942E+04 0.107606E-05
(CUTE) TTCG 2000 96 867 87 10 0.798942E+04 0.137126E-05

ISCG 1000 376 235 377 89 0.327853E-12 0.993499E-06
ITTCG 2000 86 636 79 14 0.798943E+04 0.240097E-05

BDQRTIC DLTTCG 1000 6 19 5 0 0.205311E-18 0.287143E-06
(CUTE) TTCG 1000 7 22 6 0 0.921531E-22 0.190671E-10

ISCG 1000 52 36 53 4 0.355614E-13 0.429237E-06
ITTCG 1000 7 22 6 0 0.921532E-22 0.190672E-10
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Figure 1: Numerical performance of algorithm: CPU profile

CT: the consumed CPU time(s) in the PC (in seconds);
From the results in Table 1 and the performance profile of iteration in Figure 1, it is

easy to see that all the DLTTCG, TTCG,ITTCG and ISCG achieve the specified tolerance
(∥gk∥ < ϵ). The average numerical efficiency of the DLTTCG is better than the other three
algorithms.

5 Conclusions

In this paper, we have proposed a new Dai-Liao type three-term conjugate gradient method
to solve nonlinear unconstrained optimization problems, where the search direction is always
sufficiently descent and the function is nonconvex.

Compared with the similar methods available in the literature, the theory of global con-
vergence has been established without assumption of strong convexity or uniform convexity,
and it is done under the modified Armijo line search, rather than the Wolfe line search.

Numerical experiments have shown the efficiency of the developed algorithm in this paper
for solving large-scale benchmark test problems. The results indicates that our algorithm is
promising.
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