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(correspondingly, y), then the later variable is minimized in turn for fixing the former one.
By the bi-convexity of original problem, two subproblems of the ACS are convex. A brief
survey of the ACS approach can be found in Gorski et al [17] and Wendell et al [43], and
the references therein. The general framework of the ACS for problem (1.1) is as follows:

Algorithm 1.1. Alternate convex search, ACS
For a given (xk, yk), the ACS produces new iterate (xk+1, yk+1) via:

xk+1 = Arg min
x∈Fyk

{
f(x, yk)

}
, (1.2a)

yk+1 = Arg min
y∈Fxk+1

{
f(xk+1, y)

}
, (1.2b)

where Fyk
= {x ∈ X : h(x, yk) ≥ 0}, and Fxk+1

= {y ∈ Y : h(xk+1, y) ≥ 0}.

The advantage of the ACS is that, it solves at each iteration two convex subproblems
which are solvable and may be tractable in some sense. However, the ACS has a main
disadvantage, it converges to a partial optimal solution, and no better convergence results
(such as local or global optimum) can be obtained in general, see also Gorski et al [17].

Another common method for biconvex minimization is Global Optimization Algorithm
(GOP) developed by Floudas and Visweswaran [13–15]. Firstly, the GOP solves a subprob-
lem for a fixed value of y-variable (which is called primal problem) and determines an upper
bound to the solution of the biconvex problem. To get a lower bound, duality theory and
linear relaxation are applied. The GOP solves the resulting relaxed dual problem for every
possible combination of bounds in a subset of the components of x-variable. By iterating be-
tween the primal and the relaxed dual problem, the GOP converges to an ϵ- global optimum
of biconvex problem.

The Global Optimum Search (GOS) proposed by Floudas et al [16] is also a novel global
search technique for a class of nonconvex programming problems and mixed-integer nonlin-
ear programming problems with some special structures. The GOS decomposes the variable
set into two subsets: complicating and noncomplicating variables, which results in a decom-
position of the constraint set leading to two subproblems. The decomposition of original
problem induces special structure in the resulting subproblems, and then a series of these
subproblems are solved. The key idea of the GOS is to combine a judicious selection of the
complicating variables with suitable transformations, such that all subproblems can attain
their respective global solutions at each iteration.

The Branch and Bound (B&B) algorithm is common used for general nonconvex min-
imization including biconvex minimization as a special case. Numerous papers developed
various B&B methods. For examples, Al-Khayyal and Falk [1], Dür [5], Luo, et al [25],
Orlov [30], Tuan, et al [42], etc. To restrict ourselves on the concerned topic of this paper,
we focus on the related B&B method for a class of global optimization problem involving
partial convexity.

Tuy [40,41] developed a B&B method for solving partly convex optimization of the form

min
{
f(x, y)

∣∣gi(x, y) ≤ 0, i = 0, 1, . . . ,m, x ∈ C, y ∈ D
}
, (1.3)

where f and gi are convex in y for each fixed x ∈ C, but not necessarily convex in x. The
B&B method is based on a dual Lagrange formulation for computing lower bounds that are
used in a branching procedure to eliminate partition sets in the space of nonconvex variable
x, while the branching procedure is partitioning the x-space into some partition sets. In
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the bounding procedure, it solves for each partition set a Lagrangian dual of the problem
restricted to this partition set. The lower bound is then provided by the optimal value of
the constrained dual problem, which is referred to as a Lagrangian dual. The duality gap,
the difference between the exact optimal value and the Lagrangian dual, decreases when
the partition set becomes smaller in most cases. By a suitably organized the branch and
bound process, the B&B method generates an infinite sequence of nested partition sets,
and the duality gap for the subproblems associated with this infinite set-sequence tends to
zero, yielding at the limit a convex subproblem with zero duality gap. It is well known, any
optimal solution of the subproblem with zero duality gap provides a global optimal solution
of original problem.

The main difficulty of the B&B method proposed in Tuy [40, 41] is that, the successive
partition of the x-space is usually required to be exhaustive so that any filter shrinks to a
single point, and, in each partition set a dual problem has to be solved or detect its infeasi-
bility, which may cause that the amount of computation exponentially increases.

Ben-Tal, et al [2] derived a general principle demonstrating that by partitioning the fea-
sible set, the duality gap, existing between a nonconvex program and its Lagrangian dual,
can be reduced. This principle can be implemented in a B&B method which computes an
approximate global solution and a corresponding lower bound on the global optimal value.

The goal of this paper is to present a filter alternating direction method of multipli-
ers (FADMM) for finding a global solution of biconvex minimization problem (1.1). The
FADMM can be partly viewed as a B&B method which falls in the framework proposed
by Tuy [41]. However, there are some significant differences between the FADMM and the
existing methods. Firstly, by making use of the biconvexity, the branching operation of the
FADMM partitions the feasible set of x-subproblem into two subsets, but only the resulting
subproblem restricted to one subset has to be solved. This feature makes the branching
procedure more practical. Secondly, a Lagrangian dual associated to a convex minimization
subproblem w.r.t. y- variable is used in the bounding operation of the FADMM, in which
the strict duality is preserved. Thirdly, the feasible restriction of subproblems does not need
to be handled explicitly in the solution process. It is used as a filter just like the objective
function value used in a classical filter method [9, 10] for constrained optimization. Each
subproblem of the FADMM is inherent a convex minimization, thus it is solvable. Finally, at
each iteration the FADMM solves in an alternative fashion two subproblems. Each of them
minimizes an augmented Lagrangian function restricted to a filter. The Lagrange multiplier
is updated in a closed form. This is essentially an iteration form of classical alternating
direction method of multipliers. We have not use explicitly the branch and bound scheme
in the solution process. The FADMM can be also viewed as the GOS approach proposed
by Floudas et al [16], in which one of the both variables x and y can be selected as the
complicating variable by making use of the biconvexity.

The rest of this paper is organized as follows. Section 2 gives a brief introduction of ro-
bust set and robust function, which are important concepts for global optimization and will
be used in the convergence analysis of the proposed method. Section 3 proposes the FADMM
and discusses some elementary properties. Under suitable assumptions, the convergence (to
a global minimum) of the FADMM has been proved in Section 4. Some preliminary ex-
periments are presented in Section 5 to indicate the validity and efficiency of the proposed
method. Finally, Section 6 gives some concluding remarks.
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2 Robust Set and Robust Function

For preliminaries, the section gives a brief introduction on two concepts: robust set and
robust function. These concepts are very useful in global optimization and firstly developed
by Zheng [44]. We also list some important properties of robust set and robust function
without proofs. The listed properties will be used in the subsequent sections. For more
details, the interested readers are referred to [44] and the references therein.

Definition 2.1. Let Ω be a topological space and E be a subset of Ω. Then

1). The set E is said to be robust iff

clE = cl(intE), (2.1)

where clE denotes the closure of E and intE denotes its interior.

2). A point x ∈ clE is said to be robust to set E iff for each neighborhood N(x) of x,

N(x) ∩ intE ̸= ∅. (2.2)

3). A function f is said to be robust iff the level set Hc = {x : f(x) < c} is robust for
each c.

4). A function f is said to be robust at a point x0 iff x0 ∈ Hc implies x0 is robust to Hc.

In particular, the singleton set is a robust set.

Proposition 2.1. The following claims are true:

1). Empty set ∅ is robust.

2). A set E is robust iff each point of E is robust to E.

3). If E is a nonempty convex set of a linear topological space Ω, then E is robust iff
intE ̸= ∅.

4). Let Ω1 and Ω1 be topological spaces. If E1 is robust in Ω1 and E2 is robust in Ω2, then
E1 × E2 is robust in the product space Ω1 × Ω2 with the product topology.

Definition 2.2. A measure space (x,Ω, µ) is said to be a Q-measure space if it satisfies the
following conditions:

M1. each open set is in Ω;

M2. the measure of each nonempty open set is positive;

M3. the measure of each compact set is bounded.

It is easy to show that, the Lebesgue measure µ in Rn is a Q-measure. For the constrained
minimization problem min

x∈F
f(x), the concept of relative robustness is very useful. Suppose

that F be a compact subset of Ω and f : F → R be a lower semi-continuous (l.s.c.) function.
The relative robustness is defined as follows:

Definition 2.3. The objective function f is said to be relatively robust to the constraint
set F at a point x0 ∈ cl F if x0 ∈ Hc = {x|f(x) < c} implies x0 is robust to Hc ∩ F .
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Proposition 2.2. The following claims are true.

1). A function f is robust to the set E iff it is robust at each point of E.

2). If f is robust to x0 ∈ intF then f is relatively robust to F and x0.

3). If x0 is robust to F and f is l.s.c. at x0, then f is relatively robust to F and x0.

The following theorem plays a crucial role for the convergence analysis of the proposed
method in this paper.

Theorem 2.3. Let E ⊂ Rn be a robust and nonempty closed-convex set, and µ be the
Lebesgue measure in Rn. Then µ(E) = 0 if and only if E is a singleton.

Proof. The necessary is obvious, since µ(E) = 0 if E ⊂ Rn is a countable set.
We prove the sufficiency by contradiction. Suppose E is not a singleton, which implies

that there are at least two distinct points a, b ∈ E. Let L(a, b) be the segment jointed a and
b. By the convexity of E, x ∈ L(a, b) implies x ∈ E.

If there exists a point x̄ ∈ L(a, b) in which x̄ ∈ intE, then we get a neighborhood N(x̄)
of x̄ such that N(x̄) ⊂ intE. Otherwise, if ∀x ∈ L(a, b) implies x /∈ intE, then by the
robustness of E, x ∈ E implies x is robust to E, we get A := N(x) ∩ intE ̸= ∅. Suppose
x̄ ∈ A, we have x̄ ∈ intE, in the case we also get a neighborhood N(x̄) of x̄ such that
N(x̄) ⊂ intE. In summary, we have N(x̄) ⊂ intE and consequently µ(intE) ≥ µ(N(x̄)) > 0.

On the other hand, E is closed and robust which implies that E = clE = cl(intE). Thus,

µ(E) = µ(cl(intE)) ≥ µ(intE) > 0,

which leads a contradiction to the assumption µ(E) = 0. Hence E is a singleton.

3 The Proposed Method

For regularity of the problem considered in this paper, we make the following assumptions:

A1. X (resp. Y ) is a robust subset of Rn (resp. Rm); the objective function f(x, y) is
relatively robust to the feasible set F = {(x, y) ∈ X × Y : h(x, y) ≥ 0}.

A2. The objective function f(x, y) is lower semi-continuous and the global solution set is
nonempty, i.e.

S∗ =
{
(x∗, y∗) ∈ F : f(x∗, y∗) ≤ f(x, y), ∀(x, y) ∈ F

}
̸= ∅. (3.1)

A3. The partial gradient (or subgradient) of f(x, y) w.r.t. x and y, denoted by fx(x, y) and
fy(x, y) respectively, are uniformly bounded. This is, there are Mx > 0 and My > 0
such that

∥fx(x, y)∥ ≤ Mx, ∥fy(x, y)∥ ≤ My, ∀(x, y) ∈ X × Y. (3.2)

Adding a slack variable z ∈ Rp
+ to the inequality-constraint of problem (1.1), we get min f(x, y)
s.t. h(x, y)− z = 0

x ∈ X, y ∈ Y, z ∈ Rn
+.

(3.3)
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The augmented Lagrangian function associated to problem (3.3) is:

Lρ(x, z, y, λ) = f(x, y)− λT (h(x, y)− z) +
ρ

2
∥h(x, y)− z∥2, (3.4)

where ρ > 0 is a penalty parameter.

We are now at the position to propose the filter alternating direction method of multi-
pliers, which is as follows.

Algorithm 3.1. Filter alternating direction method of multipliers, FADMM

For a given (xk, yk, zk, λk) and rk > 0, sk > 0, and a small number ϵk > 0, the
FADMM produces new iterate (xk+1, yk+1, zk+1, λk+1) via the following scheme:

xk+1 = Argmin
x∈X

{
Lρ(x, zk, yk, λk)

∣∣∣ f(x, yk) + rk∥x− xk∥ ≤ f(xk, yk)
}
. (3.5)

Let l = 0 and λl
k = λk, ylk = yk, zlk = zk.

Repeat:

yl+1
k = Argmin

y∈Y

{
Lρ(xk+1, y, z

l
k, λ

l
k)

∣∣∣ f(xk+1, y)+sk∥y−yk∥ ≤ f(xk+1, yk)
}
, (3.6)

zl+1
k = Arg min

z∈Rp
+

{
Lρ(xk+1, y

l
k, z, λ

l
k)
}
, (3.7)

λl+1
k = λl

k − ρ(h(xk+1, y
l+1
k )− zl+1

k ), (3.8)

until:
∥λl+1

k − λl
k∥ ≤ ϵk. (3.9)

Let
λk+1 = λl+1

k , yk+1 = yl+1
k , zk+1 = zl+1

k . (3.10)

Remark 3.1. The proposed FADMM owns the classical iteration form of alternating di-
rection method of multipliers. This feature makes the iteration subproblems to be convex
because of the bi-convexity of original problem. The interior iteration, i.e., (3.6)-(3.9), makes
new iterate (xk+1, yk+1, zk+1) to be approximately feasible.

Remark 3.2. The parameter ϵk is used to control the violation of feasibility of new iterate
(xk+1, yk+1, zk+1) at the k-th iteration. If ϵk = 0, then by (3.8)iterate (xk+1, yk+1, zk+1) is
a feasible solution of problem (3.3), wich implies (xk+1, yk+1) is also a feasible solution of
problem (1.1). It is common to keep the iterate approximately feasible by setting ϵk to be a
small number, and letting ϵk → 0 as k → ∞ such that it is finally feasible. In practice, the
terminating criterion (3.9) can be set to

∥λl+1
k − λl

k∥ ≤ ϵk (3.11)

where ϵk > 0 satisfies
∞∑
k=1

ϵk ≤ c, c is a constant. (3.12)

The multiplier updating form (3.8) can be dated to Hestenes [23] and the references therein.
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Remark 3.3. The solution of subproblem (3.7) has a closed-form:

zl+1
k = max{h(xk+1, y

l
k)−

λk

ρ
, 0}. (3.13)

Since f(x, y) is convex and robust in x for fixed yk, the feasible set of subproblem (3.5)

Xk =
{
x ∈ X : f(x, yk) + rk∥x− xk∥ ≤ f(xk, yk)

}
(3.14)

is a robust and closed convex set. Similarly, the feasible set of subproblem (3.6)

Yk =
{
y ∈ Y : f(xk+1, y) + sk∥y − yk∥ ≤ f(xk+1, yk)

}
(3.15)

is also robust and closed convex. Obviously, by the bi-affinity of h(x, y), Lρ(x, yk, zk, λk) is
convex in x and Lρ(xk+1, y, zk, λk) is convex in y, subproblems (3.5) and (3.6) are convex
minimization problems. Hence, all subproblems of the FDAMM are solvable, and we have
from the FADMM that

f(xk+1, yk) + rk∥xk+1 − xk∥ ≤ f(xk, yk), (3.16)

and
f(xk+1, yk+1) + sk∥yk+1 − yk∥ ≤ f(xk+1, yk). (3.17)

Adding (3.16) and (3.17) yields

f(xk+1, yk+1) + rk∥xk+1 − xk∥+ sk∥yk+1 − yk∥ ≤ f(xk, yk), ∀ k. (3.18)

By assumptions A2, f(x, y) is l.s.c. Thus, it is bounded below on the bounded closed set
X × Y . There exists c∗ > −∞ such that f(x, y) ≥ c∗ (∀(x, y) ∈ X × Y ). Adding (3.18)
respect to k from 0 to ∞, we get

∞∑
k=0

{
rk∥xk+1 − xk∥+ sk∥yk+1 − yk∥

}
≤ f(x0, y0)− c∗.

Noting that rk, sk > 0 for all k, the above inequality implies that

lim
k→∞

∥xk+1 − xk∥ = 0, lim
k→∞

∥yk+1 − yk∥ = 0. (3.19)

The augmented Lagrangian function Lρ(x, z, y, λ) can be viewed as the classical La-
grangian function (without penalty term) of the following problem:{

min
y∈Y

f(x, y) +
ρ

2
∥h(x, y)− z∥2,

s.t. h(x, y)− z = 0, for each fixed (x, z) ∈ X ×Rp
+.

(3.20)

The Lagrangian dual problem associated to problem (3.20) is

max
λ

{
D(λ) = inf

y∈Y
Lρ(x, z, y, λ)

}
, for each fixed (x, z) ∈ X ×Rp

+. (3.21)

In the sense, B&B method attempts to find a pair of primal problem (3.20) and dual problem
(3.21) in which the duality gap trends to zero, via partitioning X × Rp

+ into some infinite
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sequences of nested partition sets such that each of these partition sets converges to a
singleton.

In inner iterations of the FADMM, the primal problem is{
min
y∈Yk

f(xk+1, y) +
ρ

2
∥h(xk+1, y)− zlk∥2,

s.t. h(xk+1, y)− zlk = 0.
(3.22)

Letting
Dk(λ) = inf

y∈Yk

Lρ(xk+1, y, z
k
k , λ), (3.23)

then the dual problem is

max
λ

{
Dk(λ) = min

y∈Yk

Lρ(xk+1, y, z
l
k, λ)

}
. (3.24)

The minimum (instead of infimum) in (3.24) is valid since Lρ(xk+1, y, z
l
k, λ) is convex w.r.t.

y ∈ Yk and Yk is bounded and closed convex. In view of the point, the multiplier updating
form (3.8) is a closed solution of (3.24). The dual problem (3.24) provides a lower bound of
the optimal value of original problem (1.1) by weaker duality theorem.

Due to dual problem (3.24), it follows from Bertsekas [3] and Rockefeller [35,36] that

Dk(λ
l+1
k )− 1

2ρ
∥λl+1

k − λl
k∥2 ≥ Dk(λ

l
k), for ∀ l and ∀ k. (3.25)

For each fixed k, adding (3.25) respect to l from 0 to ∞, we get

1

2ρ

∞∑
l=0

∥λl+1
k − λl

k∥2 ≤ c1, where c1 is a constant. (3.26)

By assumption A2, the solution set of original problem (1.1) is nonempty, and so is primal
problem (3.22) for all xk+1 ∈ X. By weaker duality, the dual function Dk(λ) is upper-
bounded for each k. There exists d∗k such that Dk(λ) ≤ d∗k for all λ for each k. Thus, we
have

dk = lim
l→∞

Dk(λ
l+1
k )−Dk(λ

0
k) ≤ d∗k −Dk(λ

0
k) < ∞.

On the other hand, by Bertsekas [3] there exists a constant ρmin > 0, whenever the penalty
parameter ρ satisfies ρmin < ρ < ∞, the solution of primal problem (3.22) is a strict local
minimizer of (3.6) with λl

k = λ∗. Hence it follows from (3.26) that

lim
l→∞

∥λl+1
k − λl

k∥ = 0, ∀ k, (3.27)

which provides the validity of termination criterion (3.9) of interior iteration. It also implies
that

lim
l→∞

h(xk+1, y
l+1
k )− zl+1

k = 0. (3.28)

Consequently, by setting ϵk → 0 as k → ∞, combining zk+1 ∈ Rp
+ we get (xk+1, yk+1)

approximates to a feasible solution of problem (1.1), i.e.,

lim
k→∞

h(xk+1, yk+1) ≥ 0. (3.29)

For simplicity, let

Hk =
{
(x, y) ∈ X × Y : f(x, y) + rk∥x− xk∥+ sk∥y − yk∥ ≤ f(xk, yk)

}
. (3.30)

Since f(x, y) is a biconvex function, Hk is a biconvex set.
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4 Convergence Analysis

At the beginning of this section, we will prove under suitable assumptions that, all the set
sequences {Xk}, {Yk} and {Hk} are contractive as the FADMM proceeding.

Theorem 4.1. Suppose that the sequence (xk, yk) is generated by the FADMM. If rk+1 ≥
rk > ∥fx(xk+1, y)∥ for all y ∈ Yk+1, sk+1 ≥ sk > ∥fy(x, yk)∥ for all x ∈ Xk+1, and
assumption A3 holds, then we have

Xk+1 ⊆ Xk, (4.1)

Yk+1 ⊆ Yk. (4.2)

Proof. For all x ∈ Xk+1 we have

f(x, yk+1) + rk+1∥x− xk+1∥ ≤ f(xk+1, yk+1),

which implies that

f(x, yk)+ rk∥x−xk∥+f(x, yk+1)−f(x, yk)+ rk+1∥x−xk+1∥− rk∥x−xk∥ ≤ f(xk+1, yk+1).

It follows that

f(x, yk) + rk∥x− xk∥
≤ f(xk+1, yk+1) + f(x, yk)− f(x, yk+1) + rk∥x− xk∥ − rk+1∥x− xk+1∥
≤ f(xk+1, yk+1) + fT

y (x, yk)(yk − yk+1) + rk∥x− xk∥ − rk+1∥x− xk+1∥, f is convex in y
≤ f(xk+1, yk+1) + ∥fy(x, yk)∥ × ∥yk+1 − yk∥

+rk∥x− xk∥ − rk+1∥x− xk+1∥,Cauchy-Schwarz inequality
≤ f(xk+1, yk+1) + sk∥yk+1 − yk∥+ rk∥xk+1 − xk∥ ≤(3.18) f(xk, yk)

Hence, x ∈ Xk and consequently Xk+1 ⊂ Xk. By the same way, we have Yk+1 ⊂ Yk.

Remark 4.1. The assumption A3 provides the existence of such rk and sk. It has been
observed the smaller rk and sk the better performance of proximal point method. Hence,
the self-adaptive updating scheme of parameters rk and sk is recommended.The analogical
updating rules can be found in He [19,20] and Peng [31], etc.

Lemma 4.2. Suppose that rk and sk satisfy the same conditions of Theorem 4.1, then as
the FADMMM proceeding we have

Hk+1 ⊆ Hk. (4.3)

Proof. For all (x, y) ∈ Hk+1, it has

f(x, y) + rk+1∥x− xk+1∥+ sk+1∥y − yk+1∥ ≤ f(xk+1, yk+1). (4.4)

On the one hand, adding rk∥xk+1−xk∥+ sk∥yk+1− yk∥ to the both sides of (4.4) and using
(3.18), we get

f(x, y) + rk∥x− xk+1∥+ rk∥xk+1 − xk∥+ sk∥y− yk+1∥+ sk∥yk+1 − yk∥ ≤ f(xk, yk). (4.5)

On the other hand, by triangle inequality we have

f(x, y) + rk∥x− xk∥+ sk∥y − yk∥
≤ f(x, y) +

(
rk∥x− xk+1∥+ rk∥xk+1 − xk∥

)
+

(
sk∥y − yk+1∥+ sk∥yk+1 − yk∥

)
.

(4.6)

Adding (4.5) and (4.6) yields

f(x, y) + rk∥x− xk∥+ sk∥y − yk∥ ≤ f(xk, yk),

which follows (x, y) ∈ Hk and consequently Hk+1 ⊆ Hk for all k.
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Indeed, as the FADMM proceeding we get three set sequences: {Xk} in x-space, {Yk} in
y-space, and {Hk} in total (x, y)-space. Let F (x) = f(x, yk)+rk∥x−xk∥. By the biconvexity
of f and assumption A1, F (x) is a robust and strictly convex function, Xk is inherent the
closure of level set of F (x) with the level value ck = f(xk, yk), i.e., Xk = cl

(
{x ∈ X : F (x) <

f(xk, yk)}
)
. Thus Xk is a robust and strictly convex set. Similarly, Yk is also robust and

strictly convex. By 4) of Proposition 2.1, the set Hk is robust.
By Theorem 4.1, we have

lim
k→∞

Xk = ∩∞
k=1Xk, lim

k→∞
Yk = ∩∞

k=1Yk. (4.7)

Theorem 4.3. Suppose that the sequence {Xk} is generated by the FADMM, and there is
K > 0 such that rk and sk satisfy the same conditions of Theorem 4.1 for all k > K, then
we have

lim
k→∞

µ(Xk) = 0. (4.8)

Proof. By Theorem 4.1, Xk+1 ⊂ Xk for all k > K which follows µ(Xk) ≥ µ(Xk+1). Obvi-
ously µ(Xk) ≥ 0. Hence the sequence {µ(Xk)} converges as k → ∞.

By contradiction, suppose that µ(Xk) > η > 0 for all k > K, it also holds as k →
∞. By biconvexity and robustness of f(x, y), Xk is a closed convex and robust set, thus
Xk = clXk = cl(intXk) which follows that µ(cl(intXk)) = µ(Xk) > η > 0. Therefore,
intXk ̸= ∅ (if it is not true then intXk = ∅ but cl∅ = ∅ and µ(∅) = 0). By the convexity, xk

is not a stationary point of the function f(x, yk) (a stationary point of convex programming
is also a local minimizer as well as global minimizer), and consequently fx(xk, yk) ̸= 0.
Furthermore, by lower semi-continuity and robustness of f(x, yk), F (x) is relatively robust
to F k

y = {x ∈ X : (x, yk) ∈ F} and xk, which means for each neighborhood N(xk) of xk we

have B(xk) = N(xk) ∩ int(Xk ∩ F k
y ) ̸= ∅. Note that

∇xF (xk) = ∇x

(
f(x, yk) + rk(∥x− xk∥)

)∣∣∣
x=xk

= fx(xk, yk) ̸= 0,

there exists x′ ∈ B(xk) ⊂ Xk (x′ ̸= xk) and a constant δ > 0, such that (see [26])

cos θk =
−(x′ − xk)

T fx(xk, yk)

∥fx(xk, yk)∥ · ∥x′ − xk∥
> δ.

Since ∥x′−xk∥ ̸= 0 and fx(xk, yk) ̸= 0 for all k, letting δ′ := δ·min
k

{∥x′−xk∥×∥fx(xk, yk)∥} >

0, we have
(x′ − xk)

T fx(xk, yk) < −δ′. (4.9)

It’s worth noting that, by the assumption µ(Xk) > η > 0, there is x′ ∈ B(xk) such that
(4.9) holds for all k ≥ 0. Thus it also holds at the limit as k → ∞.

On the other hand, we have lim
k→∞

∥xk+1 − xk∥ = 0 (see (3.19)) where xk+1 is a solution,

yielding at the limit x(= lim
k→∞

xk) is also a solution of (3.5). By (3.29), the limit point

(x, y)(= lim
k→∞

(xk, yk)) is a feasible solution. In the limit case, (xk, yk) is a feasible solution

and xk is robust to Xk ∩ F k
y , we have h(x, yk) ≥ 0 for all x ∈ B(xk). Thus, subproblem

(3.5) reduces to {
min f(x, yk)
s.t. x ∈ B(xk).

(4.10)

Since xk is a solution of subproblem (4.10), by optimality condition we have

(x− xk)
T fx(xk, yk) ≥ 0, ∀ x ∈ B(xk). (4.11)
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This is a contradiction. Hence we have µ(Xk) → 0 as k → ∞ and complete the proof.

It follows from Theorem 4.3 and Theorem 2.3, as the FADMM proceeds we have

lim
k→∞

Xk = {x̂}, is a singleton. (4.12)

By the same way, we have

lim
k→∞

Yk = {ŷ}, is a singleton. (4.13)

Let

Sk = {(x, y) ∈ X × Y : f(x, y) ≤ f(xk, yk)}.

Then Sk ∩F is the level set of problem (1.1) at the k-th iteration. By (3.29) the limit point
of the sequence {(xk, yk)} is a feasible solution. Hence, the global solution of problem (1.1),
denoted by (x∗, y∗), is in the set S ∩ F , where S := lim

k→∞
Sk. By assumptions A1 and A2,

and recalling Propositions 2.1 and 2.2, the objective function f(x, y) is relatively robust to
F and (x∗, y∗).

Furthermore, letting

Sx
k := {x ∈ X : f(x, yk) ≤ f(xk, yk)}, (4.14)

we have

Theorem 4.4. If the sequence {(xk, yk)} is generated by the FADMM, and the condition of
Theorem 4.1 holds, then we have Sk+1 ⊂ Sk and Sx

k+1 ⊂ Sx
k for all k. Furthermore, letting

µ be the Lebesgue measure, we have

lim
k→∞

µ(Sx
k ) = 0. (4.15)

Proof. The assertion Sk+1 ⊂ Sk is obvious since the sequence {f(xk, yk)} generated by the
FADMM is strictly decreasing. The set Sx

k is convex and robust since f(x, yk) is convex
and robust by assumption A1. For all x ∈ Sx

k+1, we have f(x, yk+1) ≤ f(xk+1, yk+1) which
deduces

f(x, yk) ≤ f(xk+1, yk+1) + f(x, yk)− f(x, yk+1)
≤ f(xk+1, yk+1) + fT

y (yk − yk+1)
≤ f(xk+1, yk+1) + ∥fy∥ × ∥yk − yk+1∥
≤ f(xk+1, yk+1) + sk∥yk − yk+1∥
≤ f(xk+1, yk+1) + sk∥yk − yk+1∥+ rk∥xk+1 − xk∥ ≤ f(xk, yk).

.

Thus x ∈ Sx
k and consequently Sx

k+1 ⊂ Sx
k for all k. It follows that µ(Sx

k ) ≥ µ(Sx
k+1).

Combining with µ(Sx
k ) ≥ 0 we have that the sequence {µ(Sx

k )} converges as k → ∞. Arguing
by the same style as Theorem 4.3, we have (4.15) and complete the proof.

By Theorem 2.3, it follows from (4.15) that

lim
k→∞

Sx
k = {x} is a singleton. (4.16)

Lemma 4.5. If Xk = {x̂} and Yk = {ŷ} are single point sets, then Hk = Sk.
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Proof. For all (x, y) ∈ Hk, we have

f(x, y) + rk∥x− xk∥+ sk∥y − yk∥ ≤ f(xk, yk). (4.17)

Letting y = yk, we get
f(x, yk) + rk∥x− xk∥ ≤ f(xk, yk). (4.18)

Since Xk is a singleton and rk > 0, the inequality (4.18) holds true only when x = xk, which
deduces rk∥x− xk∥ = 0. Consequently, as the solution of subproblem (3.5), xk+1 = xk, the
inequality (4.17) reduces to

f(xk+1, y) + sk∥y − yk∥ ≤ f(xk+1, yk). (4.19)

Since Yk is also a singleton, the inequality (4.19) holds true only when y = yk, which yields
sk∥y − yk∥ = 0. In summary, in the case that Xk and Yk are single point sets, we have

Hk = {(x, y) ∈ X × Y : f(x, y) ≤ f(xk, yk)} = Sk.

By the notations used in Ben-Tal [2], we refer the following problem

(PF)

{
min f(x, y) +

ρ

2
∥h(x, y)− z∥2,

s.t. h(x, y)− z = 0, (x, y) ∈ X × Y, z ∈ Rn
+

(4.20)

to as (PF), the dual problem of (PF) is referred to as (DF). Obviously, the problem (PF) is
identical to the problem (3.3).

The problem (PF) restricted to Hk is referred to as (PHk), i.e.,

(PHk)

{
min f(x, y) +

ρ

2
∥h(x, y)− z∥2,

s.t. h(x, y)− z = 0, (x, y) ∈ Hk, z ∈ Rn
+.

(4.21)

The dual problem of (PHk) is referred to as (DHk). The problem (PF) restricted to Sk is
referred to as (PSk), i.e.,

(PSk)

{
min f(x, y) +

ρ

2
∥h(x, y)− z∥2,

s.t. h(x, y)− z = 0, (x, y) ∈ Sk, z ∈ Rn
+.

(4.22)

The dual problem of (PSk) is referred to as (DSk).
Recalling S = lim

k→∞
Sk and (x∗, y∗) ∈ S, we have

min(PF) = lim
k→∞

min(PSk). (4.23)

Where min(PF ) denotes the global minimal value of problem (PF), and similar notations
are used in the later to mean the same thing.

Furthermore, since Hk ⊂ X × Y , we have

min(PHk) ≥ min(PF). (4.24)

The primal subproblem (3.22) is referred to as (PYk), i.e.,

(PYk)

{
min
y∈Yk

f(xk+1, y) +
ρ

2
∥h(xk+1, y)− zlk∥2,

s.t. h(xk+1, y)− zlk = 0.
(4.25)

The dual problem of (PYk) is referred to as (DYk).
Then, due to the problems (PHk) and (PYk) we have
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Lemma 4.6.

lim
k→∞

{
min(PHk)−min(PYk)

}
= 0. (4.26)

Proof. By the definition, we have {xk+1, xk} ∈ Xk. As the FADMM proceeds, we get by
(4.12) that lim

k→∞
Xk = {x̄} is a singleton. Thus, at the limit case we have xk+1 = xk = x̄,

which implies that Yk =
{
y ∈ Y : f(x̄, y) + sk∥y − yk∥ ≤ f(x̄, yk)

}
.

For proving this theorem, it is sufficient to show that {x̄}× Yk = Hk at the limit case in
which Xk is a singleton. For all (x, y) ∈ {x̄}×Yk which means x = x̄ and y ∈ Yk, by xk = x̄
we get

f(x, y) + rk∥x− xk∥+ sk∥y − yk∥ = f(x̄, y) + sk∥y − yk∥ ≤ f(xk, yk).

Thus, (x, y) ∈ Hk and consequently {x̄} × Yk ⊂ Hk. Inversely, for all (x, y) ∈ Hk, we have

f(x, y) + rk∥x− xk∥+ sk∥y − yk∥ ≤ f(xk, yk). (4.27)

Then,

f(x, yk) + rk∥x− xk∥ ≤ f(xk, yk).

Since at the limit case of that Xk = {x ∈ X : f(x, yk) + rk∥x− xk∥ ≤ f(xk, yk)} = {x̄} is a
singleton, the above inequality holds if and only if x = x̄. It is obvious that xk ∈ Xk. Thus,
xk = x̄. Whenever x = x̄, it follows from (4.27) that

f(x̄, y) + rk∥x̄− xk∥+ sk∥y − yk∥ ≤ f(xk, yk),

which deduces f(x̄, y) + sk∥y − yk∥ ≤ f(x̄, yk) and consequently y ∈ Yk. Hence, (x, y) ∈
{x̄} × Yk yielding Hk ⊂ {x̄} × Yk. In summary, at the limit case as k → ∞, we have
Hk = {x̄} × Yk.

At the limit case of that Xk is a singleton {x̄}, the problem (PYk) is identical to{
min f(x, y) +

ρ

2
∥h(x, y)− z∥2

s.t. h(x, y)− z = 0, (x, y) ∈ {x̄} × Yk = Hk, z ∈ Rn
+.

(4.28)

Problem (PYk) is the same as (PHk). Hence, (4.26) holds and the proof is completed.

By the proof of Lemma 4.6, at the limit case of that Xk is a singleton, the primal
problems (PHk) and (PYk) are equivalent to each other, hence the dual problems (DHk)
and (DYk) are also equivalent. Thus we have

lim
k→∞

{
max(DHk)−max(DYk)

}
= 0. (4.29)

By the convexity of primal problem (PYk), the strict duality (between (PYk) and (DYk))
holds. Thus

min(PYk)−max(DYk) = 0, for ∀ k. (4.30)

Hence, we have

Theorem 4.7.

lim
k→∞

{
min(PHk)−max(DHk)

}
= 0. (4.31)
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Proof. Since Xk trends to a singleton as k → ∞, the assertion follows immediately from
Lemma 4.6, and (4.29)-(4.30).

Theorem 4.7 shows that the limit point of the sequence {(xk, yk, zk)} generated by the
FADMM is a global minimum of the problem (PHk) since the duality gap is zero. Actually,
the limit point is also a global minimum of the problem (PF). This is the main convergence
theorem.

Theorem 4.8. The sequence {(xk, yk, zk)} generated by the FADMM converges to a global
minimum of the problem (PF) as well as the problem (3.3).

Proof. Note that {(xk, yk, zk)} is inherent the solution of problem (PHk) for all k ≥ 0.
Hence, combining (4.12)-(4.13) and (4.23), by Theorem 4.5 we have

lim
k→∞

min(PHk) = lim
k→∞

min(PSk) = min(PF), (4.32)

which means that, the sequence {(xk, yk, zk)} generated by the FADMM converges to a
global minimum of the problem (PF).

Indeed, at the limit case, the primal problem (PHk) is identical to (PSk) as well as (PF),
so their dual problems are also equivalent to each other. Thus

max(DF) = lim
k→∞

max(DHk). (4.33)

By Theorem 4.7 and (4.32), at the limit we have

min(PF) = max(DF), (4.34)

which proves the global optimality.
By the setting, if (x∗, y∗, z∗) is the global solution of the problem (3.3), then (x∗, y∗) is

also the global solution of the original problem (1.1).

5 Numerical Results

In this section, we present some numerical experiments to indicate the validity of the pro-
posed FADMM. The test examples are classified into two groups: Illustrative examples and
large scale examples.

We set ϵk = 1
k2 , where k > 0 is the iteration counter in the FADMM. It is obvious that

this setting satisfies condition (3.12).

5.1 Two illustrative examples

We give two low-dimension examples to illustrate the validity of the proposed method in
this subsetion.

Example 5.1. 
min f(x, y) =

1

2
(x− 1)2 +

1

2
(y − 2)2,

s.t. h(x, y) = xy ≥ 0,
x ∈ [−10, 10], y ∈ [−10, 10].

(5.1)
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Adding a slack variable z ≥ 0 to the inequality constraint xy ≥ 0, we get xy − z = 0.
The augmented Lagrangian function of problem (5.1) is

L(x, y, z, λ) =
1

2
(x− 1)2 +

1

2
(y − 2)2 − λ(xy − z) +

ρ

2
(xy − z)2.

Let x0 = 1, y0 = 0, z0 = 0, λ0 = 2, r0 = 1, s0 = 1, ρ = 3. By the FADMM, we get:

Iter 1. x1 = Argmin
x∈X

{1
2
(x− 1)2 + 2

∣∣∣1
2
(x− 1)2 + |x− 1| ≤ f(1, 0) = 2

}
=⇒ x1 = 1.

y10 = Argmin
y∈Y

{1
2
(y − 2)2 − 2y +

3

2
y2
∣∣∣1
2
(y − 2)2 + |y| ≤ f(1, 0) = 2

}
=⇒ y10 = 1,

z10 = max{1− 2

3
, 0} =⇒ z10 =

1

3
,

λ1
0 = 2− 3× (1− 1

3
) = 0.

Since |λ1
0 − λ0

0| = 2 > 1, we run the inner iteration again:

y20 = Argmin
y∈Y

{1
2
(y − 2)2 +

3

2
(y − 1

3
)2
∣∣∣1
2
(y − 2)2 + |y| ≤ f(1, 0) = 2

}
=⇒ y20 =

3

4
,

z20 = max{3
4
− 0, 0} =⇒ z20 =

3

4
,

λ2
0 = 0− 3× (

3

4
− 3

4
) = 0.

Since |λ1
0 − λ2

0| = 0 < 1, it accepts

y1 =
3

4
, z1 =

3

4
, λ1 = 0.

Iter 2. Letting r1 = 1, s1 = 1
2 , we get

x2 = Argmin
x∈X

{1
2
(x−1)2+

3

2
(x−1)2

∣∣∣1
2
(x−1)2+ |x−1| ≤ f(1,

3

4
) = (

5

4
)2
}
=⇒ x2 = 1.

y11 = Argmin
y∈Y

{1
2
(y − 2)2 +

3

2
(y − 3

4
)2
∣∣∣1
2
(y − 2)2 +

1

2
|y − 3

4
| ≤ f(1,

3

4
) = (

5

4
)2
}

=⇒ y12 =
17

16
,

z11 = max
{
(1× 17

16
− 0, 0

}
=⇒ z12 =

17

16
,

λ1
1 = 0− 3× (1× 17

16
− 17

16
) = 0.

Since |λ1
1 − λ0

1| = 0 <
1

22
, it accepts

y2 =
17

16
, z2 =

17

16
, λ2 = 0.

It is obvious that f(1,
17

16
) =

225

512
< f(1,

3

4
) =

25

16
.
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Iter 3. Letting r2 = 1, s2 =
1

2
, we get

x3 = Argmin
x∈X

{1
2
(x−1)2+

3

2
(
17

16
x−17

16
)2
∣∣∣1
2
(x−1)2+|x−1| ≤ f(1,

17

16
) =

225

512

}
=⇒ x3 = 1.

y12 = Argmin
y∈Y

{1
2
(y − 2)2 +

3

2
(y − 17

16
)2
∣∣∣1
2
(y − 2)2 +

1

2
|y − 17

16
| ≤ f(1,

17

16
) =

225

512

}
=⇒ y12 = 83

64 ,

z12 = max
{
(1× 83

64
− 0, 0

}
=⇒ z13 =

83

64
,

λ1
2 = 0− 3× (1× 83

64
− 83

64
) = 0.

Since |λ1
2 − λ0

2| = 0 < 1
32 , it accepts

y3 =
83

64
, z3 =

83

64
, λ3 = 0.

It is obvious that f(1,
83

64
) =

2025

8192
<

225

512
= f(1,

17

16
).

To proceed with iteration of the FADMM, we get

(xk+1, yk+1) = (1,
1

2
+

3

4
yk), (k ≥ 1)

which trends to (x∗, y∗) = (1, 2) as k → ∞. It is easy to verify that (x∗, y∗) = (1, 2) is
the global solution of the problem (5.1).

Example 5.2. see Swaney [37]. min f(x, y) = −2xy,
s.t. h(x, y) = 3− 4xy − 2x− 2y ≥ 0,

x ∈ [0, 1], y ∈ [0, 1].
(5.2)

It is known that the global solution is (x∗, y∗) = (
1

2
,
1

2
) with f∗ = −1

2
.

Let x0 = 0, y0 = 0, zk = 1, λ0 = 1 be the starting point, and set rk = |f ′
x(xk, yk)|, sk =

|f ′
y(xk+1, yk)| at each iteration. The results each 5-iterations of the FADMM (by Matlab

codes) are list in Table 5.1. It is obvious, the sequence (xk, yk) generated by the FADMM
is approximating to the global optimal solution (x∗, y∗) after 60 iterations.

Table 1: Iteration results of FADMM for the example 5.2
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5.2 Large scale examples

In what follows, the validity and efficiency of the FADMM compared with the ACS are
indicated by the following large scale problems.

We solve (1.2a) and (1.2b) in ACS method (Algorithm 1.1) by the penalty method stated
as follows.

xk+1 = Argmin
x∈X

{
f(x, yk) +

ρ

2
∥min{h(x, yk), 0}∥2

}
, (5.3a)

yk+1 = Argmin
y∈Y

{
f(xk+1, y) +

ρ

2
∥min{h(xk+1, y), 0}∥2

}
. (5.3b)

We stop both FADMM and ACS method by the same criterion ϵ = 1.0e− 3, whenever

max
{
∥xk+1 − xk∥∞, ∥yk+1 − yk∥∞, ∥zk+1 − zk∥∞, ∥λk+1 − λk∥∞

}
< ϵ

for the FADMM, and

max
{
∥xk+1 − xk∥∞, ∥yk+1 − yk∥∞

}
< ϵ

for the ACS method.
The codes of the methods implemented in this subsection are written in Matlab, and all

experiments are performed in Matlab 2009b on a Lenovo personal computer with Intel(R)
Core(TM) i7 double CPU @2.50GHz and 8 GB RAM.

Example 5.3. This is a random test problem, which is stated as follows. min
x,y

f(x, y) =
1

2
xTAx− xTBy +

1

2
yTCy

s.t. xTDy − b ≥ 0, x ∈ X, y ∈ Y,
(5.4)

where A ∈ Sn
+ and C ∈ Sm

+ are positive-definite matrices generated in a random mechanism
by Matlab codes stated as follows:

v = rand(n,1); v = v/norm(v); In = eye(n); V = In-2*(v*v’)/(v’*v);
sigma = zeros(n,1); for j = 1:n sigma(j) = cos( j

n+1π) + 1; end
Sigma = 3* diag(sigma); A = V*Sigma*V’;
*******************************************************************
u = rand(m,1); u = u/norm(u); Im = eye(m); U = Im-2*(u*u’)/(u’*u);
delta = zeros(m,1); for t = 1:m delta(t) = cos( t

m+1π) + 1; end
Delta= 2* diag(delta); C = U*Delta*U’;

By this style, the matrices A and C are a symmetric positive definite. B,D ∈ Rn×m are
also random matrices generated by Matlab codes stated as follows:

B = rand(n,m)-2; D = 2*rand(n,m)+1;

X = [−10, 10]n ⊂ Rn and Y = [−10, 10]m ⊂ Rm. Let b = x̄TDȳ − 1 where x̄ = ones(n, 1) ∈
X and ȳ = ones(m, 1) ∈ Y .

Both the FADMM and the ACS method choose the same starting points by setting
x0 = rand(n, 1) and y0 = rand(m, 1). The penalty parameter of both methods is set to be
ρ = 1.80.
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Table 2: Numerical results of FADMM vs ACS on random test problem

The computational results of optimal objective-value, constraint violation, iteration num-
ber and cpu-time are listed in Table 5.2 for comparison. The constraint violation is measured
by max(b− xT

∗ Dy∗, 0) where (x∗, y∗) is the approximate optimal solution generated by the
methods. For all the instances, the constraint violation generated by the FADMM is zero,
which means the approximate solution is a feasible solution of problem (5.4).

It can conclude from observing Table 5.2 that, with the same stop criterion, the FADMM
proceeds more iterations and cputime to approximate to a global minimum, while the ACS
may fall into a partial optimal solution.

Example 5.4. This example is the Non-negative Matrix Factorization (NMF for short)
problem which is frequently used in machine learning, computer vision and signal process-
ing, see Kim and Park [28]. For simplicity, we deal with in this experiment a general uncon-
strained NMF stated as follows: given a non-negative matrix of n data samples V ∈ Rm×n

+ ,
find a matrix of basis functions W ∈ Rm×r

+ and corresponding loadings H ∈ Rr×n
+ , such

that {
min
W,H

∥V −WH∥2F
s.t. W ≥ 0,H ≥ 0.

(5.5)

In each instances of this experiment, the same data matrix V = W ∗H∗ is tested, where
W ∗ ∈ Rm×r

+ ,H ∈ Rr×n
+ are given by

W ∗ = ones(m, r),H∗ = 2 ∗ rand(r, n).

By this way, problem (5.5) has a known global optimal value 0. The initial guesser (W0,H0)
is given by a random style in Matlab:

W0 = max{0.5 ∗ randn(m, r), 0};H0 = max{1.5 ∗ randn(r, n), 0}.

Both the FADMM and ACS method are terminated whenever exiting criterion max
{
∥Wk+1−

Wk∥F , ∥Hk+1−Hk∥F
}
< 1.0e−3 is satisfied. The relative error of the approximate function

value is defined by

∥V − Ŵ Ĥ∥2

∥V −W0H0∥2
, where (Ŵ , Ĥ) is the computing solution.

We list the computational results including the relative error, iteration number and cpu-
time (seconds) in Table 5.3 for easy comparison.

From the above results one can find that, under the same exiting criterion the relative
error of objective value computed by the FADMM has significant reduction compared to that
of computed by the ACS. Which implies that the FADMM has the ability for approximating
to a global minimizer, while the ACS may fall in a partial minimizer.
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Table 3: Numerical results of FADMM compared with ACS on NMF problem

m n r relative error iteration number cputime (seconds)
FADMM ACS FADMM ACS FADMM ACS

320 40 2 5.08e-11 1.20e-02 50 194 1.30e-01 1.10e-01
320 40 5 2.04e-05 1.21e-02 933 142 2.75e+00 2.40e-01
320 40 10 1.11e-05 1.30e-02 437 144 1.29e+00 2.70e-01
320 40 20 5.54e-06 1.27e-02 275 141 8.60e-01 2.90e-01

480 60 2 3.22e-05 1.17e-02 589 156 1.72e+00 3.90e-01
480 60 5 1.40e-05 1.23e-02 349 124 1.49e+00 3.20e-01
480 60 10 7.23e-06 1.26e-02 299 152 1.47e+00 3.90e-01
480 60 20 3.70e-06 1.26e-02 229 128 1.04e+00 3.90e-01

560 80 10 5.81e-06 1.23e-02 234 126 1.61e+00 5.20e-01
560 80 20 3.00e-06 1.27e-02 209 122 1.42e+00 5.60e-01
560 80 30 2.01e-06 1.29e-02 181 111 1.42e+00 6.20e-01
560 80 40 1.49e-06 1.27e-02 164 105 1.49e+00 6.50e-01

6 Concluding Remarks

Alternating direction method of multipliers (ADMM) (often combining with some proxi-
mal point algorithms) have many successful applications in convex optimization and mono-
tone variational inequalities especially for which has separable structure, see for examples,
Boyd [4], Eckstein [6, 7], Fukushima [8], He [21], Qi [33, 34], and Tseng [39], etc. Recently,
Shen, Wen and Zhang [38] proposed an augmented Lagrangian ADM for a class of ma-
trix separation problem. This is a biconvex optimization problem (the analogous problem
is also mentioned in [4] and many other papers). The proposed method converges to a
Karush-Kuhn-Turker point of the problem encountered, see Shen, et al. [38].

In this paper, we proposed a filter alternating direction method of multipliers (FADMM)
for finding a global optimum of biconvex minimization problem. The convergence to a
global minimum of the FADMM is proved under some suitable conditions. The FADMM
falls into the framework of the B&B method proposed by Tuy [40], which is used to solve the
partially convex minimization problem. It’s worth noting that, by the use of biconvexity,
the branching operation of the FADMM simplistically partitions the current feasible set of
x variable, Xk, into two subsets. In the next iteration it only needs to solve the resulting
subproblem restricted to one of them, say Xk+1. In this sense, an infinite sequence {Xk} of
nested partition sets is constructed in the FADMM. The sequence {Xk} shrinks to a single
point. At the limit, it yields a convex subproblem with zero duality gap which provides a
global minimum of the original problem. This feature makes the FADMM more practical
compared with a general B&B method. As mentioned in Heiler and Schörr [22], the B&B-
based methods, such as the GOP and GOS proposed by Floudas et al [15, 16], are very
effective for global optimization. Some preliminary numerical experiments show that, by
comparing with the ACS, the proposed method is effective for biconvex optimization.
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