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The logit-based SUE is widely used and is attractive for large-scale network because of the
advantage of computation, which assumes the perceived travel cost is a random vector fol-
lowed by Gumbel distribution. The probit-based SUE assumes that the perceived travel
cost follows the normal distribution, which is more appropriate to reality but more difficult
to solve.

Invoked by the SUE, various extensions that reflect more realistic stochastic equilibrium
models have been proposed. Maher (2001) [8] extended the classic SUE to the stochastic
user equilibrium assignment with elastic demand. Watling (2002) [17] proposed a second
order stochastic network equilibrium model. Based on the model [17], Clark and Watling
(2005) [5] proposed a stochastic network model which assumes that the stochastic travel de-
mand follows a stationary Poisson process and a probabilistic route choice model. Nakayama
and Takayama (2003) [11] suggested a similar stochastic user equilibrium model which as-
sumes the travel demand follows the Binormal distribution. Lam et al. (2008) [6] proposed
a stochastic network model in which both the demand and supply are stochastic due to
adverse weather condition. Sumalee et al. (2009) [?] considered network equilibrium under
endogenous stochastic demand and supply. Agdeppa et al. (2010) [1] proposed a convex
residual model for stochastic affine variational inequalities problems to address the traffic
equilibrium under uncertainty. Sumalee et al. (2011) [15] addressed stochastic multi-modal
transport network under demand uncertainties and adverse weather condition. Zhang et
al. (2011) [19] considered robust Wardrop’s user equilibrium under stochastic demand and
supply via expected residual minimization approach.

Efficient algorithms are urged to solve the SUE and its extensions due to their widely
applications. The method of successive average (MSA) was used by Sheffi and Powell
(1985) [13]. This method employs the predetermined step sizes and provides a stable and
effective way for solving the SUE. The MSA has been widely used, however, the convergence
result is not always guaranteed as pointed out in [7]. Liu et al. (2009) [7] modified the MSA
and gave the method of successive weighted average (MSWA). The MSWA modifies the
predetermined step sizes and improves the computational speed and quality to some degree,
compared to the MSA. Meng et al. (2009) [10] proposed a PC-CA algorithm for solving
the probit-based SUE model. Yu et al. (2014) [18] considered the logit-based SUE model
with elastic demand, which is eventually transformed to a classic SUE with fixed demand.
The problem is then converted to a linearly convex programming and a predictor-corrector
interior point algorithm is suggested to solve it.

From the view of optimization, whether the model is convex or not affects a lot the
performance of the algorithms [2]. In this paper, instead of using the unconstrained/bound-
constrained nonconvex optimization model for SUE, we use the bound constrained convex
reformulation. We propose the modified projected conjugate gradient (mPCG) method to
solve the convex programming with solid convergent result. Numerical results demonstrate
the necessity of the convex reformulation, and the good performance of the mPCG method,
compared to the MSA and the PG method.

The rest of this paper is organized as follows. Section 2 gives a brief description of the
logit-based SUE model and its classic unconstrained nonconvex optimization reformulation,
as well as the bound constrained nonconvex optimization reformulation. The nonconvex
property is analyzed. Section 3 transforms the nonconvex programming into the convex
programming. Section 4 provides the modified projected conjugate gradient method that
addresses the SUE problem and show its convergence. Section 5 presents the numerical
experiments on the Sioux-Falls network using different logit assignment parameters.
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2 SUE Model Formulation

First of all, we outline the notations and make a brief description about the SUE. We also
present the nonconvex unconstrained/bound constrained reformulations of SUE and analyze
their nonconvex property. Let us consider a general directed traffic network G = [N ,A],
where N is the set of nodes, and A is the set of directed links. Let us denote by W the set
of origin-destination (OD) pairs, and Kw the set of all “available” paths connecting the OD
pair w ∈ W. We assume that the network is strongly connected, which means that there is
at least one path connecting each OD pair w. Let xa be the flow on the link a, fw

k be the flow
on the path k ∈ Kw, and Dw be the demand connecting the OD pair w, respectively. We
also use x = (xa)a∈A to denote the link flow vector and fw = (. . . , fw

k , . . .)Tk∈Kw
to denote

the path flow vector corresponding to the OD pair w ∈ W. It is easy to see from the flow
conservation rules that for any a, k, w,

xa =
∑
w∈W

∑
k∈Kw

δa,kf
w
k , (2.1)

∑
k∈Kw

fw
k = Dw, (2.2)

where δa,k = 1 if link a is on the path k, and δa,k = 0 otherwise.
Let ta = ta(xa) be the mean travel time for each link a, i.e., ta = E[Ta] where Ta is the

perceived travel time on the link a. Let Cw
k and cwk be the perceived travel cost and the

actual travel cost of path k ∈ Kw, where

Cw
k =

∑
a

Taδa,k and cwk =
∑
a

taδa,k. (2.3)

The difference between the stochastic user equilibrium (SUE) to the static user equilibrium
(UE) lies in the introduction of path choice probability. The path choice probability on a
certain path k ∈ Kw is not 0 or 1 as in the UE, but a number within the interval [0, 1] which
reflects the stochastic characteristic of the path choice since the travelers may not grasp the
travel time precisely due to incompleteness of information. The probability pwk of choosing
the path k ∈ Kw is defined as

pwk = Pr{Cw
k ≤ Cw

l , ∀l ∈ Kw},

where

Cw
k = cwk − 1

θ
ϵwk , (2.4)

with ϵwk being a random term associated with the path under consideration and θ being a
given parameter. The SUE is a fixed point problem

fw
k = Dwp

w
k , (2.5)

for all k and w. Let us denote by cw(x) = (. . . , cwk (x), . . . )
T
k∈Kw

at a given flow level x. The
SUE can be obtained by solving the following unconstrained minimization problem (Page
312 of [12]))

min
x

z(x) := −
∑
w

DwSw[c
w(x)] +

∑
a

xata(xa)−
∑
a

∫ xa

0

ta(ω)dω. (2.6)
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The expected minimum perceived travel time Sw[c
w(x)] in (2.6) is defined as

Sw[c
w(x)] = E[ min

k∈Kw

{Cw
k } | cw(x)],

which is concave with respect to cw(x), and has the partial derivative

∂Sw[c
w(x)]

∂cwk
= pwk . (2.7)

By the analysis of why (2.6) leads to the SUE (Page 317 of [12]), we know that SUE can be
obtained by any unconstrained minimization program with objective function ẑ(x) that is
modified from z(x) by replacing Sw[c

w(x)] in (2.6) by Ŝw[c
w(x)], as long as

∂Ŝw[c
w(x)]

∂cwk
=

∂Sw[c
w(x)]

∂cwk
= pwk . (2.8)

In this paper, we assume ϵwk in (2.4) is identically and independently distributed (i.i.d.)
Gumbel variable. The path choice probabilities are then the logit path choice probabilities

pwk =
e−θcwk∑

l∈Kw
e−θcwl

. (2.9)

The logit-based SUE is a fixed point problem

fw
k = Dwp

w
k = Dw

e−θcwk∑
l∈Kw

e−θcwl
. (2.10)

Assume the mean travel time is the usually used Bureau of Public Roads (BPR) function

ta(xa) = t0a

[
1 + βa

(
xa

Ra

)na
]
, (2.11)

where the parameters βa > 0, and na > 0 is a positive integer, and t0a = ta(0) and Ra are
the free-flow travel time and the capacity of the link a, respectively. According to (2.8) and
(2.9), we can choose

Ŝw[c
w(x)] = −1

θ
ln
∑
l∈Kw

e−θcwl . (2.12)

Because by using Chain rule, we get

∂Ŝw[c
w(x)]

∂cwk
=

∂(− 1
θ ln

∑
l∈Kw

e−θcwl )

∂cwk

=
d(− 1

θ ln
∑

l∈Kwe−θcw
l
)

d(
∑

l∈Kw
e−θcwl )

∂(
∑

l∈Kw
e−θcwl )

∂cwk

= −1

θ

1∑
l∈Kwe−θcw

l

∂(
∑

l∈Kw
e−θcwl )

∂cwk
(2.13)

= −1

θ

1∑
l∈Kwe−θcw

l

(−θe−θcwk )
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=
e−θcwk∑

l∈Kwe−θcw
l

,

which satisfies (2.8) and (2.9). And hence we define

ẑ(x) := −
∑
w

DwŜw[c
w(x)] +

∑
a

xata(xa)−
∑
a

∫ xa

0

ta(ω)dω (2.14)

=
1

θ

∑
w

Dw ln
∑
l∈Kw

e−θcwl +
∑
a

t0aβa

Rna
a

(1− 1

na + 1
)xna+1

a . (2.15)

The SUE can be obtained by the following unconstrained programming

min ẑ(x), (2.16)

in the sense that if x∗ > 0 is a stationary point of (2.16), then f∗ = DwP
w(cw(x∗)) satisfies

the SUE condition (2.5), and x∗ and f∗ are the link flow pattern and the path flow pattern
that satisfy the flow conservation rules (2.1) and (2.2).

Since we seek x∗ as link flow pattern which should be nonnegative, we may also consider
the bound constrained programming for SUE

min ẑ(x)
s.t. x ≥ 0.

(2.17)

Similarly, if x∗ > 0 is a stationary point of (2.17), then f∗ = DwP
w(cw(x∗)) satisfies the

SUE condition (2.5), and x∗ and f∗ are the link flow pattern and the path flow pattern that
satisfy the flow conservation rules (2.1) and (2.2).

Let ∆w = (δa,k)a∈A,k∈Kw
be the link-path incidence matrix corresponding to the OD

pair w ∈ W. Let us denote the vectors t = t(x) = (. . . , ta(xa), . . . )
T
a∈A, ∇t = ∇t(x) =

(. . . , t′a(xa), . . . )
T
a∈A where t′a(xa) is the first order derivative of ta with respect to xa, and

the diagonal matrix

∇2t = ∇2t(x) = diag
(
(. . . , t′′a(xa), . . . )

T
a∈A

)
.

Here t′′a(xa) is the second order derivative of ta(xa) with respect to xa. Denote the vectors

Pw = (. . . , pwk , . . . )
T
k∈Kw

and ∇cP
w = (. . . ,

∂pw
k

∂cwk
, . . . )Tk∈Kw

where

∂pwk
∂cwk

= −
θe−θcwk

∑
l ̸=k,l∈Kw

e−θcwl∑
l∈Kw

e−θcwl
. (2.18)

By direct computation, the Hessian matrix of ẑ(x) in (2.14) is

∇2ẑ(x) =
∑
w

Dw(∆
T
w∇t)Tdiag(−∇cP

w)(∆T
w∇t) + diag(∇t) + (∇2t)V, (2.19)

where V = diag(x−
∑

w Dw∆cP
w). The first term in the right-hand side of (2.19) is

positive semidefinite by noting (2.8) and the concavity of Sw[c
w(x)], and the second term

in the right-hand side of (2.19) is positive definite. However, the matrix V might be an
indefinite matrix corresponding to the flow pattern x. This indicates that ∇2ẑ(x) is not
positive semidefinite for all x, Thus the function ẑ(x) is not convex and the programming
defined in (2.16) for SUE is not a convex programming.



96 CHAO ZHANG, QIAN ZHANG AND NAIHUA XIU

3 SUE Convex Programming

Although the SUE reformulation given in (2.16) is an unconstrained minimization program-
ming with explicit formula to calculate the objective function (2.15). Its nonconvexity brings
difficulty of employing efficient algorithms. If we transform the nonconvex programming
(2.16) to a strictly convex programming whose unique minimizer provides the flow pattern
that satisfies the SUE defined in (2.5), then efficient algorithms can be applied with solid
convergent result. In this section, we focus on obtaining a convex reformulation of the SUE.

Note that the link flow xa is nonnegative for all a ∈ A. By the BPR function in
(2.11), it is easy to see that the link travel time ta and the link flow xa has the one-to-one
correspondence. Let us denote by xa(ta) the inverse function of the BPR function ta(xa) in
(2.11). Then

xa(ta) = Ra

(
ta − t0a
βat0a

) 1
na

for ta ≥ t0a. (3.1)

Let t0 := t(0) = (. . . , t0a, . . . )
T , and

ĥ(t) := −
∑
w

DwŜw[c
w(x(t))] +

∑
a

∫ ta

t0a

xa(ν)dν for t ≥ t0. (3.2)

Lemma 3.1. For any t ≥ t0,

ĥ(t) = ẑ(x(t)) = ẑ(x). (3.3)

Proof. Letting ta(ω) = ν and using integration by parts, we find the last term of ẑ(x) in
(2.14) equals ∫ xa

0

ta(ω)dω =

∫ ta(xa)

ta(0)

νdxa(ν)

= νxa(ν)|tat0a −
∫ ta

t0a

xa(ν)dν

= taxa(ta)− t0axa(t
0
a)−

∫ ta

t0a

xa(ν)dν

= taxa(ta)− t0a · 0−
∫ ta

t0a

xa(ν)dν

= xa(ta)ta −
∫ ta

t0a

xa(ν)dν,

where the fourth equation is obtained from xa(t
0
a) = 0 according to (3.1). Hence from (2.14),

ẑ(x) = ẑ(x(t))

= −
∑
w

DwŜw[c
w(x(t))] +

∑
a

xata(xa)−
∑
a

∫ xa

0

ta(ω)dω

= −
∑
w

DwŜw[c
w(x(t))] +

∑
a

xata(xa)−
∑
a

xa(ta)ta +
∑
a

∫ ta

t0a

xa(ν)dν
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= −
∑
w

DwŜw[c
w(x(t))] +

∑
a

∫ ta

t0a

xa(ν)dν

= ĥ(t).

Lemma 3.2. For t ≥ t0, if ∥t∥ → +∞, then ĥ(t) → +∞.

Proof. Using (3.1), we find∫ ta

t0a

xa(ν)dν =

∫ ta

t0a

Ra

(
ν − t0a
βat0a

) 1
na

dν

=

∫ ta

t0a

Raβat
0
a

(
ν − t0a
βat0a

) 1
na

d

(
ν − t0a
βat0a

)
.

Let
ν−t0a
βat0a

= δ. Then ν ∈ [t0a, ta] indicates that δ ∈ [0,
ta−t0a
βat0a

]. Hence

∫ ta

t0a

xa(ν)dν =

∫ ta−t0a
βat0a

0

Raβat
0
aδ

1
na dδ

= Raβat
0
a

δ
1

na
+1

1
na

+ 1

∣∣∣∣∣
ta−t0a
βat0a

0

=
na

na + 1
Raβat

0
a

(
ta − t0a
βat0a

) 1
na

+1

. (3.4)

Substituting (2.12) and (3.4) into (3.2), we get for all t ≥ t0

ĥ(t) =
1

θ

∑
w

Dw ln
∑
l∈Kw

e−θcwl +
∑
a

na

na + 1
Raβat

0
a

(
ta − t0a
βat0a

) 1
na

+1

. (3.5)

By (2.3),

cwl =
∑
a

taδa,l

where δa,l = 1 if link a is on the path l and δa,l = 0 otherwise. It is easy to see that

e−θcwl = e−θ(
∑

a taδa,l) ≥ e−θ(
∑

a ta),

and consequently

ln
∑
l∈Kw

e−θcwl ≥ ln
∑
l∈Kw

e
−θ(

∑
a

ta)

= ln |Kw|e
−θ(

∑
a

ta)

= ln |Kw|+ ln e
−θ(

∑
a

ta)

= ln |Kw| − θ
∑
a

ta.
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Letting D̄ :=
∑
w
Dw, and for each a ∈ A,

ϱa :=
na

na + 1
Ra(βat

0
a)

− 1
na ,

which is a positive constant, we find

ĥ(t) ≥ 1

θ

∑
w

Dw(ln |Kw| − θ
∑
a

ta) +
∑
a

na

na + 1
Raβat

0
a

(
ta − t0a
βat0a

) 1
na

+1

=
1

θ

∑
w

Dw ln |Kw| −
∑
w

Dw

∑
a

ta +
∑
a

na

na + 1
Raβat

0
a

(
ta − t0a
βat0a

) 1
na

+1

=
1

θ

∑
w

Dw ln |Kw| − D̄
∑
a

ta +
∑
a

na

na + 1
Raβat

0
a

(
ta − t0a
βat0a

) 1
na

+1

=
1

θ

∑
w

Dw ln |Kw|+
∑
a

[
ϱa(ta − t0a)

1
na

+1 − D̄ta

]
. (3.6)

Note that na > 0. For any a ∈ A such that ta → +∞, we can easily find that

lim
ta→+∞

ϱa(ta − t0a)
1

na
+1 − D̄ta

ta
= lim

ta→+∞

[
ϱa(1−

t0a
ta
)(ta − t0a)

1
na − D̄

]
= +∞,

which indicates

lim
ta→+∞

[
ϱa(ta − t0a)

1
na

+1 − D̄ta

]
= +∞. (3.7)

Combining (3.7) and (3.6), we know that for any t ≥ t0, if ∥t∥ → +∞, then

ĥ(t) → +∞

as we desired.

Now we consider the bound constrained minimization problem

min ĥ(t)
s.t. t ≥ t0.

(3.8)

This bound constrained minimization problem has nice convex property and can be consid-
ered a reformulation of the SUE as shown in the following theorem.

Theorem 3.3. The bound constrained minimization problem (3.8) is a strictly convex pro-
gramming that has a unique minimizer t∗ ≥ t0. Moreover,

(i) x∗ := x(t∗) ≥ 0 is a stationary point of (2.16), and x∗ is the unique global minimizer
of the bound constrained nonconvex reformulation of SUE in (2.17).

(ii) (fw)∗ = DwP
w(cw(x∗)) satisfies the SUE in (2.5), and x∗ and (fw)∗ are the link flow

pattern and the path flow pattern that satisfy the flow conservation rules in (2.1) and
(2.2).
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Proof. For any t ≥ t0, we have by direct computation

∇ĥ(t) = −
∑
w

Dw∆wP
w + x(t) (3.9)

and the Hessian matrix

∇2ĥ(t) =
∑
w

Dw∆wdiag(−∇cP
w)∆T

w + diag(∇tx(t)). (3.10)

Clearly

Dw∆w(−∇cP
w)∆T

w is positive semidefinite

for all w ∈ W. From xa(ta) in (3.1), we have

x′
a(ta) = Ra

(
ta − t0a
βat0a

) 1
na

−1
1

βat0a
.

It is clear that x′
a(ta) is positive for all ta ≥ t0a if na = 1. If na > 1, x′

a(ta) > 0 for all ta > t0a
and

x′
a(t

0
a) := lim

ta↓t0a
x′
a(ta) = +∞.

Hence we know that

diag(∇tx(t)) is positive definite for t ≥ t0.

Therefore, the Hessian matrix ∇2ĥ(t) is positive definite for t ≥ t0, and the bound con-
strained programming in (3.8) is a strictly convex programming. We know that a strictly
convex programming has at most one minimizer. Now we show that the minimizer of (3.8)
exists. Let

t∗ = inf
t≥t0

ĥ(t).

Then by Lemma 3.2, there exists an upper bound t̄ such that t∗ ≤ t̄. Hence

t∗ = inf
t0≤t≤t̄

ĥ(t).

Since ĥ(t) is a continuous function on the compact set {t | t0 ≤ t ≤ t}, ĥ(t) can achieve its
minimum t∗ on this compact set. Hence

t∗ = min
t≥t0

ĥ(t).

Therefore, the convex programming in (3.8) has a unique global minimizer t∗.
Now we show the statement (i) holds. It is clear that x∗ := x(t∗) ≥ 0 by (3.1) and

t ≥ t0. By KKT optimality condition, t∗ is the unique minimizer if and only if

min{∇ĥ(t∗), t∗ − t0} = 0. (3.11)

If t∗a − t0a > 0, we find by (3.11) that (∇ĥ(t∗))a = 0, i.e.,

(∇ĥ(t∗))a = (−
∑
w

Dw∆wP
w(cw(x∗)))a + x∗

a = 0.
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Otherwise t∗a − t0a = 0. By (3.1), we know that x∗
a = 0. This, combined with (3.11), yields

(∇ĥ(t∗))a = (−
∑
w

Dw∆wP
w(cw(x∗)))a + x∗

a

= (−
∑
w

Dw∆wP
w(cw(x∗)))a

≥ 0.

On the other hand,

(−
∑
w

Dw∆wP
w(cw(x∗)))a ≤ 0,

because the nonnegativity of Dw, ∆w, and Pw(cw(x∗)). We deduce that (∇ĥ(t∗))a = 0.

Therefore, in any case (∇ĥ(t∗))a = 0 and we get

−
∑
w

Dw∆wP
w(cw(x∗)) + x∗ = 0. (3.12)

By direct computation,

∇ẑ(x) =

(
−
∑
w

Dw∆wP
w(cw(x)) + x

)
. ∗ ∇t(x), (3.13)

where “.∗” refers to the Hadamard product that performs the product entrywise. It is clear
that (3.12) implies ∇ẑ(x∗) = 0 and hence x∗ is a stationary point of (2.16). Now we show
that x∗ is the unique global minimizer of (2.17). Suppose on the contrary that there exists
x̃ ≥ 0, x̃ ̸= x∗ such that ẑ(x̃) ≤ ẑ(x∗). Then by (2.11), there exists t̃ ≥ t0 and t̃ ̸= t∗ such
that ẑ(x(t̃)) = ẑ(x̃). By Lemma 3.1,

ĥ(t̃) = ẑ(x(t̃)) = ẑ(x̃) ≤ ẑ(x(t∗)) = ĥ(t∗). (3.14)

This contradicts that t∗ is the unique global minimizer of (3.8). Hence x∗ is the unique
global minimizer of (2.17).

Now we show the statement (ii) holds. According to (3.12), we know that

x∗ =
∑
w

∆wDwP
w(cw(x∗)) for all w ∈ W. (3.15)

Let us denote

(Pw)∗ = Pw(cw(x∗)) = (. . . , (pwk )
∗, . . . )Tk∈Kw

, (3.16)

and set

(fw)∗ = Dw(P
w)∗ for all w ∈ W. (3.17)

That is, (fw
k )∗ = Dw(p

w
k )

∗ for all k and w, which just coincides to the SUE in (2.5).
Combining (3.15), (3.16) and (3.17), we find

x∗ =
∑
w

∆w(f
w)∗.
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Hence the flow conservation rule in (2.1) holds. Because (Pw)∗ is a vector of path choice
probability which satisfies

∑
k∈Kw

(pwk )
∗ = 1, we get from (3.17) that∑

k∈Kw

(fw
k )∗ = Dw

∑
k∈Kw

(pwk )
∗ = Dw,

and hence (2.2) holds.

Thus, in this paper we propose the bound constrained minimization problem in (3.8) as
the convex reformulation of the SUE, in the sense that it is convex and it provides the link
and the path flow pattern that satisfy the flow conservation rules (2.1) and (2.2), as well as
the SUE defined in (2.5) as shown in Theorem 3.3.

Conversely, we also have the following results.

Theorem 3.4. Let x∗ > 0 be a stationary point of the unconstrained nonconvex reformula-
tion of SUE in (2.16). Then t∗ = t(x∗) > t0 is the unique global minimizer of the strictly
convex programming for SUE in (3.8). And x∗ is the unique global minimizer of the bound
constrained nonconvex reformulation of SUE in (2.17).

Proof. By (2.11), we easily find that t∗ = t(x∗) > t0. Since x∗ is a stationary point of
(2.16), we know that

∇ẑ(x∗) = 0.

Using the formulation for ∇ẑ(x∗) in (3.13) and the fact that ∇t(x∗) > 0 for x∗ > 0, we find

∇ĥ(t∗) = 0

according to (3.9). Hence t∗ satisfies min{∇ĥ(t∗), t∗} = 0 which indicates that t∗ is the
unique global minimizer of (3.8). By Theorem 3.3 (i), x∗ is also the unique global minimizer
of the bound constrained nonconvex reformulation of SUE in (2.17).

Remark 3.5. In real traffic network, in general all the links will be used in the SUE. That
is, x∗ > 0 or equivalently t∗ > t0 is a mild assumption. If a link is not used in the SUE, we
may delete it and this will not affect the SUE for the traffic network. Let t∗ be the unique
minimizer of (3.8) and x∗ be a stationary point of (2.16) that satisfy t∗ > t0 and x∗ > 0,

respectively. Then Lemma 3.1, Theorem 3.3 and Theorem 3.4 guarantee that ĥ(t∗) = ẑ(x∗).

4 Modified Projected Conjugate Gradient Method

We propose a modified projected conjugate gradient (mPCG) method to solve the bound
constrained convex SUE programming defined in (3.8), which extends the conjugate gradient
method proposed by Chen and Zhou [4] for unconstrained optimization problems.

The modified projected conjugate gradient method only uses the gradient information
that is easy to implement, and is suitable for large-scale traffic network. As pointed out
in [7], the usually used MSA proposed in [13] performs well in general, but the convergence
to a global minimizer is not guaranteed. The predetermined stepsize may also be inefficient
in computation. The modified projected conjugate gradient method here is guaranteed to
converge to the global minimizer of (3.8) and uses the Armijo line search for determining
the appropriate stepsize.

At follows, we always assume that the traffic network, and the parameters t0a, βa, Ra,

a ∈ A for the BPR function in (2.11) are given. Let us denote ĥ(n) = ĥ(t(n)) and ∇ĥ(n) =
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∇ĥ(t(n)), n = 1, 2, . . ., for simplicity. The conjugate gradient direction d(n) at the nth iterate
is defined as follows; see [4] for reference.

d(n) =

{
−∇ĥ(n) if n = 1,

−∇ĥ(n) + ζnd
(n−1) + τnu

(n−1) if n ≥ 1,
(4.1)

where

ζn =
∇ĥ(n)Tu(n−1)

d(n−1)Tu(n−1)
− 2∥u(n−1)∥2∇ĥ(n)T d(n−1)

(d(n−1)Tu(n−1))2
, (4.2)

τn =
∇ĥ

(n)T

d(n−1)

d(n−1)Tu(n−1)
, (4.3)

u(n−1) = y(n−1) + ηns
(n−1), (4.4)

ηn = max{0,−s(n−1)T y(n−1)

∥s(n−1)∥2
}, (4.5)

with

y(n−1) = ∇ĥ(n) −∇ĥ(n−1), s(n−1) = t(n) − t(n−1). (4.6)

Now we give the modified projected conjugate gradient method for solving the bound
constrained convex programming in (3.8) for SUE.

At follows, we always assume that the traffic network, and the parameters t0a, βa, Ra,

na, a ∈ A for the BPR function in (2.11) are given. Given an initial link flow pattern x
(1)
a ,

a ∈ A, we compute t
(1)
a = ta(x

(1)
a ) for all a ∈ A by (2.11) and get the initial point t(1).

For n ≥ 1, in order to compute

∇ĥ(n) = −
∑
w

Dw∆w(P
w)(n) + x(n), (4.7)

we perform the following procedure.

We compute the actual path travel time (cwk )
(n) for all k ∈ Kw, w ∈ W by (2.3).

We then compute the path choice probability (pwk )
(n) by (2.9) and the partial derivative(

∂pw
k

∂cwk

)(n)
for all k ∈ Kw, w ∈ W by (2.18).

Algorithm 4.1. The modified projected conjugate gradient (mPCG) algorithm for solving
(3.8)
Data: Given an initial link travel time pattern t(1). Given the parameters ρ, σ ∈ (0, 1), a
positive integer imax > 0, and a small tolerance ϵ ≥ 0. Set n = 1. For n ≥ 1,

Step 1. Compute the gradient of ĥ at t(n) by (4.7). If ∥∇ĥ(t(n))∥ ≤ ϵ, then stop.
Step 2. Compute the search direction d(n) by (4.1)-(4.6).
Step 3. If n = 1, determine the stepsize αn by the Armijo line search, i.e.,

αn = max{ρ0, ρ1, . . . } (4.8)



MPCG METHOD FOR LOGIT-BASED SUE VIA CONVEX MODEL 103

satisfying the Armijo line search,

ĥ(max{t(n) + ρid(n), t0}) ≤ ĥ(n) + σ∇ĥ(n)T
(
max{t(n) + ρid(n), t0} − t(n)

)
. (4.9)

Step 4. If n > 1, determine the stepsize αn by the modified Armijo line search, i.e.,

αn = max{ρ0, ρ1, . . . , ρimax} (4.10)

satisfying (4.9). If it fails to meet (4.9), we then set d(n) = −∇h(t(n)) and use the Armijo
line search (4.8) and (4.9) to find the stepsize αn.

Step 5. Set t(n+1) = max{t(n) + αnd
(n), t0} and n := n+ 1.

Step 6. If AC(t(n)) := {a ∈ A | t(n)a = t0a} ̸= ∅, set d(n) = −∇h(t(n)) and use the Armijo
line search (4.8) and (4.9) to find the stepsize αn. Set t

(n+1) = max{t(n) + αnd
(n), t0} and

n := n+ 1. Else return to Step 1.

Step 4 first implements the projected conjugate gradient step which only searches the
stepsize within imax trials. If it fails, then maybe the projected conjugate gradient direction
is not a good search direction at the current point, and the mPCG method implements the
projected gradient step, which is sure to success.

We have the following nice convergent result for Algorithm 4.1 that solves (3.8).

Theorem 4.2. The sequence {t(n)} generated by Algorithm 4.1 with ϵ = 0 converges to the
unique global minimizer of (3.8).

Proof. The iterate point of the mPCG method in fact obtained from two kinds of steps:

(i) the projected conjugate gradient (PCG) step in Step 4 if it succeeds. In this case, the
stepsize is determined within imax trials.

(ii) the projected gradient (PG) step in Step 3, Step 4 if the PCG step fails to find the
stepsize within imax trials, or in Step 6.

If the PCG step is succeeded in Step 4, then by the strict convexity of ĥ(t), we know
that

ĥ
(
t(n+1)

)
≥ ĥ(t(n)) +∇ĥ(n)T

(
t(n+1) − t(n)

)
.

This, combined with (4.9) and the fact that σ ∈ (0, 1), indicates that

∇ĥ(n)T
(
t(n+1) − t(n)

)
≤ 0.

Thus ĥ(t(n+1)) ≤ ĥ(t(n)) if t(n+1) is obtained from t(n) by the PCG step. If the PG step

is employed from t(n) to get t(n+1), then it is clear that ĥ(t(n+1)) < ĥ(t(n)). Therefore, the

sequence {ĥ(t(n))} is nonincreasing. According to Theorem 3.3, ĥ(t) has a unique minimizer

t∗ on the feasible region {t | t ≥ t(0)}. Hence ĥ(t(n)) ≥ ĥ(t∗) for all t ≥ t∗ and consequently

{ĥ(t(n))} converges.
If there exists an infinite subsequence {nj} ⊆ {1, 2, . . .} such that the PG step is invoked

at t(nj) to get tnj+1. By Lemma 3.2,

Lĥ(ĥ(t
(1))) = {t ≥ t0 | ĥ(t) ≤ ĥ(t(1))}

is nonempty and bounded. Thus the sequence {t(n)} generated by Algorithm 4.1 is bounded.
Following Theorem 2.3 and Theorem 2.4 of [3], we can easily show that any accumulation
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point t̃ of t(nj) is a stationary point of (3.8). Hence t̃ coincides to the unique global minimizer

t∗ by noting that (3.8) is a convex programming. And we also know {ĥ(t(n))} → ĥ(t∗). By

the strict convexity of ĥ, we deduce {t(n)} → t∗.
Otherwise, there exists a positive integer n̆ such that for all n ≥ n̆, Algorithm 4.1 always

employs the PCG step in Step 4. This means AC(t(n)) = {a ∈ A | t(n)a = t0a} = ∅ for all
n ≥ n̆. Hence for n ≥ n̆, the PCG step in fact becomes the CG step in [4] for unconstrained
programming. To be specific, we have t(n+1) = t(n) + αnd

(n) and

ĥ(t(n+1)) ≤ ĥ(n) + σαn∇ĥ(n)T d(n) (4.11)

for n ≥ n̆. By Lemma 2.2 of [4],

∇ĥ(n)T d(n) ≤ −1

2
∥∇ĥ(n)∥2.

Therefore, the Armijo line search guarantees

ĥ(t(n+1)) ≤ ĥ(t(n))− 1

2
σαn∥∇ĥ(n)∥2.

Since {ĥ(t(n))} converges, we find from the above inequality that ∥∇ĥ(n)∥ → 0 as n → ∞.
This also indicates any accumulation point of {t(n)} is a stationary point of (3.8) and
coincides to the unique global minimizer t∗. Hence we also get {t(n)} → t∗ as we desired.

Remark 4.3. After we obtain the unique global solution t∗ of (3.8) using Algorithm 4.1,
we easily obtain the link flow pattern by (3.15) and path flow pattern by (3.17) at SUE. It is
worth mentioning that if t∗ > 0, then Step 6 can not occur infinitely many times. Because
otherwise, there exists n̄ such that for n ≥ n̄,

ĥ(t∗) < ĥ(t(n)) < min
t≥t0, AC(t(n) )̸=∅

ĥ(t).

Thus AC(t(n)) = ∅ for n ≥ n̄, which contradicts that Step 6 occur infinitely many times.
Then the PCG step in Step 4 becomes the unconstrained CG step, which is sure to succeed
if imax is sufficiently large.

5 Numerical Results

In this section, we do numerical experiments on the Sioux-Falls network shown in Figure
1. The network is of moderate size, which has 528 OD pairs, 76 arcs, and 1179 paths. The
parameters in the BPR function in (2.11) are set to be βa = 0.15, and na = 2 for all a ∈ A.

We try three different logit assignment parameters

θ = 0.1, 1, and 10

in (2.4), respectively. Note that a small value of θ indicates a large perception variance,
with travelers using many paths, including some that may be significantly longer than the
true shortest path (in terms of measured travel time). When θ → 0, it is known that the
share of flow on all paths will be equal, regardless of path travel times. And when θ is large
enough, the SUE will approach to the UE. We also try two different flow patterns as the
initial flow patterns, respectively.
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Figure 1: Sioux Falls Network

• Initial point one : it is obtained by assigning each OD demand on a single path con-
necting the OD pair.

• Initial point two: it is constructed by assigning each OD demand equally to all the
paths connecting the OD pair.

We use Matlab R2015b to implement the algorithms on a notebook with 2.50GHZ CPU
and 4GB RAM. The numerical experiments show the nice performance of the mPCG method
using the convex reformulation for SUE in (3.8).

Figure 2 compare the MSA for the nonconvex model, and the PG and the mPCGmethods
for the convex model from the first initial point using different parameters θ. And Figure 3
does the same comparison as in Figure 2 from the second initial point. Because the decrease
of the objective value is of the scale 106 in the original figure in the left column, we select a
smaller range of the objective value to see clearly the difference of the three algorithms in
the right columns of Figure 2 and Figure 3.

It is easy to see from the right columns of Figure 2 and Figure 3 that the mPCG method
performs the best in terms of the objective value after no more than 4 seconds. Hence
the convex SUE programming in (3.8) helps to implement the modified projected conjugate
gradient method efficiently which has solid convergent result.
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(a) θ = 0.1, original (b) θ = 0.1, exemplified

(c) θ = 1, original (d) θ = 1, exemplified

(e) θ = 10, original (f) θ = 10, exemplified

Figure 2: Comparison: convex model for PG and mPCG; nonconvex model for MSA from initial
point one.
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(a) θ = 0.1, original (b) θ = 0.1, exemplified

(c) θ = 1, original (d) θ = 1, exemplified

(e) θ = 10, original (f) θ = 10, exemplified

Figure 3: Comparison: convex model for PG and mPCG; nonconvex model for MSA from initial
point two.

The above figures draws “how much decrease of the objective value is obtained in the
same CPU time” for the three methods. We find the PG method is the slowest. Now we
compare the mPCG method using the convex model and the MSA using the nonconvex
model by setting the stopping rule as follows.

∥∇ĥ(t(n))∥
|A|

≤ ξ, or n ≥ nmax or CPU time ≥ tmax, (5.1)

with

ξ = 10−5, nmax = 1000, tmax = 100 seconds.

Here the first term (5.1) is the relative accuracy with |A| being the number of links in A.
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Table 1: Comparison of MSA on convex model and mPCG on nonconvex model
Initial point 1 Initial point 2

θ = 0.1 MSA (nonconvex) mPCG (convex) MSA (nonconvex) mPCG (convex)

niter 1000 39 972 39
∥∇ĥ(t(n))∥

|A| 5.42e-5 8.48e-6 1.00e-5 8.43e-6

ĥ(t(n)) -1497670.59 -1497670.58 -1497670.60 -1497670.58

CPU time (s) 68.69 3.01 64.41 2.90

θ = 1 MSA (nonconvex) mPCG (convex) MSA (nonconvex) mPCG (convex)

niter 1000 65 1000 61
∥∇ĥ(t(n))∥

|A| 3.0e-4 8.09e-6 1.20e-4 8.73e-6

ĥ(t(n)) -2944465.87 -2944466.16 -2944466.10 -2944466.15

CPU time (s) 65.80 4.66 66.96 4.63

θ = 10 MSA (nonconvex) mPCG (convex) MSA (nonconvex) mPCG (convex)

niter 1000 122 1000 74
∥∇ĥ(t(n))∥

|A| 3.97e-4 9.41e-6 2.06e-4 9.08e-6

ĥ(t(n)) -3006155.43 -3006155.91 -3006155.74 -3006155.91

CPU time (s) 67.56 9.47 69.08 5.94

Here niter in Table 1 refers to the number of iterations before it stops. We can easily
see from Table 1 that the mPCG method dealing with the convex SUE programming in
(3.8) needs much less iterations and CPU time to obtain a higher relative accuracy, and
a lower/similar objective value, compared to the MSA for the nonconvex model in (2.16)
using each initial point. All the numerical results demonstrate the usefulness of the convex
SUE programming in (3.8) and the efficiency of Algorithm 4.1 for solving (3.8). We mention
that the computed solution x(n) for x∗ is positive, and the computed solution t(n) for t∗

is greater than t0. Hence the computed ẑ(x(n)) and ĥ(t(n)) are almost the same, which

coincides to our theoretical result in Remark 3.5 that ĥ(t∗) = ẑ(x∗).
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