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DISTRIBUTIONALLY ROBUST REWARD-RISK RATIO
PROGRAMMING WITH WASSERSTEIN METRIC*

YONG ZHAO, YONGCHAO LiuT AND XINMING YANG

Abstract: It is well-known that reward-risk ratio (RR) is a very important stock market definition. In
order to capture the situation that the investor does not have complete information on the distribution
of the underlying uncertainty, people extend RR model to distributionally robust reward-risk ratio (DRR)
model. In this paper, we study the DRR problem where the ambiguity on the distributions is defined through
Wassertein metric. Under some moderate conditions, we show that for a fixed ratio, the DRR problem has
the tractable reformulation, which means that we may solve the problem by bisection method. Specifically,
we analyze the DRR problems for Sortino-Satchel ratio, Stable Tail Adjusted Return ratio and Omega ratio.
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Introduction

One of the most challenging issues in decision analysis is to find an optimal decision under
uncertainty. The solvability of a decision problem and the quality of an optimal decision
rely heavily on the information regarding the underlying uncertainty. Suppose the decision
maker does not have any information other than the range of the values of the uncertain,
and then it might be a reasonable option to choose an optimal decision on the basis of the
extreme values of the uncertainty in order to mitigate the risks. This kind of decision making
framework is known as robust optimization (RO). RO is based on the pessimistic view by
treating all realizations of the uncertainty equally. Over the past two decades, RO problems
have been well studied in theory, algorithm and application; see the monograph by Ben-Tal
et al. [1] and the survey by Bertsimas et al. [4] for recent development. If the decision
maker has complete information on the distribution of the uncertainties, the problem falls
into the form of stochastic programming (SP) which usually requires the knowledge of the
probability distributions of the uncertainty. SP is similar in style to RO but takes advantage
of the fact that probability distributions governing the data are known or can be estimated.
This history of SP can be traced back to the middle of the last century and stochastic
programming theory offers a variety of models to address the presence of random data
in optimization problems such as chance constrained models, two- and multi-stage models,
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models involving risk measures. We refer interested readers to monographs [21,27] for recent
development.

On one hand, one of the criticisms of SP is that in many applications the basic assump-
tion of knowing, or even accurately estimating, the probability distribution of the uncertain
data is unrealistic. On the other hand, the worst-case approach of RO could be too con-
servative. Moreover, the historical data of the uncertainty usually include some endogenous
probability information such as mean or covariance. Therefore, an alternative approach,
which is less pessimistic w.r.t RO and less optimistic w.r.t SP, is distributionally robust
optimization (DRO). DRO problems consider the case that the decision maker is able to
construct an ambiguity set of the distributions from historical data, computer simulations
or subjective judgements, which contains the true distribution with a certain confidence
level. Consequently, the decision maker may hedge against the risk of incomplete informa-
tion by considering the worst-case distribution in the ambiguity set. DRO has found many
applications in operations research, finance and management sciences and has been well in-
vestigated through a number of research works by Zackové [36], Dupacova [7], Shapiro and
Ahmed [26]. Over the past a few years, it has gained substantial popularity through further
contributions by Delage and Ye [6], Hu and Hong [14], Goldfarb and Iyengar [11], Pflug et
al. [20,22], Popescu [23], Wiesemann et al. [31-33], to name a few.

Our paper is related to the works applying DRO to evaluating the reward-risk ratios.
Kapsos et al. [17] first propose a so-called distributionally robust Omega ratio model where
an investor does not have complete information on the distribution of the underlying un-
certainty in portfolio optimization and consequently a robust action is taken against the
risk arising from ambiguity of the true distribution. They consider a situation where each
distribution in the ambiguity set may be explicitly represented either through a mixture of
some known distributions, or a perturbation from a nominal discrete distribution. Tong and
Wu [30] investigate DRR optimization problem with composite mixture distributions and
they transfer the DRR optimization problem to a convex optimization problem through the
dual theorem. Liu et al. [18] propose a DRR model where the ambiguity set is constructed
through moment conditions. They first utilize Lagrangian dualization to reformulate the
DRR optimization problem as a semi-infinite programming problem and further approxi-
mate the semi-infinite constraints with Entropic risk measures. Then the implicit Dinkelbach
method is used to solve the approximation problem.

Following the works mentioned above, we would like to study the DRR problem but
with the ambiguity set defined through a metric in probability space. Suppose that there
are historical data which may help the decision maker to construct an estimation or approx-
imation of the true distribution of the uncertainty. Accordingly it is reasonable to define the
ambiguity set as the ball centered at the estimation with proper radius to address the issue
of incomplete information such as insufficient number of sample. Different from the works
on DRR [17,18,30] where the authors define the ambiguity sets through moment conditions
or mixture methods, cannot be more informative than just a set no matter how many data
we have, distance type ambiguity set may converge to the true distribution with increasing
samples and decreasing diameter of the ball. Motivated by recent works [8,10,13,37] where
the authors study DRO problems with ambiguity sets based on the Wasserstein metric,
we study DRR optimization problems with the ambiguity set defined through Wasserstein
metric. Compared to the work of Esfahani and Kuhn [8], we extend the DRO problem with
Wasserstein ball uncertainty of the distributions [8] to the DRR problem, and a key differ-
ence is that their model requires the constructed portfolio to attain a fixed, pre-specified
reward-risk ratio value, while our formulation generates the portfolio with the largest worst-
case ratio value (i.e., 8 is a decision variable) attainable. Indeed, Ji and Lejeune [15] seem
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to be the first to consider the DRR problem with Wasserstein ball type ambiguity set. They
focus on the case that the uncertain parameter vector £ has finitely many realizations, and
they reformulated the DRR problem as tractable conic programs by leveraging ideas from
robust optimization. In our paper, we consider the situations that £ can have a continuum
of realizations, and the reference distribution is discrete. Compared to the results in [15],
our results are obtained by using the Wassertein metric to construct the ambiguity set for
general distribution, but not restricting on discrete distribution. Therefore, the results, to
some extent, extend the corresponding results in [15]. It is then predictable that a lot of
difficulties associated with the continuous random variables should appear. Based on some
new results in [8,10], we successfully reformulate the robust ratio problem as a tractable
convex problem.

The rest of the paper is organized as follows. In Sections 2 and 3, we focus on the
distributionally robust fractional programming (DRFP) problem. Particularly, we introduce
the general DRFP problem and the Wasserstein metric in Section 2. Then we provide the
reformulation of DRFP model where the ambiguity set is defined through Wasserstein metric
in Section 3. In Section 4, we apply the theoretical results in Section 3 to DRR problems,
specifically for Sortino-Satchel ratio, Stable Tail Adjusted Return ratio and Omega ratio. By
virtue of the structures of the Sortino-Satchel ratio model and Stable Tail Adjusted Return
ratio, the bisection algorithm is designed to solve in Section 5. We conduct numerical results
to test the applicability of the proposed reformulation and algorithmic framework in Section
6. We end the paper with a conclusion in Section 7.

Throughout the paper, we use the following notations. For vectors a,b € R™, the inner
product of a,b is denoted by (a,b) := a'b. Denote by [N] := {1,2,---, N}. Given a norm
| |l on R™, the dual norm is defined as ||z|[. := sup|,<;(2, ). Let f:R" — R be a lower
semicontinuous convex function, the conjugate of f is defined as f*(z) := sup,cpn (2, z) —
f(x). For a set = C R¥, the indicator function 1z is defined through 1z = 1if £ € Z; =1
otherwise. The indicator function on the set A is defined as 04(z) =0if x € A; d4(x) = 0
otherwise.

Distributionally robust fractional programming and Wasserstein
metric

Distributionally robust fractional programming

Consider the following fractional programming problem:

Ep[f(z,9)] (2’1)

maXzeX Eplg(z6)]’

where z is a decision vector, X is a nonempty convex compact subset of R”, f : R* x RF — R
and ¢ : R® x R¥ — R are continuous functions, ¢ is a random variable on probability
space (Z,F, P) with closed convex set = C R, Ep[] denotes the expected value w.r.t.
the probability distribution of £&. The fractional programs (2.1) have many applications in
economics, and management science [9]. In this paper, we mainly focus on the application
in portfolio management, where the numerator measures the expected return while the
denominator measures the risk of the portfolio. The ratio model (2.1) can be regarded as
finding the maximum of expected return per unit risk.

In practice, the information regarding the true distribution of random variable £ may not
be completely accessible. However, it might be possible to construct a family of distributions
based on empirical data or subjective judgements which contain the true distribution with
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a high confidence level. Suppose that there are N independent and identically distributed
historical samples &1, - - , €. We may base on the empirical probability Py to construct an
ambiguity set:

P:={Pe ZP:d(P,Py) <0},

where d(-,-) denotes a predefined distance on the probability space. This leads to the
following distributionally robust fractional programming:

Ep[f(z,6)] (2.2>

DRFP maxzex infpep  Frioe

In this formulation, robustness is in the sense that given the set of probability measures
‘P, an optimal solution is sought against the worst probability measure which is used to
compute the expected value of the objective function. Notice that problem (2.2) might not
be well-defined since the denominator may turn into zero. Therefore, we always assume that
for every z € X and every £ € 2, g(z,£) > 0 throughout this paper.

Recall that a popular method for solving distributionally robust optimization problem
is to reformulate the inner maximization problem as a semi-infinite programming problem
and further as a tractable convex problem through dual method. We follow the mainstream
approaches in the literature to handle the DRR problem. Since the objective function (2.2)
is nonlinear w.r.t. the operation of mathematical expectation, it might be very difficult to
derive a dual formulation of the robust optimization, especially when the ambiguity set is
defined through distance metric. Therefore we consider an equivalent maximization problem
with robust constraints:

SUP(z,8)eX xR B
st infpep Eplf(z,€) — fg(e,6)] 2 0. (23)

As presented in [18, Proposition 2.1], problems (2.2) and (2.3) are equivalent in sense of the
same optimal values and optimal solutions as long as both have finite optimal values and
optimal solutions. Thus we may crack DRFP (2.2) by solving the problem (2.3).

Wasserstein metric

The Wasserstein metric is defined as a distance function between two probability distribu-
tions on a given support space =, which is defined on the space (=) of all probability
distributions P supported on = with Ep[||€]|] = [ [[€]|P(d€) < +oc.

Definition 2.1. Let £ be the space of all Lipschitz continuous functions f : = — R with
Lipschitz constant no larger than 1. Then, the Wasserstein metric dy, : Z(2) x Z(E) - R
is defined as

A(P.Q) = sup / F(6)P(de) - / £(©QE), VP,Q e 2(3).

The Wasserstein distance exhibits the defining properties of a probability distance metric.
That is, dw (P, Q) = 0if and only if P = Q, dw (P, Q) = dw(Q, P) and dy (P, Q) < dyw(P, P)+
dyw (P, Q) for any probability distribution P.

By the Kantorovich-Rubinstein theorem [16], the Wasserstein metric is equivalent to the
Kantorovich metric. Then for any P,Q € Z(Z), we have

CIZW(ID7 Q) = 1nf{ fEQ ||§1 - §2||7T(d€17d€2) } 5 (24)
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where 7 is a joint distribution of & and & with marginal P and @, respectively, and the
‘inf’ is taken over all joint distributions 7. Definition 2.1 and the problem (2.4) provide
two equivalent characterizations of the Wasserstein metric, which constitute a primal-dual
pair of infinite-dimensional linear programs. The decision variable 7 appearing in the dual
linear program can be viewed as a transportation plan for moving a mass distribution P to
another one (). Thus, the Wasserstein distance between P and @) represents the minimum
transportation cost.

Having specified the Wasserstein metric, we can now define an ambiguity ball around the
nominal distribution. Different decision makers may have different reference distributions,
but the most popular way is to set the empirical distribution as the center of the ambiguity
set. Suppose there are N independent and identically distributed samples for an unknown
true distribution. We may construct an empirical distribution, denoted by Pp, and then
define

P={P e PE): dw(P,Py) < 0}, (2.5)

where Z(Z) denotes the set of all probability with support set contained in = and 6 is the
ambiguity parameter. Obviously, the parameter 6 decides the size of the ambiguity set and
the forthcoming question is how to choose the size parameter 6.

If there exists an exponent o > 1 such that Ep[exp(]|¢]|¥)] < oo, Zhao and Guan [37,
Proposition 1] have shown that for a general k-dimension (e.g., k& > 2) supporting space =,

P(dw(P,Px) < 0) >1— Cexp(—cNO*)Lg<1y + exp(—cNO*) L (p=1y), (2.6)

where N is the number of historical data, and C' and ¢ are positive constant numbers. (2.6)
provides finite sample guarantee property and asymptotic guarantee property. This means
that we may adjust the radius 6 of the Wasserstein ball to ensure the ambiguity set contains
the true distribution P with a given probability threshold. Moreover, (2.6) implies that the
ambiguity set converges to the true distribution P as the sample size N goes to infinity.
See [8,15] for similar statistical evidence.

Reformulation

The DRO problem with the ambiguity set defined through Wasserstein metric has been
well studied in the past decade. Pflug and Wozabal [22] study the distributionally robust
coherent risk measures where the ambiguity set is defined by Wasserstein metric under
the assumption that the probability space has a finite support. Wozabal [34,35] conducts a
series of DRO problems which studies the Wasserstein distance metric and presents portfolio
optimization illustrations. Esfahani and Kuhn [8], as well as Zhao and Guan [37], study data-
driven distributionally robust problems with the ambiguity set defined through Wasserstein
metric. In particular, they analyze the conditions which ensure the tractability of the DRO
problem. Ji and Lejeune [15] study the DRR problem with Wasserstein ball type ambiguity
set. Particularly, they consider the ambiguity set is defined as follows:

PN = {P e 2(EN): dw(P,Py) <0},

where Py is empirical probability with support set Z¥ and Z(Z") denotes the set of all
probability with support set is contained in ZV. Based on the recent results on RO by
Ben-Tal et al. [2], Ji and Lejeune [15] develop a tractable reformulation and associated

algorithmic framework to efficiently solve the DRR problem.
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We inherit the investigation of distributionally robust reward-risk ratio problems. Dif-
ferent from Ji and Lejeune’s work [15], we remove the limitation that the probability in the
ambiguity set has the same discrete support with the nominal. Specifically, we study the
DRR problem with ambiguity set (2.5). Obviously, PV C P as Z(EV) c 2(2).

In what follows, we analyze the conditions which ensure that we can solve the DRFP
(2.2) efficiently. For convenience of exposition, we rewrite (2.3) as a minimization problem:

inf —p
s.t. SUPpep EP[_f(x7§) + Bg(mag)] S 0, (31)
re X, eR.

Obviously, the problem (3.1) is a nonconvex semi-infinite problem as there is a bilinear like
function Bg(z, ) in the constraints. In general, people cannot expect to solve a nonconvex
semi-infinite problem easily. Fortunately, we may take advantage of the special structure
of problem (3.1) to design an efficient algorithm. Note that the objective function —g is
monotonic, and thus we will use the bisection method to solve (3.1), that is, fix 8 first and
then increase or decrease [ based on the feasibility of 8. Indeed, the idea of employing the
bisection method is inspired by existing literatures. In particular, Kapsos et al. [17] update
B by a fixed step and then check the feasibility; Liu et al. [18] use the bisection method to
solve the DRR problem with moment type ambiguity set; Ji and Lejeune [15] on the other
hand, design a bisection method for the DRR problem with the Wasserstein ball restricted
on a discrete probability space. We will present the details of the bisection method in Section
5, and right here we first provide some results for checking feasibility.

The following results show that, under some moderate conditions, the constraint of prob-
lem (3.1) can be reformulated into a finite dimensional constraint space, and the resulting
set of inequalities that provides an equivalent reformulation of the feasible set of (3.1).

Theorem 3.1. Suppose that for any fized x € X, f(z,-) is proper and convex and —g(x,-)
is proper and convezx in §. Then the constraint of problem (3.1) can be reformulated as:

)‘0"_%22‘1\;15%' <0,
() (2, 20 — ug — vi) + (=Bg)*(x,u;) + o=(vi) — (2:,&) < 85, Vi€ [N] (3.2)
llzill« < A, Vi € [N].

Proof. The proof is similar to [8, Theorem 4.2]. Here we give the details of the proof for
completeness.
By the definition of the Wasserstein metric, we have

sup Ep[—f(z,€) + Bg(z,€)] = sup {Ep[—f(z,€) + Bg(z,&)] : dw(P, Py) <0} (3.3)
PeP PeP(2)

— up / (—F(2,€) + By(,€)) P(d8)

st.me P(ExE),Pe PE),
L N~ slimtas. az) <o,

7 is a joint distribution of £ and z

with marginals P and Py, respectively.

By the law of total probability, 7 = % Zf;l Q;, where Q; represents the distribution of £
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conditional on z = ;. Therefore, we can rewrite (3.3) as follows:

SUDQ,en(z) & Loica Sz (= F(,€) + Bg(w,€))Qu(de) (3.4)
st & Yic Jz 1€~ &llQi(d) <.

Consider its Lagrangian dual problem that can be rewrite as follows:

Z € — &11Qi(de)),

L) = sup Z / F(2.€) + Bg(2,€))Qa(de) + (8

QieZ(E)

2 |

where A > 0 is the dual variable of constraint condition of (3.4). Obviously, the dual problem
is

inf L(\).

M
Now, we show that the strong duality result holds. When 6 > 0, by virtue of a well-known
strong duality result for moment problems [25, Proposition 3.4], there is no duality gap.
Hence, we obtain

sup Ep[—f(2,€) + Bg(z, )] = inf L()) (3:5)
PeP =
. 1o
= mf A+ ;222 (= f(,€) + Bg(x,€) = Mg = &ll),
(3.6)

where the equality (3.6) follows from the fact that &?(Z) contains all the Dirac distributions
supported on Z.

One can show that the equality (3.5) continues to hold even for § = 0. In fact, in which
case the Wasserstein ambiguity set reduces to the singleton {Pn}, suppcp Ep[—f(z,&) +
Bg(x,€)] reduces to the sample average & SN | (— f(z,&) + Bg(x,&)). For 6 = 0, the
variable A in (3.6) can be increased indefinitely. Since for any given z, 8, —f(z,&) +
Bg(xz,&) — A||€ — & is concave w.r.t. &, we can show that (3.6) converges to the sample
average + Zf\;l (= f(z,&) + By(x,&)) as A tends to infinity. That is, (3.5) holds for 6 = 0.

By introducing auxiliary variables s;,4 € [IV], we can reformulate (3.6) as

infys, A0+ % Zfil 84
s.t. supgex (— f(2,€) + Bg(x,€) = M€ = &ll) < si, Vie[N] (3.7)
A>0.

By virtue of the definition of the dual norm, (3.7) can be rewritten as follows:

infr,, M+LSV
st supges (— f(2,€) + By(e, §) — max., |, <x (2, — &) <s, Vie[N] (3.8)
A>0,

or equivalently,

ian,si A0+ % Zfil S;
st SUPgez Min|., |, <x (= f(z, &)+ By(x, &) — (2, — &) < i, Vi€ [N] (3.9)
A>0.
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By the assumptions, f and g are continuous functions, and for any given =z, 8, —f(x,§) +
Bg(x,&) — (z;,€ — &) is concave w.r.t. £ and convex w.r.t. z;. Since for any finite A, the
set {z; € R™ : ||z« < A} is compact, due to the classical minimax theorem [3, Proposition
5.5.4], (3.9) can be rewritten as follows:

infy s, A0+ % Zfil S
st ming,, <xsupees (— f(2,€) + Bg(x,€) — (2, = &) <s;, Vie[N] (3.10)
A>0.
or equivalently,

inf/\,si7zi A0 + % Zz]\il S;
[zl < A, Vi € [N].
It follows from the definition of conjugacy and the substitution of z; with —z;, (3.11) is
equivalent to the following problem

inf/\,s,-,zi /\9 + % Zf\il S
st (f = Bg+0=)"(w,2) — (2:,&) < s, Vie[N] (3.12)
l|zill« <A, Vi € [N].

Since for any given z, 8, the function f(z,&) — Bg(x, &) + d=(&) is proper, convex and lower
semicontinuous w.r.t. &. Thus,

(f = Bg+0=)"(,2:) = el inf ((f)* (2,2 —ui —vi) + (=B9)* (x, ;) + (6=)"(v)) ]

U4,Vq

=cl inf ((f)" (2,2 —wi —v;) + (—B9)*(w,u;) + o=(vy))].

Us5,Vq

As cl[h(z)] < 0 if and only if h(x) < 0 for any function h. Therefore, from (3.12), we can
conclude that (3.2) holds. O

Next, we study the cases that conjugate dual functions involved in problem (3.2) have a
closed form.

Theorem 3.2. Assume

(a) E = {£ € R* : C¢ < d} where C is a matriz and d is a vector of appropriate
dimensions;

(b) f(z,&) = maxi<p<re{{ar(2),€) + bi(2)};
(c) g(z,&) = maxi<j<s{(c;(2),&) + d;(x)}.

Then the constraint of problem (3.1) can be reformulated as:

M+ LN s <o,

(Nig, —b(x) — A(2)&) + B(d;(x) + (cj(w), &) + (v, d — C&) < 54, Vi€ [N],j€l[J]

| A(z) Tnij — Bej(x) + CTryizlls < A, Vi€ [N],j € [J]

<77ij76>:17 ViG[N],]G[J]

Yij = 0,155 = 0, Vi€ [N],j € [J]
(3.13)

where A(z) is a matriz with rows ay ()Y, 1 < k < K, b(z) is the column vector with entries
br(x),1 < k < K, e is the vector of with each component being 1 and N is the number of
samples.
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Proof. Tt follows from the expressions of f and g and the proof of Theorem 3.1 that (3.9)
can be reformulated as follows:

inf,\,si A+ % sz\il S;
s.t. supgezming., |, <x (= f(2,8) + Bg;(2,€) — (25,6 = &)) < si, Vi€ [N],jel[J]
A >0,

(3.14)
where g;(z,€) = (¢;j(z),&) + d;(x). Since f(z,§) = maxi<p<kx {{ar(x),&) + bi(x)}, then for
any given x € X, f(z,€) is convex w.r.t. £. Then, it follows from the proof of Theorem 3.1
that (3.14) can be re-expressed as

inf/\,shzij,uijgvij A0 + % Ezjil Si
st (F) (@, 205 — wij — vij) + (=Bgy)* (2, uij) (3.15)
+o=(vij) — (2i5,&) < si, Vi€ [N],jel[J]
26l < A, Vi€ [N],je[J]

By the definition of the conjugacy operator, we have

inf, >0 (n, =b(z))
() (2, 2) = sgp{<z,€> — max {{ar(z),§) +be(2)}} = { st A(@)Tn =2

kK (n.¢) =1
(=80, (o) = sup{(s6) + Ay 0. + (o)} = { S0 1w ” =Pt

Since
o=z(v) =supe (v,§)
s.t. C¢<d,

then it follows from the strong duality of linear programming and the non-empty of the
uncertainty set, we have

oz(v) =infy>o  (v,d)
st. CTy=w. (3.16)

Substituting the above expressions into (3.15), the result holds for 6 > 0.
When 6 = 0, the optimal value of (3.13) reduces to the expectation of —f(x, &)+ Bg(x, &)
under the empirical distribution. In fact, for # = 0, the variable A can be set to any positive

value. Since all samples must belong to the uncertainty set, i.e., d — C¢& >0,i=1,--- , N,
then it is optimal to set v;; = 0. This implies that

si = min {(nij, —b— A(2)& : (nij,e) = 1)} + ﬁéﬂ&?ﬁ@j(@@) +dj(z)}

1520
= iy {—0x(@), &) — ()} + 8 s e (0),6) + ()} = — (2. €) + B(z. &)

at optimality. Therefore, % Zfil s; represents the sample average of — f(z, &)+ 8g(z,£). O

If the condition (b) in Theorem 3.2 is replaced by

(b)) f(,8) = mini<p<r{(ax(2),§) + bi ()},

the constraint of problem (3.1) is equivalent to a system of nonlinear inequalities.
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Theorem 3.3. Assume the conditions (a) and (c) of Theorem 3.2 and (b’) hold. Then the
constraint of problem (3.1) can be reformulated as:

)\9+%Zilsl§0,

((—a(x), &) — be(2)) + B({cj(x), &) + dj(x) (317
+ (Yigr,d — C&) < i, Vi€ [N],j €[J]k € [K]
18¢j(x) — ar(z) — CT ikl < Avigr > 0, Vie[N],jeJ],ke[K].

Proof. Tt follows from the expressions of f and g and the proof of Theorem 3.1 that (3.9)
can be reformulated as follows:

infy,, M+ &SN s
st supgez ming, L <x (= f(2,8) + Bgj(x, &) — (25,6 = &)) <55, Vie[N],jel[J]
A >0,
(3.18)

whore 4,5.9) = (626 + (). Sice S0.6) = minsesrel(04(2). 6 + (@), dhen
—f(z, &) = max1<k<K{ <ak(x) &) — bi(x)}. Thus, (3.18) can be rewritten as follows:

infrs, A+ SN si
b, supgez miny.,, 1, <x —fr(@, ) + Bgj(@,€) (3.19)
—(zijk, § — &) < si,Vi € [N],j € [J],k € [K]
A >0,

where fi(z,&) = (ar(x),&) + bi(x). Then, it follows from the proof of Theorem 3.1, the
result holds for 6 > 0.

When 6 = 0, the optimal value of (3.17) reduces to the expectation of —f(x, &)+ Bg(z, &)
under the empirical distribution. In fact, for # = 0, the variable A can be set to any positive
value. Since all samples must belong to the uncertainty set, i.e., d — C§; > 0,i=1,--- | N,
then it is optimal to set «;; = 0. This implies that

si = max {—(ag(2), &) — bp(2)} + 8 max {{(¢;(x), &) + d;(2)} = —f (2, &) + By (2, &)

1<k<K 1<5<d
at optimality. Therefore, % Z@Z\; s; represents the sample average of — f(x, &)+ 8g(x,€). O
When f(z,-) is an affine function:
(b7) f(2,€) = (a(x), &) + b(x),

we have a more concise reformulation of the constraint of (3.1).

Corollary 3.4. Assume the conditions (a) and (c) of Theorem 8.2 and (b”) hold. Then the
constraint of problem (3.1) can be reformulated as:

M4+ LN s
(—a(z),&) —b

<0,
&) — b(x) + Bl{ej (x), &) + dj ()
+( wd C&) <si, Vie[N)jel (3.20)
la(z) + CTyij — Bej(@)|« < A, Vi€ [N],j € [J]
Yij = 0, Vi € [N],j € [J].
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Remark 3.5. We should keep in mind that the reformulations for the constraint of problem
(3.1) are nonconvex. If 3 is fixed to some arbitrary positive value and a(z),b(z), ax(x),
bi(xz),cj(z),d;(z),k € [K],j € [J] depend linearly on z, the reformulations (3.20) and
(3.17) reduce to convex inequalities. Furthermore, if the Wasserstein metric is defined in
terms of the 1-norm or the co-norm, the reformulations (3.20) and (3.17) reduce to linear
inequalities. In contrast, the reformulation (3.13) turn out to be in non-convex when the
matrix A(z) or the vector b(z) depends on z.

Reward-Risk Ratio

Since the pioneering work by Markowitz on mean-variance portfolio selection [19], the return-
risk analysis framework has been widely used in financial portfolio management. Two criteria
essentially underly the portfolio selection approach: the expected return and the risk. One
portfolio is preferred to the other if it encompasses higher expected return and lower risk.
To overcome the difficulties associated with choosing such variables, Sharpe [28] proposes
a ratio optimization which is known as Sharpe ratio. Since the publication of the Sharpe
ratio [28], some new performance measures such as STARR ratio, Minimax measure, Sortino
ratio, Farinelli-Tibiletti ratio and most recently Rachev ratio and Generalized Rachev ratio
have been proposed, for an empirical comparison, see Biglova et al. [5,24] and the references
therein.

In this section, we employ the results in Section 3 to investigate the distributionally
robust reward-risk ratios. In this setting, the numerator measures the expected return while
the denominator measures the risk. We assume that the investor has an amount of money
of value 1 and can invest his money into n assets. To simplify the discussion, we ignore the
transaction fee, and therefore the total value of portfolio is (z,¢), where & = [&1,---,&,]T
denotes the random returns vector of n assets, and xz1,--- ,z, the fractions of the initial
capital invested in n assets.

Sortino-Satchel Ratio

The Sortino ratio [29] is a modification of the Sharpe ratio by penalizing only those returns
falling below a user-specified target or required rate of return, while the Sharpe ratio penal-
izes both upside and downside volatility equally. We consider that the numerator measures
the expected return while the denominator measures the expected shortfall of return below
the benchmark. The former is regarded as a reward and the latter first order lower partial
moment as a risk, that is

f(.’L’,f) = <.I',§>, g<xa€) :max{u—<x7§>,0},
where v is a target return value set by the decision maker.

Corollary 4.1. Assume that the condition (a) of Theorem 3.2 holds. Consider the re-
ward function f(x,€) = (x,£) and the risk function g(x,&) = max{v — (x,£),0}. Then the
constraint of problem (3.1) can be reformulated as:

)\9+%Zi151§0,

|z + CTyills < A Vie [N

[N]
[N]
(14 B)z + CTyall« <A, Vi € {N%
Yij = 0, Vi € [N],j € [2].
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Proof. By the definition of the conjugacy operator, we have

() (@, 2) = sgp{(z,ﬁ) —{z, )} = { 20 ! f)t;efx;fise,
(=B0n)" () = sup{ (0,6) + 5({=2,8) +1)} = { b,
0 if u=0,
oo otherwise,

(—Bg2)"(z,u) = Slgp<u,§> = {
where g1(x,&) = (—x,&) + v, g2(x, &) = 0. From Theorem 3.2, we have

oz(v) =infy>0 (v,d)
st. CTy=w.

Substituting the above expressions into (3.20), we have the result. U

Stable Tail Adjusted Return Ratio (STARR)

STARR is a variation of the Sortino-Satchel ratio where the expected one-sided deviation
is replaced by a coherent risk measure, which can measure Skewness and fat-tails. Here,
we employ the well used coherent risk measure, Conditional Value-at-Risk (CVaR). CVaR,
sometimes called expected shortfall has received a great deal of attention as a measure of
risk. In a financial context, it has a number of advantages over the commonly used Value-
at-Risk (VaR) and has been proposed as the primary tool for banking capital regulation in
the draft Basel I1II standard.
Suppose that (z, &) has a support contained in [0, 79|, and then

CVaR,({(z,£)) = inf 74 éEP[max{@,f) — 1,0},

T€[0,70]

where o € (0,1) is the confidence level. In fact, if 7 <0, we have
1K max{(z,§) —7,0}] = (1 1) + 1k [(z, &)]
T+ — X -7 =(1-—)r+—
@ P ) ) a a P ) )

which is increasing as 7 — —oo since 1 — L < 0. If 7 > 79, we have 7 + LEp[max{(z,¢) —
7,0}] = 7, and since 7 is increasing as 7 — co. Because 7 4+ 1Ep[max{(z,&) — 7,0}] is
convex in 7, then the minimizer of the function lies in [0, 79].

Corollary 4.2. Suppose that (x,£) has a support contained in [0, 79] and the condition (a)
of Theorem 3.2 holds. Consider f(z,&) = (z,£), Eplg(z,€)] = inf, 7 + LEp[max{—(z, &) —
7,0}]. Then the constraint of problem (3.1) can be reformulated as:

)\9+%ZZ]—VZISZ'SO,

B —L)r+ (=2 —1)(2,&) + (v, d— C&) < si, Vi€ [N]

BT —(x,&) + (viz, d — C&;) < s4, Vi € [N] (4.2)
2+ CTy + Bl < A, Vi € [N] '
[+ C Tl < A, Vi € [N]

Yij 2 0,7 € [=70,0], Vi € [N],j € [2]
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Proof. Similar to the proof of Corollary 3.4, we have
N 0 if z=um,
(1) = {

oo otherwise

and
o=(v) =infy>o  (v,d)
st. CTy=w.

By the expression of Ep[g], we have
. 1 1
Eplg(a, )] = inf Epfmax{~ (,&) + (1~ 2)r,7)].

Let ai(x) = —éx,bl =1- é,ag(x) =0 and by = 1. Then

Eply(, )] = _inf Eplmax{a;(z),£)+b;7]

Subsequently, by [25, Proposition 3.4], we have

Lot s Ep[=f(w,&) + B(max {a;(z), £) +b;7)]

=sup if Ep[—f(x,£) + 5(max {a;(x), §) +b;7)]

Therefore, from Corollary 3.4, we have the result. U

Omega Ratio

The Omega ratio is another alternative for the widely used Sharpe ratio, which is defined as
the probability weighted ratio of gains versus losses for some threshold return target. The
Omega ratio is upside/downside ratio performance measures, in which reward is the upside
deviation and risk is taken as the downside deviation. Kapsos et al. [17] first study the robust
Omega ratio where each distribution in the ambiguity set can be explicitly represented either
through a mixture of some known distributions, or a perturbation from a nominal discrete
distribution. We focus on the case that the ambiguity set is defined as Wasserstein ball.
Here, we set

f(xvg) = max{(x,{} - V’O}, g(:c,f) = maX{V - <$,£>,0},

where v is a threshold that partitions the returns to desirable (gain) and undesirable (loss).
The choice of the value ‘v’ is left to the investor and can be set for example to be equal to
the risk-free rate or zero.

Corollary 4.3. Assume that the condition (a) of Theorem 3.2 holds. Consider the reward
function f(x,&) = max{(x,&) — v,0}, the risk function g(x,£) = max{v — (x,£),0}. Then
the constraint of problem (3.1) can be reformulated as:

(v —(@,&)) + B(v+ (—2,&)) + (yir,d — C&) < s;, Vie [N]

N (v — (2,&)) + (vi2,d — C&) < si, Vi € [N]

Inhz + Bz 4+ CTyall. <A, Vi € [N] (4.3)
Il + CT izl < A, Vi € [N]

(nij, €) = 1, Vi € [N],j € [2]

Yij 2 0,mi5 20, Vi€ [N],j € [2]

where nilj represents the first component of n;;, j € [2].
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Proof. By some simple calculation, we have

inf, >0 (1, =b(x))
(f)* (2, 2) = sup{(z,§) — max{(z,§) — v, 0}} = st A(z)Tn =2
¢ (n,e) =1

(—Bg1)* (x,u) = Slgp{(u, O+ B((—z, &) +v)} = { Bv if wu= Bz,

00 otherwise,

0 if u=0,
oo otherwise,

(—Bga)" (w,u) = sup{(u, )} = {
3

T _
where A(z) = BT], b(x) = [ 01/] and 0 denotes a vector with each component being 0.

Substituting the above expressions into (3.13), we obtain the result. 4

Remark 4.4. (i) In the recent work [15], Ji and Lejeune derive robust counterparts for
reward-risk ratio expectation constraint by using the framework proposed by Ben-Tal et
al. [2]. The method is designed for ambiguous probability distributions with fixed atoms,
and encompasses two separate reformulation phases involving the derivation of: 1) the sup-
port function of the ambiguity set and 2) the concave conjugate of the reward-risk function.
Moreover, the discrete uncertain parameter vector &; is included in the equivalent reformu-
lation of the feasible set of the ambiguous reward-risk ratio constraints. In our paper, we
obtain robust counterparts for reward-risk ratio expectation constraint by leveraging tools
from robust optimization. Different from Ji and Lejeune’s work, the uncertain parameter
vector &; does not include in the equivalent reformulation of the feasible set of the ambigu-
ous reward-risk ratio constraints except for independent and identically distributed historical
samples.

(ii) Ji and Lejeune [15] study the DRR problem with Wasserstein ball type ambiguity
set and show that for many kinds of ratio such as Sharpe, Sortino-Satchel and Omega
ratios, the step of checking feasibility can be completed through solving a convex problem.
However, problem (4.3) shows that for distributionally robust Omega ratio we cannot check
the feasibility through solving a convex optimization problem. The reason is that we release
the condition in [15] by considering the Wasserstein ball on the general probability space
Z(Z) rather than on the discrete probability space Z2(ZV).

Bisection Algorithmic Methods

For a minimization problem with a monotonous objective value —f in [a,b], the bisection
algorithm divides the incumbent interval [a, b] in two equal parts. Then, compute the value
of the objective function at the midpoint 8 = (a + b)/2 of the interval [a,b]. If the problem
is feasible at 3, there is potentially a better optimal value smaller than —3. The search is
continued on [3,b], otherwise search focuses on the interval [a,8]. The process continues
until the interval is sufficiently small.

In what follows, we mainly analyze the bisection algorithm for DRR problem with
Sortino-Satchel ratio and DRR problem with STARR can be analyzed in a similar way.

Assume that the investor has observed IV historical samples from the true distribution
P and the support set of distribution P is contained in = = {{ € R™ : C¢ < d}, where C
is a matrix and d is a vector of appropriate dimensions. Consider the case that the reward
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function f(z,£) = (z,&) and the risk function g(z,&) = max{v — (z,¢),0}. By Corollary
4.1, we have that the problem (3.1) can be reformulated as follows:

inf —p

s.t. N0+ % vazl 5, <0

[N]
—(z,&) + (via, d — C&;) < sy, Vi € [N] (5.1)
|z + C i + Bzl < A, Vi € [N]
[ 4+ CTiall« <A, Vi € [N]
’Yijzo,feX, VZE[N],]Ep]
For simplicity, we rewrite (5.1) into a more concise form:
(D) inf -8 (5.2)

s.t. (317)\75771’7275) GH’

where H denotes the feasible set of (5.1). Then for each iteration, the feasibility check is
done by solving the following problem:

(D) inf -3
s.t. (1‘7>‘3537177235) S H7 (53)
B = 5t7
where 3! is the middle point of the interval |8}, 8f;] which is determined by step ¢ — 1.

Given the tolerance level €, the bisection algorithm to solve problem (5.1) can be pre-
sented as follows

Algorithm 1: Pseudo-Code of Bisection Algorithm
Step 1: Determine [Bo,ﬂog} such that 8* € [89,8Y], and set t = 0,0 = —39;
Step 2: Set gt = (BtL + B(;)/2, and solve the problem (Dx);
Step 3: If (D;) is feasibility, then set v! = —3%; update interval [,BtLJrl,ﬁ’;rl] : Bf-fl =t and
B;’J'H = Bl;, let t =t + 1. Otherwise, set v' = v*~!; update interval [BtL'*'l,B[tfl} : B?—l =Bt and
ﬁffl =pt lett=t+1;
Step 4: If 8f, — 8% < e, stop. Return v’ as the optimal value. Otherwise go to Step 2.

In Algorithm 1, the suitable values 59 and BP] are determined to ensure that the optimal so-
lution 3* belongs to each of the successive intervals [3%, 8f;]. The cost on time of Algorithm
1 depends highly on the diameter of the interval [3?, 8;]. In practice, people may set the
interval based on their experience and/or their expectation. For example, set lower bound
as unacceptable ratio and the upper bound as highest ratio we expect. We will present some
numerical methods to determine lower and upper bounds of the ratio in the next subsection.
Note also {%} is an increasing sequence and {3}, } is a decreasing sequence, and hence the
sequence {—v'} is monotonically increasing. Therefore, the Algorithm 1 finds the optimal
value in a finite number of iterations with a given tolerance ¢.

Determine the initial interval [3, Ov]

It is well known that the efficiency of bisection method is highly dependent on the initial
interval [8r, By]. In this subsection, we present a method to set the interval [8r, By]. Let
us focus on the lower bound [y, first.

Lower bound f;: For any fixed x € X, denote

(5.4)
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Obviously, the optimal ratio * such that
Ep[f(z,8)]

* = 1 f —_ = > V X.
g Do pep Eplg(z,&)] — fr(z), Ve
By the equivalent reformulation (2.3), we may estimate a lower bounded S (z) of 8* by

solving

(P1) max [
st. Ep[—f(z,8) + By(2,§)] <0,VP € P, (5.5)
B eR;.
By using Lagrange dual method, problem (5.5) can be reformulated as a convex problem:
(P)) max J

s.t. N0+ %Zil 5, <0

[N]
—(,&) + (via, d — C&;) < si, Vi € [N] (5.6)
[+ CTyin + B <A, Vi € [N]
[+ CTrill« <A, Vi € [N]
Yij >0, Vi e [N],j € [2].

Again, the investor may setting the lower bound S (x) by choosing different x, for example,
set x as the portfolio choice of last investment process or the equally weighted strategy.
Upper Bound gy:
Denote

Epy [f(z,8)]
By = max —~ , 5.7
v zeX ]EPN [g(m,é)] ( )
where Py is the empirical distribution. Obviously, the optimal ratio 5* is given by

. .. Ep[f(z,8)] N
" =max b g ot e =PV

As Py is a discrete distribution, problem (5.7) is equivalent to

(P2)  max,, S
N =1 "7 .
st u; >v—{(x,&), Yié€][N] (5.8)
Z;il z; =1,
u; > 0, Vi € [N],
where the auxiliary variable u = (u1,--- ,ux)? is introduced to deal with the max-function.

As problem (P3) is a linear fractional program, it can be further reformulated as an equivalent
linear programming problem:

(PIQ) max; v,w % fo\;1<27€z>

v, > wr —(2,&), Vie[N] (5.9)
Z:il Z; = W,
v; > 0, Vi € [N]

*

Obviously, the optimal solution to the problem (Ps3) is z* = z*/ vazl z¥, where z* is the
optimal solution of (P5). Therefore,

_ Epy[f(@",8)]

ﬂU B EPN [g(w*,f)] .
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In [15], Ji and Lejeune present an effective method to derive a lower bound and a upper
bound for 3. They determine a upper bound via solving two subproblems: maximizing
the robust reward measure without restriction on the risk and minimizing the robust risk
measure without restriction on the reward. For the lower bound, they provide an estimation
at each iteration ¢ by virtue of the bisection algorithm with iterative interval compaction
method. See Section 5 of [15] for details.

@ Numerical Results

In this section, we consider the DRFP (2.2) and implement Algorithm 1 by evaluating its per-
formance under various scenarios. The experiments are based on the application of the model
in portfolio optimization where certain assets are invested in stock markets. We collect the
following ten stocks: BAE Systems PLC, BG Group PLC, BHP Billiton PLC, BP PLC, BT
Group PLC, Babcock International Group PLC, Barclays PLC, British American Tobacco
PLC, British Land Co PLC, British Sky Broadcasting Group (http://finance.google.com)
(from 5th Feb 2013 to 15th Nov 2013) with a total of 200 datasets. We consider a simple
case when there is a fixed fund normalized to one for investment at the beginning of day 101.
We assign the portfolio by using 100 most recent historical data up to the date. Assuming
that the stocks are sold at the end of the day and the total accumulated fund is invested in
the following day. This is not necessarily practical but we do so by updating the portfolio
on daily basis in order to evaluate the performance of the portfolio against the change of
data.

For numerical experiments, we consider the case that the reward function f(z,§) = (z, &),
the risk function g(z,£) = max{l — (z,£),0} and the support set = is

Ei={cR": 06 <d}={cRY:[I,-1]T¢ < (dimax, —dumin) T},

where I denotes the identity matrix and dpyax, dmin denote the max and min of the 200 history
data in component. By Corollary 4.1, the DRFP (2.2) can be reformulated as problem (5.1).
We test the cases that the parameter 6 of the ambiguity set is 1,0.5,0.01,0.005 and the || - ||«
in problem (5.1) is 1-norm, 2-norm and oco-norm respectively. We implement Algorithm
1 on MATLAB 2015a installed in a PC with Windows 10 operating system. We use CVX
(version 1.22) developed by Grant and Boyd [12] to check the feasibility in Steps 3 Algorithm
1. The initial interval of the ratio 8 is determined by problems (5.6) and (5.9) in Section
5.1 with upper bound 463.8075 and lower bound 25.6081. For convenience in analyzing
the interations, we enlarge the interval to [0,500]. Moreover, the tolerance of the bisection
method is 1072,

We record the numerical results in Tables 1-4 and Figures 1-7. Tables 1-4 summarize
the daily returns generated by DRO ratio model with the three different norms. In the
tables, the number of days when the overall portfolio return exceeds ( or equals to) 1 is
denoted by “Up”, and the lowest, highest and average returns rate denoted by “L”, “H”
and “A” respectively. We can see that the DRFP (2.2) achieves comparable average daily
return for any given parameter 6 and norms, but the average investment strategy (1/M)
displays more stable performance with a narrower range between the best and worst return
rate. With the big ambiguity parameter (§ = 1,0.5), Table 1 and 2 show that the return
rates based on 1-norm and 2-norm are closer to each other and the three norms are stable
to the change of the parameter from 0.5 to 1. On the other hand, with small ambiguity
parameter (6 = 0.01,0.005), Table 3 and 4 show that return rate based on l-norm and
2-norm are sensitive to the change of parameter # and the strategy based co-norm is still
stable to the change of the parameter form 0.005 to 0.01. Figures 1-4 depict the evolution
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of wealth over 100 trading days when managing a portfolio of ten assets on a daily basis
with different ambiguity parameters. The Figures 1-4 indicate that all wealth curves have
the tendency to going down at the beginning and at the end. Figures 1-2 show that all the
wealth curves generated by the three norms dominate the curve of 1/M strategy with big
ambiguity parameter (§ = 1,0.5), which means that the robust strategy return by DRFP
(2.2) outperforms the average investment strategy. With the decreasing of 0, Figures 3-4
show the difference of four wealth curves is decreasing, which is consistent with the fact that
P:={Pec P(E):dw(P,Py) <0} tends to Py as 6 tends to zero. Figures 4-7 depict the
stability of the norms with respect to the ambiguity parameter 6. Just as shown in Tables
1-4, 1-norm and 2-norm are sensitive to the change of the parameter when 6 is small. On
the other hand, oco-norm is more stable to the small change of the parameter 6.

Table 1: 6 =1 Table 2: 6 =0.5
Up H L A Up H L A

1-norm 52 1.0210 0.9858 1.002 1-norm 52 1.0210  0.9858 1.003

2-norm 52 1.0209 0.9862 1.002 2-norm 52 1.0210 0.9860 1.002

co-norm 55 1.0207  0.9861 1.003 oo-norm 55 1.0209 0.9861 1.003

1/M 55 1.0219 0.9872 1.001 1/M 55 1.0219 0.9872 1.001

Table 3: 6 = 0.01 Table 4: 6 = 0.005

Down H L A Down H L A
1-norm 54 1.0227  0.9860 1.002 1-norm 56 1.0226  0.9849 1.002
2-norm 58 1.0234  0.9814 1.003 2-norm 53 1.0224  0.9857  1.002
oco-norm 58 1.0284  0.9814  1.003 oo-norm 58 1.0285 0.9813 1.003
1/M 55 1.0219 0.9872  1.001 1/M 55 1.0219  0.9872  1.001

e 1-Norm
s = = 2-Norm
23 === c-Norm

——1/M strategy

Wealth

. . . . ,
20 40 60 80 100 096
Trade times (/=1)

20 40 60 80 100
Trade times (=0.5)

Figure 1: 6 =1 Figure 2: § =0.5

Conclusions

We consider the distributionally robust reward-risk ratio (DRR) problems, where the am-
biguity set is characterized by Wasserstein ball centered at an empirical distribution. The
paper makes some contributions to the current research on a few aspects. First, it extends
the DRR problem with moment or mixture type ambiguity sets [17,18,30] to distance type
ambiguity set, which ensures that the ambiguity set may converge to rather than include the
true distribution; second, it extends the SDP reformulation of DRO problem with Wasser-
stein ball uncertainty of the distributions [8] to the DRR problem; third, it extends the
current research on DRR with Wasserstein type ambiguity set which restricted on a discrete
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105+ = = 1-Norm
1-Norm
Norm
=== 0oc-Norm
——1/M strategy

Wealth
Wealth

0.98

0.96 L . . . ) 0.96 . . .
0 20 40 60 80 100 0 20 40 60 80 100
Trade time (6=0.01) Trade time (6=0.005)

Figure 3: 6 = 0.01 Figure 4: 6 = 0.005

0 20 40 60 80 100 0 20 40 60 80 100
Trade times Trade times

Figure 5: 1-norm Figure 6: 2-norm

probability space to the general probability space. It might be possible to take this work fur-
ther in the following direction: the SDP reformulation relies heavily on the piecewise linear
structure of the involved functions, and it is very interesting to explore weaker conditions.
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