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CONVEX MIQP REFORMULATIONS FOR
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LOW PRICE*
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Abstract: In this paper, we propose a new convex mixed-integer quadratic reformulation for quadratic pro-
gramming with semi-continuous variables, with no price of introducing new variables and new constraints.
That is, the new convex mixed-integer quadratic programming (MIQP) has the same size of the original
problem. Furthermore, the convex MIQP, whose continuous relaxation is at least as tight as that of per-
spective reformulation, can be obtained explicitly rather than solving a semidefinite programming problem
(SDP) which will limit the application of the method since it is still an intractable task to find the solution
of the SDP for practical large-scale problems. The only price of obtaining the convex MIQP is to lift the
quadratic term involving z only in the original objective function to a quadratic term of x and y, where y
is also a variable of the original problem. We report promising numerical results applying the new convex
MIQP reformulation to solve Markowitz mean-variance portfolio selection problems whose number of assets
ranges from 400 to 1000.
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Introduction

In many real-world problems, we always encounter semi-continuous variables. A variable z €
R is termed semi-continuous if z € {0} U[«, 5] for some 0 < o < 5. One application of semi-
continuous variables is in portfolio selection problems in financial optimization. Because of
market frictions in real-life market, such as management and transaction fee, there is often
a buy-in threshold or a minimum transaction level. Therefore, an investor can not hold
some assets with a very small amount. This situation can be modeled by semi-continuous
variables. We can also find many other models with this semi-continuous structure in design
problems by [5], portfolio optimization problems by [12], unit commitment problems by [1]
and many others by [7].

The models with semi-continuous variables we consider in this paper has the following
form

(P)  min{f(x,y) =2"Qu+c"w+hTy| (x,y) € F},
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where @ is an n x n positive semidefinite symmetric matrix, ¢, h € R™,
F= {(l‘,y) € %n X {071}71 | Al‘—i_By S d7 QY S Xy S ﬂiyia 1= 17"'7”}7

with A,B € R™*" d e R™ and 0 < o; < 34, i = 1,...,n. Denote by F the relaxation of
set F, obtained by replacing y € {0,1}" with y € [0,1]"™ in F.
The perspective reformulation of (P), which is proposed by [3], has the formulation

(PR(p)) min {fp(m, y) = 2"(Q — diag(p))z + " + Wy + Y piad i | (w,y) € f} :

i=1

where p € Q) with
Q={peR} |Q—diag(p) = 0}. (1.1)

The continuous relaxation of problem (PR(p)), which is denoted by (PR(p)), is much tighter
than that of problem (P). However, efficient solution methods proposed by state-of-the-art
solvers can not be applied to solve problem (PR(p)) directly due to the fractional terms in the
objective function. Therefore necessary cost or price needs to be paid to make sure (PR(p))
can be solved by off-the-shelf solver. Two tractable reformulations have been proposed to
overcome this issue. The first reformulation, with the price of introducing n second order
cone constraints, is a second order cone program (SOCP), which can be found in [4], [7], [12].
The other reformulation is a semi-infinite mixed-integer linear programming, addressed in [2],
via representing the value z2 /y; by the supremum of a set of infinite hyperplanes. It has been
illustrated by [4] that the semi-infinite reformulation has a computational advantage over
the SOCP reformulation for solving Markovitz mean-variance portfolio selection problems
and unit commitment problems. The basic reason for this phenomenon is that the different
algorithms are used to solve continuous relaxations of the subproblems in the process of
a branch-and-bound method. That is, interior point methods for SOCP reformulation is
not as efficient as tailed-made, dynamic cutting plane generating algorithms for the semi-
infinite reformulation, where active-set (simplex-like) method for quadratic programs is fully
utilized. However, the continuous relaxations of the two reformulations of problem (PR(p))
are substantially more complex than that of the original problem (P). That costs much
more time in solving the continuous relaxation in each branch in the process of a branch-
and-bound method, which leads to inefficiency of the overall algorithm as the problem size
grows.

By exploring the ”inherent piecewise nature” of the perspective function of noncon-
vex functions corresponding to disjunctions, which has been studied by [10], a piecewise-
quadratic programming reformulation is proposed by [5]. However, that approach can only
be applied under the assumption that B = 0 in problem (P).

The previous discussion motivates us to get a convex MIQP reformulation for problem (P)
with no price of introducing new constraints and new variables. The continuous relaxation
of the new MIQP should be at least as tight as that of perspective reformulation. And
there should be no more extra assumption on problem (P) so that the reformulation can
be applied to many classes of problems which has the general formulation of problem (P).
The price of obtaining the convex MIQP reformulation should not be expensive. At least it
should be cheaper than solving an SDP problem so that our reformulation can be applied to
solve large-scale problems. Furthermore, during the process of a branch-and-bound method,
the continuous relaxation of our new MIQP reformulation should be at least as tight as that
of the perspective reformulation at every child node so that the new MIQP can be solved
much more efficiently. In this paper, we are going to accomplish all those missions.

The contribution of this paper can be summarized as follows.
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e We propose a convex MIQP reformulation for problem (P) with no price of introducing
new variables and new constraints.

e The continuous relaxation of the new MIQP reformulation is better than that of per-
spective reformulation, or as good as it even in the worst case. The new MIQP refor-
mulation can be obtained explicitly, as will be shown in Theorem 2.2.

e During the process of a branch-and-bound method, the continuous relaxation of our
new MIQP reformulation is at least as tight as that of the perspective reformulation
at every child node. The continuous relaxation of our new MIQP reformulation is a
quadratic programming with the same size of original problem and thus can be solved
much more efficiently than that of the SOCP or the semi-infinite reformulation.

The remainder of this paper is organized as follows. In section 2, we propose a new
mixed-integer convex quadratic reformulation for problem (P) with low price. In section
3, the application of the new convex MIQP reformulation is investigated for Markowitz
mean-variance portfolio selection problems whose number of assets ranges from 400 to 1000.
Finally, we conclude in section 4.

Notations: Throughout the paper, we denote val(-) as the optimal value of problem (-),
R’} as the nonnegative orthant of %", e as the all-one vector and I,, as the identity matrix
of rank n. For any a € R", we denote by diag(a) = diag(as,...,a,) the diagonal matrix
with a; being the ith diagonal element. Finally, for any a € R, we define that a/0 is equal
toocifa>0,0ifa=0and —ocoif a <O0.

Convex Mixed-Integer Quadratic Programming (MIQP) Refor-
mulation

In this section, we will show that problem (P) can be reformulated as a mixed-integer convex
quadratic programming with no price of introducing new constraints and new variables.
Furthermore, for some p € ), we can get the new convex MIQP explicitly, whose continuous
relaxation will be at least as tight as that of problem (PR(p)).

Note that for any feasible solution (z,y) € F, it has

_ 2 _ S
TiYi = Ty, y'é = Yi, ’L—l,...,’fL.

Then for any (u,v) € R" x R", problem (P) is equivalent to the following mixed-integer
quadratic programming

(P(w,v))  min  fuu(z,y) =2 Qu+c"w+ Wy + > [uwiziyi — 2:) + vi(y] — i)
=1

s.t. (xz,y) € F.

As we can see from above, the feasible region of (P(u,v)) is exactly the same with (P)
and the objective function of (P(u,v)) only contains variables x and y as well. Hence the
new MIQP reformulation dose not involve any new variable or constraint and preserves the
same size as the primal problem. f, ,(z,y) may not be a convex function of (x,y) over
R™ x R™ and then problem (P(u,v)) may not be a convex MIQP. f, ,(z,y) is convex if and
only if (u,v) € A, where

A= {(M) € R x R | ( diag?uw did?ig%? ) - 0}. (2.1)
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For any (u,v) € A, problem (P(u,v)) is a convex mixed-integer quadratic reformulation
of problem (P). Obviously, (u,v) with u =0, v > 0 is an element of A. Relaxing y € {0,1}"
to y € [0,1]", we get continuous relaxation of problem (P(u,v)), denoted by (P(u,v)).

As far as we know, the semi-infinite reformulation and the SOCP reformulation, derived
from the perspective reformulation (PR(p)) for some p € €2, are most efficient in solving
problem (P). As proposed by [12], the best perspective reformulation, in the sense that
(PR(p)) provides the tightest continuous relaxation bound among p € €2, can be obtained via
solving a “large” SDP problem, which finally limit the application of the “best” reformulation
since it is still an intractable task to solve an SDP for practical large-scale problems.

It is shown in [11] that, for any p € Q we can get a convex mixed-integer quadratic
reformulation whose continuous relaxation provides a lower bound that is as tight as that
of the perspective reformulation (PR(p)). The price is to solve the continuous relaxation of
problem (PR(p)), which can be reformulated as an SOCP problem. That is, the price is to
solve an SOCP problem, which is cheaper than solving an SDP. However, the price is not
cheap enough for us to solve large-scale problems. Furthermore, when we apply branch-and-
bound methods to the new convex MIQP, the continuous relaxations at children nodes is in
general not as tight as that of the perspective reformulation. The bound equivalence only
occurs at the root node.

For the sake of completeness of the paper, we cite the major result in [11].

Theorem 2.1 (Theorem 5 in [11]). For any p € Q, let (z,y) be an optimal solution to
problem (PR(p)). Define (u,v) € R™ x R™ as following,

~ A~

U= —2pi2t, T = pink, i=1,...,m, (2.2)
Yi Y;

Then
(i) (u,v) € A,
(ii) val(P(u,v)) = val(PR(p)).

Our major concern in this paper is the issue that for some p € 2, how to choose (u,v) € A
such that the continuous relaxation of problem (P(u,v)) is at least as tight as that of
problem (PR(p)), without the requirement of solving SDP or SOCP problems. That is, for
some p € , how to choose (u,v) € A explicitly such that val(P(u,v)) > val(PR(p))? The
following Theorem 2.2 will solve this issue.

Theorem 2.2. For any p € Q, define (1, ) € R x R" as following,
U =—pila; + B3:), Ti=piaifBi, i=1,...,n, (2.3)
where
Q= {peR}|Q - diag(w)diag(p) = 0, }, (2.4)
and w; = (a; + B:)?/(4a;B;), i = 1,...,n. Then
(i) p€Q and (u,v) € A,

(ii) val(P(w,v)) > val(PR(p)).
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Proof. Based on (1.1) and (2.4), together with the fact that w; > 1, ¢ = 1,...,n, it has
p € Q. In order to prove (u,v) € A, it suffices to prove that

ol Q diag(w)/2
Q= < diag(u)/2  diag(v) ) = 0.

Denote D = diag(d) where d; = 1if v, =0and d; = 1/7; if v; #0, i = 1,...,n. Then we
have, diag(u)Ddiag(v) = diag(v) Ddiag(u) = diag(u). We denote

P= <1m%mp.?)

and QA) = PTQP. Noticed P is an invertible matrix, so matrices QA) and @ are called con-
gruent. According to Sylvester’s law of inertia( [9]), the numbers of positive, negative and
zeros eigenvalues of (Q and Q are equal, so we have:

~ (I, —diag@D/2 \~ I 0
0 & Q—( 0 I, >Q<—Ddiag(U)/2 In>}0

Q — diag(u)Ddiag(u)/4 0
( 0 diag(v) > = 0.

Q|

O
I

54

Thus, it suffices to prove @ = 0. Since T > 0 according to (2.3), together with (2.3) and
(2.4), we have @ > 0. -
(ii) For any feasible solution (x,y) € F, we have

val(PR(p)) — val(P(W, 7)) = fp(%y)—fu,v(x,y)

= Z[ szf + pix Z/yz— i(@iy — z)—ﬁz(yf_%)]
=1

—Yi
= sz =rad 4 pilq + Bi) @iy — x3) — piiBi(yi — i)

7/

= sz
1 — s 1

= sz m “xi — pi yvyz(aﬁ-ﬁi)miyﬁ-m

- Zm

= Z Pz’
i=1

< 0

“2? 4 pi(ai + Bi) (yi — Va; — piciBi(yi — D)y

Z

iBiy?

(x2 — (i + Bi)wiyi + aiBiy?)

Y

z; — i) (@i — Biyi)
where the second equality holds due to (2.3) and the last inequality holds due to the fact
that azylgngﬂly’uzz]wvn O

Remark 2.3. From Theorem 2.2, for any p € Q, we can get the new convex MIQP (P (%, 7))
explicitly. That is, there is no price of getting the new convex MIQP.
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Remark 2.4. Since the parameters (4, 7) in the new convex MIQP (P (%, 7)) depend only on
the parameters o and 3, which will not be changed in children nodes of a branch-and-bound
tree, the relationship val(P(w,v)) > val(PR(p)) will always hold in each child node of the
branch-and-bound tree. That is, the tightness of the bound from the continuous relaxation
can be ensured for each subproblem of the branch-and-bound method.

Remark 2.5. Obviously, O C Q. For p € QN Q°, unfortunately , we may not be able to
find (@, ) € A which is independent of the optimal solution of problem (PR( )), such that
val(P(w, 7)) > val(PR(p)). However, according to Theorem 2.1, for p € QNQ°, based on the
optimal solution of problem (PR(p )), we can obtain a (u,v) € A such that val(P( v)) =
val(PR(p)).

Remark 2.6. There are two obvious ways of finding p € Q.

o Let p; = Amin/wi, 1 = & ..,n with Ay, being the minimum eigenvalue matrix Q. It is
easy to check that p € Q due to the fact that Q —diag(w)diag(p) = Q—diag(Amine) > 0.

e Find p € Q via solving the following small SDP problem:

(SDP,) max{e’p | Q — diag(w)diag(p) = 0, p > 0}.

Remark 2.7. The inequality val(PR(p)) < val(P(®,¥)) still holds when y; = 0 because
lim (val(PR(p)) — val(P (1, ¥)))
y—0
= hm(fp(wvy)*fu,v(way))

_ _ _ a5 (02— o).
= ?}I_IPZ sz + piT /yl (xlyz l) vl(yz yl)}

= th —pi} + pi} [y — Wilwiys — i) — Viy; — )]

= Z[—pi lim x% + p; lim 1:12/yZ — U lim( TiYi — i) — Ts hm( — )]
= y—0 y—0 y—0 —0

n
c 2
= > pi Jim 2 /yi
i=1
where the last equality holds since z; is semicontinuous variable, or more explicitly, z; = 0
when y; = 0, as

hrnx =0, hr%(xzylf x;) =0, hn})(y —y)=0

y—0
As for 22 /y;, we have
0 < p; ;lgg) 3 [y < pi ?}g%(ﬂiyiy/yi =pi ;13%512% =0
= p; ;136 2}y =0 = ;i_%(val(ﬁ{(p)) —val(P(1,v))) =0

Without loss of generality, we define 2?/y; = 0 when y; = 0, and val(PR(p)) = val(P(t, 7))
holds when y; = 0 as well.



LOW-PRICED MIQP FOR SEMI-CONTINUOUS QP 61

We will illustrate by the following Example 2.8 that the continuous relaxation of new
MIQP (P(u,v)) is tighter than that of problem (PR(p)).

Example 2.8. Consider the following example:

135 256 24 71
. | 25 126 72 51
min z T

24 72 150 63
71 51 63 112

s.t. 6x1 + 8ry +4x3 + 914 > 6,
T1+ T2+ T3+ 14 =1,
y1+y2+ys+ys <2,
0.1y; < x; <0.9y;,y; € {0,1}, i =1,2,3,4.

The optimal solution is (z*,y*) = (0.4787,0.5213,0,0,1,1,0,0) and the optimal value

val(P) = 77.654. The bound from the continuous relaxation of the problem is val(P) =
69.4585.

() if pi = Aminfwi, @ = 1,...,4, ie, p = (14.1668,14.1668,14.1668, 14.1668)7,
val(PR(p)) = 72.5089. Based on (2.3) we have u; = Uy = U3 = Uy = —14.1668,
U1 = Ug = U3 = Uy = 1.2750 and then val(P(w, 7)) = 73.7901 > 72.5089 = val(PR(p)).

(ii) If p is obtained via solving the "small” SDP (SDP)_, we get p = (23.8288,27.0713,
16.4238,8.4611)7 for this example and then val(PR(p)) = 73.3146. Based on (2.3)
we have @ = (—23.8288, —27.0713, —16.4238, —8.4611)7, 7 = (2.1446, 2.4364, 1.4781,
0.7615)7 and val(P(w,v)) = 74.6213 > 73.3146 = val(PR(p)).

Mean-Variance Portfolio Selection Model

The classical Markowitz mean-variance portfolio selection model in financial optimization,
proposed by [8], can be described as follows. Suppose that in a financial market, n risky
assets with random return vector R = (Ry, ..., R,)T are available. Denote by p and @ the
expected return vector and the covariance matrix of R, respectively. The mean-variance
model solves the following quadratic programming

n
min {z7Qz | prz>d, Zaji =1, x > 0},
i=1

where x; represents the fraction of the total capital invested in asset i and d is a desired
return level by the investor. However, in real-life application, many other constraints will
be required for the portfolio selection problems. Typically, due to market frictions, such
as management and transaction fee, there is minimum and maximum transaction level for
each asset i. Therefore, the investors can not hold some assets with a very small amount,
or invest too much capital on some assets. Furthermore, the investors will also impose the
constraint on the maximum numbers of stock to invest. Hence, in this section, we will stick
with the following mixed-integer quadratic programming

min {xTQx (3.1)

ple >d e =1,
iy < < By, ely < K, y € {0,1}"
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Note that there are semi-continuous variables z; in problem (3.1). For any p € Q, the
perspective reformulation of problem (3.1) is obtained as following.

(PRmv(p)) min  2"(Q — diag(p))z + Zpiw?/ Yi

s.t. pfe>d, eTe=1, Ty <K, (3.2)
.y < xp < Biyi, y €{0,1}". (3.3)

For any p € Q, together with Theorem 2.2, the convex MIQP reformulation of problem (3.1),
whose continuous relaxation bound is at least as tight as that of problem (PRyv(p)), has
the following formulation

(MIQP(u,v))  min  2"Qu+ ) [wiziyi — wir; + viy} — viyi]
i=1

s.t. ple>d, e =1, efy <K,
iy < o < By, y € {0, 1}

where (u;,v;) for i = 1,...,n are defined in (2.3).

Computational Results

In this section, we illustrate the effectiveness of the new convex mixed-integer quadratic
reformulation (MIQP(u,v)) by conducting comparison with the perspective reformulations
(PRmv(p)). A key issue in implementing this test is how to choose p. According to the
technique used by [3], to test our new reformulation, we use the following two choices of

p:

e (PC,), (MIQP,): the reformulations (PRyv(p)) and (MIQP(u,v)), respectively, with
Pi = Amin/wi, i = 1,...,n and Ay, being the minimum eigenvalue of covariance matrix

Q’

o (PCy), (MIQPy): the reformulations (PRyrv(p)) and (MIQP(u,v)), respectively, with
p being the optimal solution to the following simple SDP problem:

(SDP)  max{e”p | Q — diag(w)diag(p) = 0, p > 0}, (3.4)

which is called ”small” SDP problem in this paper. Here w is defined in Theorem 2.2.

For perspective reformulations, we implemented a branch-and-cut method using CPLEX
12.3 through its C programming interface, in which the perspective cuts can be dynamically
generated via cutcallback procedures. Our implementation follows [4] and separation is done
twice at each node of the branch-and-bound tree. For our convex quadratic reformulation, we
also use CPLEX 12.3 to solve it through its C programming interface. In our test, CPLEX
default settings are used, including the dual simplex quadratic programming optimizer for
the subproblems at each node of the branch-and-bound tree.

The ”small” SDP problems (SDPy) was solved by SeDuMi 1.2 within CVX 1.2 by [6],
which is a Matlab-based modeling system for convex optimization. We perform the numerical
tests on a Linux machine (64-bit CentOS Release 5.5) with 48 GB of RAM. All the tests
are confined on one single thread (2.99 GHZ).
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We conduct the numerical tests on 90 instances of problem (6). The 90 instances had
the following structure:

e there are 30 instances each for n = 400, 600, 1000;

e for each n, the 30 instances are further divided into three subsets denoted by n*, n®

and n~. Each subset has a different diagonal dominance in the covariance matrix Q).

The 30 instances for n = 400 can be found at: http:www.di.unipi.it/optimize/Data/
MV .html. For n = 600,1000, we use the same random generator as in [4] to generate the
instances. We tested on all the instances both with the cardinality constraint e’y < K and
without the cardinality constraint. Note that because all «; > 0.075 in the 90 instances,
the number K in the cardinality constraint is at most 13. Thus, we added the cardinality
constraint with K = 6,10, respectively. Together with the instances with no cardinality
constraint, which we denote as "nc¢” in table 1, we have 270 instances of problem (3.1) in
total.

Table 1: Comparison results of perspective reformulations and our new MIQP reformulations
on (MV) data.

(PCe) (MIQP.) (PCs) (MIQPs)
Problem K timeg

gap time nodes gap time nodes gap time nodes gap time nodes

6 87.4 28.41(9) 3594 16933 3.54(7) 2642 21761 18.99(9) 3268 16050 0.01(0) 137 2339
4007 10 88.3 26.10(9) 3307 19228 20.02(9) 3252 28044 18.26(9) 3253 19006 12.92(8) 3104 45310
nc 88.4 23.06(9) 3255 28247 21.70(9) 3246 56218 15.29(9) 3244 29812 13.50(8) 3055 78159

6 92.4 32.09(10) 3600 15345 4.20(8) 3002 25257 24.28(10) 3600 17547 0.45(2) 1705 28776
400° 10 91.2 29.36(10) 3600 19211 22.87(10) 3600 29878 22.54(10) 3600 20331 16.46(10) 3600 51339
nc 91.6 26.60(10) 3600 28511 24.96(10) 3600 60412 19.74(10) 3600 29641 17.69(10) 3600 88694

6 95.1 32.63(10) 3600 15041 5.03(10) 3220 27861 25.74(10) 3600 17143 1.63(6) 2641 42397
400~ 10 94.4 29.64(10) 3600 19633 22.94(10) 3600 32416 23.73(10) 3600 20953 17.47(10) 3600 51953
nc  93.3 26.06(10) 3600 27598 24.81(10) 3600 57744 19.96(10) 3600 30638 18.25(10) 3600 83084

6 235.7 65.35(10) 3600 3377  9.97(10) 3600 6883  81.76(10) 3600 4769  0.83(6) 2766 9562
6007 10 254.3 39.52(10) 3600 4492  28.79(10) 3600 4340  78.59(10) 3600 5859  20.85(10) 3600 10406
nc 253.5 34.94(10) 3600 6983  32.26(10) 3600 13795 71.56(10) 3600 7156  23.22(10) 3600 18773

6 264.0 46.12(10) 3600 3806  9.40(10) 3330 6705 67.18(10) 3600 4919  3.29(8) 2942 9537
600° 10 266.0 40.57(10) 3600 4719  27.39(10) 3600 5159  63.51(10) 3600 6121  20.59(10) 3600 10245
nc 262.9 32.66(10) 3600 7969  29.89(10) 3600 15982 58.85(10) 3600 8137  22.41(10) 3600 19725

6 260.3 42.55(10) 3600 3855  10.63(10) 3600 7022  67.53(10) 3600 5088  5.60(10) 3600 10549
600~ 10 255.6 35.56(10) 3600 4822  27.85(10) 3600 4764  63.92(10) 3600 5724  22.11(10) 3600 10687
nc 254.2 32.67(10) 3600 7435  30.19(10) 3600 15126 57.08(10) 3600 7930  24.39(10) 3600 18989
6 1127.5 65.35(10) 3600 3377  9.97(10) 3600 6883  81.76(10) 3600 4769  0.83(9) 2766 9562
1000 10 1126.7 39.52(10) 3600 4492  28.79(10) 3600 4340  78.59(10) 3600 5859  20.85(10) 3600 10406
nc 1142.6 34.94(10) 3600 6983  32.26(10) 3600 13795 71.56(10) 3600 7156  23.22(10) 3600 18773

6 1000.3 46.12(10) 3600 3806  9.40(10) 3330 6705 67.18(10) 3600 4919  3.29(9) 2942 9537
1000° 10 1056.1 40.57(10) 3600 4719  27.39(10) 3600 5159  63.51(10) 3600 6121 20.59(10) 3600 10245
nc 1068.4 32.66(10) 3600 7969  29.89(10) 3600 15982 58.85(10) 3600 8137  22.41(10) 3600 19725

6 1148.9 42.55(10) 3600 3855 10.63(10) 3600 7022  67.53(10) 3600 5088  5.60(10) 3600 10549
1000~ 10 1146.8 35.56(10) 3600 4822  27.85(10) 3600 4764  63.92(10) 3600 5724  22.11(10) 3600 10687
nc 1141.8 32.67(10) 3600 7435 30.19(10) 3600 15126 57.08(10) 3600 7930  24.39(10) 3600 18989

Table 1 summarizes the average numerical results of the two perspective reformulations
and the two convex mixed-integer quadratic reformulations for the 270 instances of problem
(3.1). Each line shows the average result of the 10 instances in that group. The notations
in Table 1 are explained as follows.

e The columns "Time,” is the computing time (in seconds) for obtaining parameter p
via solving (SDPy) using CVX.
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Figure 1: Comparison of relative gap on (MV) data with n = 400.
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Figure 2: Comparison of relative gap on (MV) data with n = 600.

e The column ”Gap” is the relative gap (in percentage) of the incumbent solution when
CPLEX 12.3 is terminated. The number in parenthesis next to the gap is the number
of unsolved instances within 3,600 seconds. The default tolerance of relative gap in
CPLEX 12.3 is 0.01%.
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Figure 3: Comparison of relative gap on (MV) data with n = 1000.

e The columns " Time” and ”Nodes” are the computing time (in seconds) and the number
of nodes explored by CPLEX 12.3, respectively.

Figure 1 to 3 display the comparison of relative gap. Together with Table 1, we can see
that the average computation time and relative gap of reformulations (MIQP,) and (MIQPy)
are significantly less than those of (PC,) and (PCs), respectively for all instances of types
nt, n® and n~. This is mainly because our new reformulation reduces the effort required at
each node while generating a lower bound that is at least as tight as that of the perspective
reformulation. The number of nodes of (MIQP,) and (MIQP;) are roughly two times that
of (PC.) and (PCy), respectively. This can be explained from the fact that at each node,
when separation is done twice, the perspective algorithm solves two quadratic programming
problems, while for our new reformulation, we only need to solve one quadratic programming
problem. Then given the same time limit, our new reformulation is able to explore more
nodes than the perspective reformulation. Moreover, the continuous relaxation of our new
reformulation at each node is at least as tight as that of the continuous relaxation of the
perspective reformulation. Given that separation is done only twice, the bound from the
perspective algorithm should be worse than the bound from the perspective reformulation.
This means that the lower bound of our new reformulation obtained at each node is better
than that of the perspective algorithm most of the time.

For instances of all types n*, n® and n~ with small cardinality (K = 6), (MIQP,) and
(MIQPs) appears to be particularly advantageous over (PC,) and (PCy), respectively.

It can be noticed from Table 1 that (MIQPs) performs better than (MIQP,) in terms of
relative gap. However, there is additional price of problem (MIQPy). That is, we need to
solve the small SDP (SDPs). We can see from Table 1 that the computation time of solving
small SDP reaches 1000 seconds for n = 1000. This time cost is compensated by smaller
relative gaps of (MIQP;). However, the same relationship between (PC,) and (PCs) only
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holds for n = 400. For n = 600, 1000, (PCy) does not perform better than (PC,), although
we take efforts to solve (SDPs) to get (PCy).

Concluding Remarks

We have presented in this paper a new convex mixed-integer quadratic reformulation (MIQP)
for quadratic programming with semi-continuous variables, with no price of introducing new
variables and new constraints. That is, our new convex mixed-integer quadratic program-
ming has the same size of the original problem. Furthermore, the convex MIQP, whose
continuous relaxation is at least as tight as that of perspective reformulation, can be ob-
tained explicitly rather than solving a large semidefinite programming problem which will
limit the application of the method since it is still an intractable task to find the solution of
the SDP for practical large-scale problems. The only price of obtaining the convex MIQP is
to lift the quadratic term involving x only in the original objective function to a quadratic
term of x and y, where y is also a variable of the original problem. When we apply branch-
and-bound methods to the new convex MIQP, the property that the continuous relaxation
of the new convex MIQP is at least as tight as that of perspective reformulation holds for
every child node of the branch-and-bound tree. Together with the fact that our new refor-
mulation significantly reduce the effort required at each node, the performance of our new
MIQP reformulation appears to be advantageous over the perspective reformulation. Our
preliminary comparison results on Markowitz mean-variance portfolio selection problems
whose number of assets ranges from 400 to 1000 indicate that our new convex MIQP can
help improve the performance of the MIQP solvers for the problem.

However, there is still an issue unsolved in this paper. It has been shown by [12] that the
best p € €, in the sense of getting the tightest continuous relaxation bound of the perspective
reformulation, can be found via solving an “large” SDP problem. We also have also shown
in Remark 2.5 that we can not find the new MIQP corresponding the best p which can
preserve the “best” continuous relaxation during the process of branch-and-bound method.
It is a research topic that we will focus on in the future.
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