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(see in particular Powell, 1986). Therefore, several modification techniques have been in-
troduced to the BFGS method to improve its performance (see for example Al-Baali and
Grandinetti, 2009, Al-Baali, Spedicato, and Maggioni, 2014, and the references therein).

In this paper we focus on modifying yk in quasi-Newton updates to the hybrid choice

ŷk = φkyk + (1− φk)Bksk, (1.3)

where φk ∈ (0, 1] is a parameter. This ‘damped’ parameter is chosen such that the curvature
like condition

sTk ŷk > 0 (1.4)

holds with a value sufficiently close to sTkBksk, which is reduced to the curvature condition
when φk = 1. A motivation for this modified technique could be stated as follows. Since
the curvature condition sTk yk > 0 may not hold for the Lagrange constrained optimization
function, Powell (1978) suggests the above damped technique for modifying the BFGS up-
date. This technique has been extended by Al-Baali (2014) to all members of the Broyden
family of updates for unconstrained optimization.

The resulting two parameters damped (D)-Broyden class of methods and the conditions
for obtaining practical global and superlinear convergence result are stated in Section 2.
Sections 3 and 4 suggest some modifications to the Powell-AlBaali formula for the damped
parameter φk, which enforce the convergence property of the D-Broyden class of methods.
Section 5 describes some numerical results which shows the usefulness of the damped pa-
rameter not only for the Wolfe-Powell , but also for the backtracking line search conditions.
Finally, Section 6 concludes the paper.

2 D-Broyden’s Class of Methods

Let the Broyden family for updating the current Hessian approximation Bk be given by

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

sTk yk
+Θkwkw

T
k , (2.1)

where Θk is a parameter and

wk = (sTkBksk)
1/2

(
yk

sTk yk
− Bksk

sTkBksk

)
. (2.2)

It is assumed thatBk is symmetric and positive definite and the curvature condition sTk yk > 0
holds. This condition is guaranteed by employing the line search framework for computing
a new point xk+1 such that the Wolfe-Powell conditions

fk − fk+1 ≥ −σ0s
T
k gk (2.3)

and
sTk yk ≥ −(1− σ1)s

T
k gk, (2.4)

where fk denotes f(xk), σ0 ∈ (0, 0.5) and σ1 ∈ (σ0, 1), are satisfied. In this case, the
Broyden family maintains Hessian approximations positive definite if the updating parameter
is chosen such that

Θk > Θ̄k, (2.5)

where

Θ̄k =
1

1− bkhk
, bk =

sTkBksk
sTk yk

, hk =
yTk Hkyk
sTk yk

(2.6)
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and Hk = B−1
k . Note that the values of Θk = 0 and Θk = 1 correspond to the well-known

BFGS and DFP updates, respectively. Because Θ̄k < 0, these values guarantee the positive
definiteness property. (For further details see Fletcher, 1987, for instance.)

The D-Broyden class of updates is defined by (2.1) with yk replaced by ŷk, given by
(1.3). For convenience, this class has been rearranged by Al-Baali (2014) as follows

Bk+1 = Bk + φk

(
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBksk
+ ϕkwkw

T
k

)
, (2.7)

where
ϕk =

µk

φk
(µkΘk + φk − 1) (2.8)

and
µk =

φk

φk + (1− φk)bk
. (2.9)

Thus, in particular, for Θk = 0, it follows that ϕk < 0 if φk < 1. Hence, the resulting
update (2.7), which is equivalent to the D-BFGS positive definite Hessian approximation

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

ŷkŷ
T
k

sTk ŷk
, (2.10)

has the ability of correcting large eigenvalues of Bk successfully (see for example Al-Baali,
2014, and Byrd, Liu and Nocedal, 1992), unlike the choice of φk = 1 (which corresponds to
the usual BFGS update).

In general, we observe that the D-Broyden formula (2.7) maintains the positive definite-
ness property of Hessian approximations for any choice of Θk and sufficiently small values
of φk, because it yields that Bk+1 → Bk as φk → 0.

Indeed, for well defined values of Θk and sufficiently small values of φk (or µk) which
satisfies the inequalities

(1− ν1)
Θ̄k

µk
≤ µkΘk ≤ 1− ν2, ν3 ≤ φk ≤ 1, (2.11)

where ν1, ν2, ν3 > 0 are preset constants, Al-Baali (2014) extends the global convergence
property that the the restricted Broyden family of methods has for convex objective functions
to the D-Broyden class of methods. We note that condition (2.11) holds for any well defined
choice of Θk with sufficiently small values of φk, even for Θk ≤ Θ̄k and for Θk > 1 which
usually yield divergent Broyden methods. This powerful feature of the damped technique
has been observed in practice for some choices of Θk and φk (see Al-Baali, 2014, and Al-Baali
and Purnama, 2012).

Al-Baali (2014) also extends the superlinear convergence property that of the Broyden
family to one of the D-Broyden class if in addition to condition (2.11) the following condition
holds:

∞∑
k=1

ln
{(φ2

k

µk

)[
1 + µ2

kΘk(bkhk − 1)
]}

> −∞. (2.12)

The author also shows in the limit that

bk → 1, bkhk → 1, φk → 1. (2.13)

Thus when either bk, bkhk and/or their appropriate combinations are sufficiently remote
away from one, it might be useful to define φk < 1 which reduces sufficiently the values of



48 M. AL-BAALI AND L. GRANDINETTI

the damped scalars |̂bk − 1| and b̂kĥk − 1, where b̂k and ĥk are equal respectively to bk and
hk with yk replaced by ŷk. We employ this technique in Section 3, using the relations

b̂k − 1 = µk(bk − 1), (2.14)

b̂kĥk − 1 = µ2
k(bkhk − 1) (2.15)

which follow by substituting (1.3) after some manipulations (the latter equation is given by
Al-Baali, 2014). These relations imply the reductions

|̂bk − 1| ≤ |bk − 1|, b̂kĥk ≤ bkhk, (2.16)

for any µk (or φk) which belong to the interval (0, 1].
Therefore, for given Θk, the damped parameter φk should be defined such that condition

(2.11) is satisfied, which is possible for an interval of sufficiently small values of φk, so that
global convergence is obtained. To approach the superlinear convergence, we try to enforce
condition (2.12) whenever possible. In the next two sections, we derive some appropriate
choices for φk and focus on the D-BFGS method which satisfies condition (2.11) for any
choice of φk and enforces (2.12) if

φ2
k

µk
≥ 1 (2.17)

which holds for sufficiently large values of φk < 1 only if bk > 2 and for φk = 1 without any
condition on bk. The latter values of φk should be used near the solution (i.e., by (2.13),
when bk and/or bkhk are sufficiently close to one (for further implementation remarks, see
Al-Baali, Spedicato, and Maggioni, 2014).

It is worth noting that the above global and superlinear convergence conditions for D-
Broyden’s class are reduced to those for Broyden’s family if φk = 1 is used for all values of k.
The analysis for obtaining these conditions is based on that of Byrd, Liu and Nocedal (1992)
for Broyden’s family with the restricted subclass Θk ∈ (Θ̄k, 1), which extends that of Zhang
and Tewarson (1988) for the preconvex subclass Θk ∈ (Θ̄k, 0) with the global convergence
property and that of Byrd, Nocedal and Yuan (1987) for the convex subclass Θk ∈ [0, 1)
and Powell (1976) for Θk = 0, with the superlinear convergence property, using the result
of Dennis and Moré (1974) for the superlinear convergence of quasi-Newton methods.

3 Modifying Powell’s Damped Parameter

We now consider finding some choices for the damped parameter φk to define the damped
vector ŷk in (1.3) and hence in the D-Broyden class of updates (2.7). We will focus on the
updated choices Θk = 0 and Θk = 1

1−bk
which correspond to the BFGS and SR1 updates

(and their damped updates), respectively, so that the global convergence condition (2.11) is
simply satisfied.

Since the scalars bk and hk (defined in (2.6)) are undefined if sTk yk is zero or nearly
so (which may happen if the second Wolfe-Powell condition (2.4) is not employed), it is

preferable to test the well defined reciprocal b̄k= 1/bk or h̄k= 1/hk, where

b̄k=
sTk yk

sTkBksk
, h̄k=

sTk yk
yTk Hkyk

. (3.1)

Thus, a value of b̄k≤ 0 (or h̄k≤ 0) indicates that yk should be replaced by ŷk with sufficiently

small value of φk (say, φk = 0.9/(1− b̄k), as in Powell, 1978) so that the curvature like
condition (1.4) holds.
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To define the first choice of φk which maintains the superlinear convergence property,

we enforce condition (2.17) which is possible for φk ∈ [ b̄k

1−b̄k
, 1] and b̄k< 1/2. In this case,

the choice of φk = σ2

1−b̄k
, for σ2 > 1/2, can be used. Although condition (2.17) does not hold

for b̄k> 1/2, the above replacement of yk can be used if b̄k>> 1, because it indicates on the
basis of the first limit in (2.13) that the iterate is remote away from a solution. In this way,
φk can be defined as follows

φ
(1)
k =



σ2

1− b̄k
, b̄k< 1− σ2

σ3

b̄k −1
, b̄k> 1 + σ3

1, otherwise,

(3.2)

where σ2 > 0.5 and σ3 ≥ e. This choice with σ2 = 0.9 and σ3 = 9 (ie, φk < 1 when

b̄k /∈ [0.1, 10]) is used by Al-Baali and Grandinetti (2009) to define a D-BFGS update, which
is reduced to that of Powell (1978) if the latter choice is replaced by σ3 = ∞. In the following

analyses, it is assumed that b̄k> 0 but otherwise formula (3.2) might be employed.

For an experiment on a simple quadratic function with highly ill-conditioned Hessian,
Al-Baali and Purnama (2012) reported that choice (3.2) is not useful enough when bkhk is
sufficiently close to one. Thus, the authors have added the condition ak > σ4, where

ak = (bkhk − 1)max(|Θk|, 1) (3.3)

and σ4 ≥ 0, to those stated in (3.2). The authors experiment on the quadratic problem
shows that the resulting choice with Θk = 0 and several values of σ4 (even for σ4 = 0) which
define D-BFGS updates work significantly better than both choice (3.2) and the undamped
choice φk = 1. However, for general functions and certain values of σi, for i = 0, . . . 4, which
are stated in Section , we observed that the modified damped parameter works a little worse
than (3.2). Therefore, we will not consider this modification below, although it improves
the performance of the BFGS method substantially.

However, because ak > σ4 is equivalent to both expressions bkhk > 1 + σ4 and b̄kh̄k<

1− σ4 b̄kh̄k, we can eliminate σ4 and consider the following formula

φ
(2)
k =



σ2

1− b̄k
, ℓk < 1− σ2

σ3

b̄k −1
, ℓk ≥ 1− σ2, mk > 1 + σ3

1, otherwise,

(3.4)

where

ℓk = min(b̄k, b̄kh̄k), mk = max(b̄k, bkhk) (3.5)

which are smaller and larger than or equal to one, respectively. Note that φ
(2)
k is reduced

to (3.2) if mk and ℓk are replaced by b̄k in (3.4). It works better than the above damped

parameters, although some values of φ
(2)
k /∈ (0, 1] but they are replaced by the undamped

choice φ
(2)
k = 1.
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Even though, we avoid this case by increasing the size of the interval for the damped
parameter as follows

φ
(3)
k =



σ2

1− ℓk
, ℓk < 1− σ2

σ3

mk − 1
, mk > 1 + σ3

1, otherwise

(3.6)

which is reduced to (3.2) if mk and ℓk are replaced by b̄k. In general, this choice works well
as shown in Section .

4 Further Damped Parameters

We now define some choices for the damped parameter φk based on the value of bkhk ≥ 1.
The first choice has been proposed by Al-Baali and Purnama (2012), that is

φ
(4)
k =


σ4√
ak

, ak > σ4

1, otherwise,

(4.1)

where σ4 > 0 is a preset constant and ak is given by (3.3).

This formula is obtained in a manner similar to that used for obtaining (3.2), but on
the basis of the second limit in (2.13) and equation (2.15) as follows. If ak > σ4, then we

supposed to choose µk such that b̂kĥk − 1 = σ4 which is simply solved, using (2.15), to

obtain µ̃k =
√

σ4

ak
. This choice and its corresponding formula of φk are considered with

other choices by Al-Baali (2014e). However, it is larger or smaller than σ4√
ak

if σ4 < 1 or

σ4 > 1, respectively. Because φk ≥ µk if b̄k≤ 1, we choose φk = σ4√
ak

if both σ4 < 1 and

b̄k≤ 0.5 are satisfied so that less changes in yk is used. However, when b̄k> 0.5 we define

φk < 1 only if b̄k>> 1. Therefore, we modify choice (4.1) such that its first case is used

when both conditions ak > σ4 and either b̄k< 1− σ2 or b̄k> 1 + σ3 are satisfied.

Since the above modified choice works slightly better than (4.1) and similar to that

of the BFGS option, we used σ4√
ak

(or replace it by
√

σ4

ak
to guarantee φk ≤ 1) when

1− σ2 ≤b̄k≤ 1+ σ3 and combined it with choice (3.2) in several ways (see Al-Baali, 2014b).
In particular, we let

φ
(5)
k =



σ2

1− b̄k
, b̄k< 1− σ2

σ3

b̄k −1
, b̄k> 1 + σ3√

σ4

ak
, 1− σ2 ≤b̄k≤ 1 + σ3, ak > σ4

1, otherwise,

(4.2)

where σ4 = σ3 is used unless otherwise stated. Similarly, combining (4.1) with (3.6), it
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follows that

φ
(6)
k =



σ2

1− ℓk
, ℓk < 1− σ2

σ3

mk − 1
, mk > 1 + σ3√

σ4

ak
, ℓk ≥ 1− σ2, mk ≤ 1 + σ3, ak > σ4

1, otherwise,

(4.3)

where as above σ4 = σ3 is used unless otherwise stated. We observed in practice that both
formulae (4.2) and (4.3) work substantially better than choice (4.1) and slightly better than
(3.2) and (3.6) (see Section 5 for details).

To involve the value of hk in computing the damped parameter, we also consider modi-

fying the above choices φ
(2)
k , φ

(3)
k and φ

(6)
k with ℓk and mk replaced by smaller or larger than

or equal to values of

Lk = min(b̄k, h̄k, b̄kh̄k), Mk = max(b̄k, h̄k, bkhk), (4.4)

respectively. This modification yield a similar performance to the unmodified choices.

5 Numerical Experiments

We now test the performance of some members of the D-Broyden class of algorithms which
defines the Hessian approximations by (2.7) for Θk = 0,

Θk =


1

1− bk
, hk < 0.95

0, otherwise
(5.1)

and the choices in the previous sections φk = φ
(i)
k , for i = 1, 2, . . . , 6, with

σ2 = max(1− 1

αk
, 0.5), σ3 = e, σ4 = 0.95,

unless otherwise stated (the latter equation is replaced by σ4 = σ3 when φ
(5)
k and φ

(6)
k are

used). The corresponding classes of D-BFGS and switching D-BFGS/SR1 methods (referred
to as D0i and D0Si) are reduced to the attractive undamped BFGS and BFGS/SR1 methods
(that D00 and D0S0, respectively) if φk = 1 is used for all values of k. A comparison to
the latter two methods is useful, since they work well in practice for the following standard
implementation (see for example Al-Baali, 1993, and Lukšan and Spedicato, 2000). For all
algorithms, we let the starting Hessian approximation B1 = I, the identity matrix, and
compute the steplength αk such that the strong Wolfe-Powell conditions (2.3), (2.4) and

sTk yk ≤ −(1 + σ1)s
T
k gk, (5.2)

for σ0 = 10−4 and σ1 = 0.9, are satisfied (based on polynomial interpolations as described
for example by Fletcher, 1987, Al-Baali and Fletcher, 1986, and Moré and Thuente, 1994).
The iterations were terminated when either ∥gk∥2 ≤ ϵmax(1, |fk|), where ϵ is the machine
epsilon (≈ 10−16), fk+1 ≥ fk, or the number of iterations reaches 104.

As in Al-Baali (2014), we implemented the above algorithms in Fortran 77, using Lahey
software with double precision arithmetic, and applied them to a set of 162 standard test
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Table 1: Average ratios of D0i compared to D00
i Al Af Ag

1 0.805 0.856 0.805
2 0.805 0.856 0.805
3 0.803 0.852 0.801
4 1.033 1.048 1.052
5 0.795 0.846 0.796
6 0.803 0.852 0.801

Table 2: Average ratios of D0Si compared to D00
i Al Af Ag

0 0.923 0.942 0.937
1 0.797 0.850 0.795
2 0.797 0.850 0.795
3 0.795 0.850 0.794
4 0.999 1.024 1.026
5 0.786 0.840 0.785
6 0.795 0.850 0.794

problems (most of them belong to CUTEr library and the others are considered by Al-Baali
and Grandinetti, 2009, and collected by Andrei, 2008) with n in the range [2,100]. All
methods solved the problems successfully.

We compared the number of line searches and function and gradient evaluations (referred
to as nls, nfe and nge, respectively, which are required to solve the test problems) to those
required by D00. The numerical results are summarized in Table 1, using the rule of Al-
Baali (see for example Al-Baali and Khalfan, 2008). The heading Al is used to denote
the average of certain 162 ratios of nls required to solve the test problems by a method
to the corresponding number required by the standard BFGS, D00, method. A value of
Al < 1 indicates that the performance of the algorithm compared to that of D00 improved
by 100(1 − Al)% in terms of nls. Otherwise the algorithm worsens the performance by
100(Al − 1)%. The headings Af and Ag denote similar ratios with respect to nfe and nge,
respectively.

We observe that the performance of the damped D0i methods, for i ̸= 4, is substantially
better than that of D00 and D04 is similar to D00, in terms of nls, nfe and nge (a similar
comparison for D0Si with D0S0 is also observed from Table 2). Although slight differences
among the efficient methods, we observe that D05 and D0S5 are the winners and the latter
one is slightly better than the former one. Even though the tables show that the average
improvement of both methods over D00 are about 20%, 15% and 20% in terms of nls, nfe
and nge, respectively, we observed that the reduction of the total of these numbers, which
required to solve all problems in the set, is about 40%. Therefore, the damped parameter

φ
(5)
k is recommended in practice.

A comparison of the two tables shows that the performance of the switching D0Si class
of methods is a little better than that of D0i for each i. Thus the open problem that the
former class has the superlinear convergence property that the latter one has for convex
functions is illustrated in practice so that it is worth investigating its proof.

Finally it is worth mentioning that the performance of the above efficient damped meth-
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ods remain better than the standard BFGS method if not only the strong Wolfe-Powell
conditions are employed, but also if either the Wolfe-Powell conditions (2.3) and (2.4) are
employed or if only the first Wolfe-Powell condition (2.3) is employed. Thus the proposed
damped parameters seem appropriate and play an important role for improving the perfor-
mance of quasi-Newton methods.

6 Conclusion

We have proposed several simple formulae for the damped parameter which maintain
the useful theoretical properties of the Broyden class of methods and improve its perfor-
mance substantially. In particular, they maintain the global and q-superlinear convergence
properties, on convex functions, for the standard BFGS and switching BFGS/SR1 methods.
The reported numerical results show that the proposed damped parameters are appropriate,
since they improve the performance of the standard BFGS method substantially.
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