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function. In the study of [14], Ge gave a definition of filled function and constructed a
two-parameter filled function. This filled function has the following form:

P (x, x∗
1, ρ) =

1
γ+f(x) exp(−

||x−x∗
1 ||

2

ρ )

There are two parameters γ and ρ in this filled function and the efficiency of the filled
function method strongly depends on these two parameters. However, the values of γ and
ρ are difficult to be adjusted. In the study of [15], Ge and Qin tried to solve this problem
by constructing a one-parameter filled function as follows:

Q(x, x∗
1, A) = −[f(x)− f(x∗

1)]exp(−A||x− x∗
1||2)

but the exponential term makes some false stationary points when A and ||x− x∗
1|| are very

large. Later, Liu proposed a new one-parameter filled function to overcome the shortcomings
mentioned above in [13]:

H(x, x∗, α) = 1
ln[1+f(x)−f(x∗)] − α||x− x∗||2

where α > 0 is a parameter.

Thereafter, many one-parameter filled functions were proposed [11, 16, 18, 26], and even
some parameter-free filled functions were proposed in [6, 8]. However, there are two main
drawbacks for the filled function method: The original definition of the filled function in
Ge [14] makes it difficult to design a filled function; The initial step size δ at the initial
point is hard to determine in minimizing the filled function. To make the design of the
filled function much easier and improve the efficiency of the filled function algorithms, many
researchers gave some new definitions for filled function and constructed different kinds of
filled functions according to the new definitions [4, 11, 17, 18, 27]. However, the new filled
functions using the new definitions still face great difficulty in jumping out the too many
local optimal solutions and finally reaching the global optimal solution when there are a lot
of local optimal solutions.

To overcome this drawback and further improve the efficiency of the filled function
method, firstly, we introduce a flatten function into traditional filled function method for
eliminating many local minimizers and thus making the optimal solution search much easier.
Secondly, we propose an adaptive strategy to determine the distance δ. Third, we design a
new filled function. Moreover, we use a constant coefficient to the new filled function, which
helps filled function go fast from a nearly flat landscape.

The rest of this paper is organized as follows: Section 2 gives an introduction to the flatten
function we used, and then a new filled function based on the flatten function is proposed
and its properties are investigated. Section 3 describes a new filled function algorithm and
demonstrate the details of an adaptive strategy to determine the distance. Section 4 applies
the new filled function algorithm to 14 classical test problems and presents the numerical
results. Finally, Section 5 concludes this paper.

2 A New Filled Function Combining Flatten Function and its Prop-
erties

Consider the following global optimization problem (P ):

min f(x)
s.t. x ∈ Ω

where f : Rn → R is continuous in Rn; Ω ⊂ Rn is a closed bounded box that contains all
global minimizers of f(x). It is assumed that the number of minimizers of problem (P ) can
be infinite, but the number of different function values at the minimizers is finite.
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In this paper, we use a flatten function to process (simplify) the objective function
[19,20,22], and construct a new filled function on the simplified objective function.

The flatten function is first proposed in 2006 [19]. Simplified by the flatten function, all
those local minimizers whose function values are larger than or equal to that of the current
local minimizer of the original function can be eliminated. In this way, the number of local
minimizers for original function will be greatly reduced, so that globally optimal solution
finding process becomes easier and simpler. Its form is as follows [19]

s(x, x∗
1) = f(x∗

1) +
1

2
{1− sign [f(x)− f(x∗

1)]} [f(x)− f(x∗
1)]

Namely,

s(x, x∗
1) =

{
f(x∗

1) , f(x) ≥ f(x∗
1)

f(x) , f(x) < f(x∗
1)

where f(x) is the objective function, x∗
1 is the current local minimizer. s(x, x∗

1) is called
flatten function, which has two properties [19]:

Property 2.1. s(x, x∗
1) keeps the local minimizers of f(x) unchanged at any point x which

is better than x∗
1.

That is, ∀x ∈ Ω, if f(x) < f(x∗
1), then s(x, x∗

1) = f(x).

Property 2.2. s(x, x∗
1) flattens the landscape at any point x which is not better than x∗

1.
That is, ∀x ∈ Ω, if f(x) ≥ f(x∗

1), then s(x, x∗
1) = f(x∗

1).

In this paper we use the definition of filled function in [23] described as follows:

Definition 2.1. p(x, x∗
1) is called a filled function of f(x) at a local minimizer x∗

1 if p(x, x∗
1)

has the following properties:

1. x∗
1 is a strictly local maximizer of p(x, x∗

1).

2. p(x, x∗
1) has no stationary point in the region

Ω1 = {x|f(x) ≥ f(x∗
1), x ∈ Ω\x∗

1}

3. If x∗
1 is not a global minimizer of f(x), then p(x, x∗

1) will have a minimizer in the region
Ω2 = {x|f(x) < f(x∗

1), x ∈ Ω} .

These properties of the new filled function ensure that when a descent method, for
example, a steepest descent method, is employed to minimize the constructed filled function,
the sequence of iteration points will not terminate at any point at which the objective
function value is larger than f(x∗

1); if x
∗
1 is not a global minimizer, then there must be a

minimizer of the filled function at which the objective function value is less than f(x∗
1), that

is, any local minimizer of p(x, x∗
1) must belong to the set Ω2 = {x|f(x) < f(x∗

1), x ∈ Ω}. So
that the descent method can jump out the current local minimizer of the objective function
and find a better minimizer.

Let L(P ) stand for the set of local minimizers of the objective function f(x), and G(P )
stand for the set of global minimizers of the objective function f(x).

First, apply the above flatten function on f(x) at the current local minimizer x∗
1 to obtain

a new objective function s(x, x∗
1), and then we can design a new filled function for s(x, x∗

1)
as follows:

p(x, x∗
1, µ) =

1

1 + ||x− x∗
1||+ s(x∗

1, x
∗
1)− s(x, x∗

1)
+ µ · exp (α [s(x, x∗

1)− s(x∗
1, x

∗
1)])
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where α is a positive constant, and its value is the reciprocal of the order of magnitude of
s(x∗

1, x
∗
1) (e.g. if s(x∗

1, x
∗
1) = 1.8e − 3, then α = 1e + 3). So α is not a parameter and it

takes the fixed value at any moment. Thus, the new filled function can be considered as a
one-parameter filled function with parameter µ.

Next we will prove that the function p(x, x∗
1, µ) is a filled function that satisfies Definition

2.1.

Theorem 2.2. Suppose that x∗
1 is a local minimizer of f(x), then x∗

1 is a strictly local
maximizer of p(x, x∗

1, µ).

Proof. Since x∗
1 ∈ L(P ), then there exists a neighborhood N(x∗

1, δ) of x∗
1 with δ > 0, such

that for ∀x ∈ N(x∗
1, δ), we have f(x) ≥ f(x∗

1), i.e., s(x, x
∗
1) = f(x∗

1).
For all x ∈ N(x∗

1, δ), and x ̸= x∗
1, we have

p(x, x∗
1, µ) =

1

1 + ||x− x∗
1||+ f(x∗

1)− f(x∗
1)

+ µ · exp(α[f(x∗
1)− f(x∗

1)])

=
1

1 + ||x− x∗
1||

+ µ

p(x, x∗
1, µ)− p(x∗

1, x
∗
1, µ) =

1

1 + ||x− x∗
1||

+ µ− (
1

1 + ||x∗
1 − x∗

1||
+ µ)

=
1

1 + ||x− x∗
1||

− 1

< 0

Thus, x∗
1 is a strict local maximizer of p(x, x∗

1, µ).

Theorem 2.3. Suppose that x∗
1 ∈ L(P ), ∀x ∈ Ω1 = {x|f(x) ≥ f(x∗

1), x ∈ Ω\x∗
1}, then

p(x, x∗
1, µ) has no stationary points.

Proof. ∀x ∈ Ω1, s(x, x
∗
1) = f(x∗

1), p(x, x
∗
1, µ) =

1
1+||x−x∗

1 ||
+ µ, we have

∇p(x, x∗
1, µ) =

−1

(1 + ||x− x∗
1||)2

· x− x∗
1

||x− x∗
1||

(∇p(x, x∗
1, µ))

T · x− x∗
1

||x− x∗
1||

=
−1

(1 + ||x− x∗
1||)2

< 0

Thus, p(x, x∗
1, µ) has no stationary points in the region Ω1.

Theorem 2.4. Suppose that x∗
1 ∈ L(P ) but x∗

1 /∈ G(P ). If µ > M , then p(x, x∗
1, µ) must

have a local minimizer in the set Ω2 = {x ∈ Ω|f(x) < f(x∗
1)}.

where

M = max
||x− x∗

1|| > ||x∗
2 − x∗

1||
x ∈ Ω=

ε

{ ||x− x∗
1|| − ||x∗

2 − x∗
1||+ f(x∗

2)− f(x)

[1 + ||x∗
2 − x∗

1||+ f(x∗
1)− f(x∗

2)][1 + ||x− x∗
1||+ f(x∗

1)− f(x)]

· exp(α · f(x∗
1))

exp(α · f(x))− exp(α · f(x∗
2))

}
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x∗
2 ∈ L(P ) with f(x∗

2) < f(x∗
1), Ω

=
ε = {x ∈ Ω|f(x) = f(x∗

2) + ε}, and ε > 0 is small enough.

Proof. Since x∗
1 ∈ L(P ) but x∗

1 /∈ G(P ), then ∃ x∗
2 ∈ L(P ) such that f(x∗

2) < f(x∗
1).

There exists an ε > 0 small enough, such that
∀x ∈ Ω=

ε = {x ∈ Ω|f(x) = f(x∗
2) + ε}, f(x) < f(x∗

1), i.e. s(x, x
∗
1) = f(x),

p(x, x∗
1, µ) =

1

1 + ||x− x∗
1||+ f(x∗

1)− f(x)
+ µ · exp (α[f(x)− f(x∗

1)])

For any x ∈ Ω=
ε ,

p(x∗
2, x

∗
1, µ)− p(x, x∗

1, µ)

=
1

1 + ||x∗
2 − x∗

1||+ f(x∗
1)− f(x∗

2)
+ µ · exp (α[f(x∗

2)− f(x∗
1)])

−
{

1

1 + ||x− x∗
1||+ f(x∗

1)− f(x)
+ µ · exp (α[f(x)− f(x∗

1)])

}
=

||x− x∗
1|| − ||x∗

2 − x∗
1||+ f(x∗

2)− f(x)

[1 + ||x∗
2 − x∗

1||+ f(x∗
1)− f(x∗

2)][1 + ||x− x∗
1||+ f(x∗

1)− f(x)]

+ µ {exp (α[f(x∗
2)− f(x∗

1)])− exp (α[f(x)− f(x∗
1)])}

Consider the following two cases

1. When ||x∗
2 − x∗

1|| ≥ ||x− x∗
1|| , we have

∀x ∈ Ω=
ε , f(x) > f(x∗

2),

||x− x∗
1|| − ||x∗

2 − x∗
1||+ f(x∗

2)− f(x) < 0,

exp (α[f(x∗
2)− f(x∗

1)])− exp (α[f(x)− f(x∗
1)]) < 0,

that is, p(x∗
2, x

∗
1, µ)− p(x, x∗

1, µ) < 0.

For µ > 0, we have p(x∗
2, x

∗
1, µ) < p(x, x∗

1, µ).

2. When ||x∗
2 − x∗

1|| < ||x− x∗
1||, we first want to prove p(x∗

2, x
∗
1, µ) < p(x, x∗

1, µ), that is,
to prove

p(x∗
2, x

∗
1, µ)− p(x, x∗

1, µ)
= 1

1+||x∗
2−x∗

1 ||+f(x∗
1)−f(x∗

2)
+ µ · exp (α[f(x∗

2)− f(x∗
1)])

−
{

1
1+||x−x∗

1 ||+f(x∗
1)−f(x) + µ · exp (α[f(x)− f(x∗

1)])
}

=
||x−x∗

1 ||−||x∗
2−x∗

1 ||+f(x∗
2)−f(x)

[1+||x∗
2−x∗

1 ||+f(x∗
1)−f(x∗

2)][1+||x−x∗
1 ||+f(x∗

1)−f(x)]

+µ {exp (α[f(x∗
2)− f(x∗

1)])− exp (α[f(x)− f(x∗
1)])}

< 0,

which is equivalent to

µ >
||x−x∗

1 ||−||x∗
2−x∗

1 ||+f(x∗
2)−f(x)

[1+||x∗
2−x∗

1 ||+f(x∗
1)−f(x∗

2)][1+||x−x∗
1 ||+f(x∗

1)−f(x)] ·
exp(α·f(x∗

1))
exp(α·f(x))−exp(α·f(x∗

2))
.

Denote

M = max
||x− x∗

1|| > ||x∗
2 − x∗

1||
x ∈ Ω=

ε{
||x−x∗

1 ||−||x∗
2−x∗

1 ||+f(x∗
2)−f(x)

[1+||x∗
2−x∗

1 ||+f(x∗
1)−f(x∗

2)][1+||x−x∗
1 ||+f(x∗

1)−f(x)] · exp(α·f(x∗
1))

exp(α·f(x))−exp(α·f(x∗
2))

}
.
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Thus, when µ > M , for all x ∈ Ω=
ε , we will have p(x∗

2, x
∗
1, µ) < p(x, x∗

1, µ).

We denote

Ω≤
ε = {x ∈ Ω|f(x) ≤ f(x∗

2) + ε}.

Since Ω≤
ε is a compact set and p(x, x∗

1, µ) is continuous, there exists x∗
3 ∈ Ω≤

ε such that

p(x∗
3, x

∗
1, µ) = min

x∈Ω
≤
ε

p(x, x∗
1, µ)

∀x ∈ Ω=
ε , p(x

∗
3, x

∗
1, µ) ≤ p(x∗

2, x
∗
1, µ) < p(x, x∗

1, µ), and Ω≤
ε ⊂ Ω2, thus x∗

3 ∈ Ω2 is a local
minimizer of p(x, x∗

1, µ).
Based on the above discussions, we get that when µ > M , p(x, x∗

1, µ) must have a local
minimizer in the region Ω2 = {x ∈ Ω|f(x) < f(x∗

1)}.

Theorems 2.2-2.4 prove that the function p(x, x∗
1, µ) at x∗

1 is a filled function satisfying
Definition 2.1 under some assumptions on parameter µ.

Although flatten function makes the proposed filled function nondifferentiable at some
points, the filled function may be nondifferentiable at only the boundary points between two
regions, where the original function values are equal to f(x∗

k) in one region, and smaller than
f(x∗

k) in the other region, where x∗
k is the current local minimizer obtained. Note that there

are relatively few such points because the boundary points are much fewer than the points
in these two regions. Also, even if the algorithm goes to such point x, we only need to move
x to its quite near point x+ εei(ε > 0 is a proper small number, ei = (0, 0, ...1, ...0) ∈ Rn),
then the algorithm can be executed smoothly. Therefore, it can not cause the numerical
instability.

The constant coefficient α adopted in the aforementioned way can adjust the range of
objective function value effectively. In fact, without this parameter, when the objective
function value is too small, the change of objective function is not enough to generate the
obvious change of the filled function; or when the objective function value is too large, the
change of objective function may be too big to result in the overflow of the filled function.
In both cases, the filled function may not satisfy Definition 2.1. However, when we use
coefficient α whose value is equal to the reciprocal of the order of magnitude of s(x∗

1, x
∗
1), in

the neighborhood of x∗
1, the values of α·s(x∗

1, x
∗
1) and α·s(x, x∗

1) are both in the range (-10,10)
and exp (α [s(x, x∗

1)− s(x∗
1, x

∗
1)]) can have enough change but does not cause the overflow.

This strategy can greatly reduce the difficulty of adjusting the parameter of filled function
and improve solution accuracy and algorithm performance. Since α is completely adaptive
to objective function, this strategy can be used for general filled function construction.

In order to demonstrate the effect of α, we gave an example. In problem 12, both the
value of s(x∗

1, x
∗
1) and its change are too small. If we don’t use α, a common parameter

value of µ couldn’t make p(x, x∗
1, µ) be an eligible filled function. But when we use α with

the same µ, the new p(x, x∗
1, µ) will be a satisfactory filled function. The flatten function

and two filled functions with and without α are shown in Figures 1-3 respectively.

3 A New Filled Function Method Combining Flatten Function

In this section, we first introduce an adaptive strategy to determine the distance δ, then
present a filled function method combining flatten function(F-FFM).
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Figure 1: flatten function of f12

Figure 2: Filled function on the s(x, x∗
k) of f12 without α

3.1 An adaptive strategy to determine the distance δ

When we construct a filled function at a local minimizer x∗
k, we should find an initial point

x2 that is near x∗
k to implement local search process on the filled function. We denote

x2 as x2 = x∗
k + δ · ej , where ej is usually the unit direction vector along the j-th axis

and δ is the distance between x∗
k and x2. However, the existing methods to determine the

distance δ are not efficient. Most of the previous works only suggest that the distance δ
is taken by a fixed and small constant, such as δ = 0.1 [4, 27]. However, determining δ
in this way is not effective for many problems because it does not take into account the
position relationship among x∗

k, the search domain and the previous local minimizer, which
may cause that x2 crosses the border or takes excessive search on the neighborhood of the
previous local minimizer. To solve this problem, we present an adaptive strategy which
is based on the relative relationship among x∗

k, the search domain and the previous local
minimizer.

Suppose that the current local minimizer is x∗
k, and U and L to denote upper and lower

bound of search domain. The new strategy is described as follows:
Strategy 3.1

1. Compute the distance from x∗
k to the upper and lower bound in each dimension:

du(i) = U(i)− x∗
k(i), i = 1 ∼ n
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Figure 3: Filled function on the s(x, x∗
k) of f12 with α

dl(i) = x∗
k(i)− L(i), i = 1 ∼ n

Where x∗
k(i) is the i-th element of x∗

k, U(i) and L(i) are the upper and lower bounds
of the i-th dimension, du(i) and dl(i) represent the distances from x∗

k(i) to U(i) and
to L(i), respectively.

2. Compute the distance dp from x∗
k to previous local minimizer (represented by x∗

k−1)
in each dimension and update the corresponding du(i) or dl(i):

If k = 1, that is x∗
k is the first local minimizer we found, then previous local minimizer

x∗
k−1 is represented by the initial point x0 of problem(P).

3. Divide du(i), dl(i) into N parts equally, then the size of one part stands for the distance
δ in the corresponding direction. Detailed procedure is as follows:

Remark 3.1. N is a parameter. We select N=50 in this paper in all experiments.
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3.2 A new filled function method (F-FFM)

This algorithm mainly contains two parts. The first part is to minimize the objective
function f(x) to get a local minimizer x∗

k. Since local search method can’t escape from local
minimizer, we adopt the second part to solve this problem. In the second part, we first design
a flatten function s(x, x∗

k) on f(x) which can eliminate a lot of local minima and make the
number of local minima reduced greatly for the ease and convenience of the followed globally
optimal solution search, then construct a filled function p(x, x∗

k, µ) on s(x, x∗
k). Through

minimizing p(x, x∗
k, µ), we can find its local minimizer p∗k. It’s obvious that p∗k is in a new

better basin of f(x), in which there is a better local minimizer. Therefore, we can return
to the first part to get a new better local minimizer. Execute such iteration continuously
until p(x, x∗

k, µ) has no longer minimizer, then we adjust parameter µ. If parameter µ is
sufficiently large and p(x, x∗

k, µ) still has no minimizer, we consider x∗
k as a global minimizer

of problem(P), and the algorithm is terminated.
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4 Numerical Experiment

4.1 Experiment environment

In this section, we execute our new algorithm F-FFM on 14 standard and frequently-used test
problems [4, 27]. All experiments are implemented using Matlab R2014b, under windows
7 and Intel Xeon with 2.53G CPU and 4G RAM. Fminunc function in the optimization
toolbox of Matlab is taken as our local search method. Two classical filled function methods
(Ge [14], Y. Zhang [27]) and two state-of-art methods ( C. Wang [17], T. El-Gindy [4]) are
selected to compare with our method, and the initial points in our experiments are all set
to be same as those in compared algorithms. Numerical results show that our method is
effective and efficient.

4.2 Test problems

14 test problems are as follows:

Problem 1

min f(x) =
∣∣x−1

4

∣∣+ ∣∣sin(π(1 + x−1
4 ))

∣∣+ 1
s.t.−10 ≤ x ≤ 10

The new filled function method SF-FFM succeeds in finding the global minimizer x∗ =
1.00000000 with f(x∗) = 1.000000000325805. The computational results are summarized in
Table 2.

Problem 2

min f(x) = 2x2 − 1.05x4 + 1
6x− |x|

s.t.−0.8 ≤ x ≤ 1

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
−0.329088554 with f(x∗) = −0.179653263511957. The computational results are summa-
rized in Table 3.

Problem 3

min f(x) = |x− 1| (1 + 10 |sin(x+ 1)|) + 1
s.t.−10 ≤ x ≤ 10

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
0.999999995 with f(x∗) = 1.000000048856826. The computational results are summarized
in Table 4.

Problem 4

min f(x) =

{
x2 sin 1

x , if x ̸= 0
0, if x = 0

s.t.−0.4 ≤ x ≤ 0.4

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
0.233930054 with f(x∗) = −0.049566607874611. The computational results are summarized
in Table 5.
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Problem 5

min f(x) =
5∑

i=1

i |cos((i+ 1)x+ i)|+ 5

s.t.−10 ≤ x ≤ 10

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
8.31061870 with f(x∗) = 6.699793778161520. The computational results are summarized in
Table 6.

Problem 6

min f(x) =
n∑

i=1

|xi − 0.5|

s.t.−5 ≤ xi ≤ 5, i = 1, 2,...,n

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
(0.500000000, 0.500000000) with f(x∗) = 0 for n=2. The computational results are summa-
rized in Table 7.

Problem 7

min f(x) = max
{
5x1 + x2,−5x1 + x2, x

2
1 + x2

2 + 4x2

}
s.t.−4 ≤ x1 ≤ 4,−4 ≤ x2 ≤ 4

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
(−3.34376972E − 04,−3.00055715) with f(x∗) = −2.998885266142280. The computational
results are summarized in Table 8.

Problem 8

min f(x) = −20 exp

(
−0.2

√
1
n

n∑
i=1

|xi|

)
− exp

(
1
n

n∑
i=1

cos(2πxi)

)
+ 20

s.t.−20 ≤ xi ≤ 30, i = 1, 2,...,n

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
(2.41384061E − 15, 0)) with f(x∗) = −2.718281689496010 for n = 2. The computational
results are summarized in Table 9.

Problem 9

min f(x) = x2
1 + x2

2 − cos(18x1)− cos(18x2)
s.t.−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1

The new filled function method F-FFM succeeds in finding the global minimizer x∗ = (0, 0)
with f(x∗) = −2. The computational results are summarized in Table 10.

Problem 10

min f(x) = [1− 2x2 + csin(4πx2)− x1]
2 + [x2 − 0.5sin(2πx1)]

2

s.t.0 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 0
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The new filled function method F-FFM succeeds in finding the global minimizer with f(x∗) =
0 for c=0.2,0.5. The computational results are summarized in Tables 11.

Problem 11

min f(x) = 4x2
1 − 2.1x4

1 +
1
3x

6
1 − x1x2 − 4x2

2 + 4x4
2

s.t.−3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
(8.98420215E−02, 0.712656441) with f(x∗) = −1.031628453489865 and x∗ = (8.98419853E−
02, 0.712656395) with f(x∗) = −1.031628453489875, for two initial points x0 = (−2, 1) and
x0 = (−3, 3). The computational results are summarized in Table 12.

Problem 12

min f(x) = x4
1 + 4x3

1 + 4x2
1 + x2

2

s.t.−3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3

The new filled function method F-FFM succeeds in finding the global minimizer x∗=(0, 0),
and f(x∗)=0. The computational results are summarized in Table 13.

Problem 13

min f(x) =

{
5∑

i=1

i cos[(i+ 1)x1 + i]

}{
5∑

i=1

i cos[(i+ 1)x2 + i]

}
s.t.0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
(5.48286419, 4.85805684) with f(x∗) = −1.867309088310200E + 02. The computational
results are summarized in Table 14.

Problem 14

min f(x) = π
n

{
10sin2πx1 +

n−1∑
i=1

[(xi − 1)
2
(1 + 10sin2πxi+1)] + (xn − 1)

2

}
s.t.−10 ≤ xi ≤ 10, i = 1, 2, ..., n

The new filled function method F-FFM succeeds in finding the global minimizer x∗ =
(1, 1, ..., 1) with f(x∗) = 0 for n=2,5,7,10,20,30,50,100. The computational results are sum-
marized in Table 15-17 respectively. For making tables concise and direct, we omit x∗

k, and
only demonstrate the values of k and f(x∗

k).

4.3 Experiment results

General computational results on all 14 test problems are summarized in Table 1. The
detailed computational results for each problem are listed in the followed Tables respectively.
The meanings of the symbols used in tables are as follows:

No. : The order of the problems.

n: The number of variables.

k0: The total number of direction ei.

Iter: The total number of iterations.
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Ff : The total number of function evaluations of f(x), s(x, x∗
k) and p(x, x∗

k, µ).

µ: The parameter value of filled function p(x, x∗
k, µ).

µU : The upper bound of parameter µ.

N: The parameter in Strategy 3.1 for determining δ. We set N=50 in this paper for all
experiments.

k: The iteration number in finding the kth local minimizer.

x0
k: The kth initial point.

x∗
k: The kth local minimizer.

f(x∗
k): The function value of the kth local minimizer.

Table 1 gives the general computational results on 14 test problems, including the initial
values of algorithm parameters (k0, µU , N), the final parameter value µ of filled function,
and the consumed numbers of iterations as well as total function evaluations.

Tables 2-17 give the detailed computational results for each problem. All initial points
in our experiments are set to be the same as those in compared methods. By comparing
Tables 2-9 in this paper with the corresponding Tables 4.1-4.8 in [27] respectively, we can
find that our method can obtain the global minimizers for all problems and even get more
accurate results, such as Problems 1 and 2. By comparing Tables 10-17 in this paper with
the results in [4,14,17], it can be seen that our method can obtain almost global minimizers
for all problems. And the accuracy of our results is higher than that of all results in [14,17],
but lower than that of some results in [4]. However, the number of function evaluations used
in the proposed algorithm is fewer than that used in [4], especially for high dimension cases
(more than 10 dimensions).

Table 18 gives the general comparison of the results obtained by our method and those
in [4, 14, 17]. Since we use the function fminunc as the local search method and fminunc
doesn’t provide the number of expended gradient evaluations, we don’t compare gradient
evaluations in Table 18. From the table, we find the total number of iterations in our
algorithm is less than that in [14, 17] for almost all problems and it’s similar to that in [4].
Meanwhile, the number of the function evaluations Ff used in the proposed algorithm is
greatly less than that used in [14,17] for all problems. And in nine experiments, the number
of the function evaluations Ff used in our method is less than that used in [4]. Especially, in
dealing with the problems of high dimension, the advantage of our method is more obvious.

5 Conclusions

In this paper, we propose a new one-parameter filled function combining the flatten function
to solve unconstrained global optimization problems and investigate its properties. In order
to improve the performance of the filled function and make the adjustment of parameter as
easy as possible, we introduce a constant α to the new filled function so that the change
of the exponential term become more easily controlled and the proposed filled function is
numerically stable (can not overflow). Furthermore, we introduce an adaptive strategy to
determine the initial step size δ of the initial point in order to minimize the filled func-
tion efficiently, which is based on the relative position relationship among the current local
minimizer, the problem domain and the previous local minimizer. This strategy breaks the
limitation of the fixed step size in the existing filled function methods. Based on all above
strategies, a new filled function method is proposed. The numerical results of experiments
imply that our method is more effective and robust. Especially in the numbers of iterations
and function evaluations, our method shows greater advantage. And with the increasing of
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Table 1: General computational results.

Table 2: Numerical results for Problem 1 with initial point 6.

k x0
k x∗

k f(x∗
k)

1 6 4.99999996 2.000000024043301
2 1.00000000 1.00000000 1.000000000325805

Table 3: Numerical results for Problem 2 with initial point 0.5.

k x0
k x∗

k f(x∗
k)

1 0.5 0.408163934 -0.036083585083927
2 -0.611481763 -0.329088554 -0.179653263511957

Table 4: Numerical results for Problem 3 with initial point -1.5.

k x0
k x∗

k f(x∗
k)

1 -1.5 -0.999999997 3.000000048646088
2 0.999999995 0.999999995 1.000000048856826
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Table 5: Numerical results for Problem 4 with initial point 0.1.

k x0
k x∗

k f(x∗
k)

1 0.1 0.213863609 -0.045707160044852
2 0.234006345 0.233930054 -0.049566607874611

Table 6: Numerical results for Problem 5 with initial point 3.

k x0
k x∗

k f(x∗
k)

1 3 3.28407044 14.070575989849708
2 8.31061870 8.31061870 6.699793778161520

Table 7: Numerical results for Problem 6 with initial point (3,3).

k x0
k x∗

k f(x∗
k)

1 (3,3) (0.500000000,0.500000000) 0

Table 8: Numerical results for Problem 7 with initial point (1,1).

k x0
k x∗

k f(x∗
k)

1 (1,1) (-0.00000000,-1.20000000) -1.199999999999999
2 (-0.00000000,-1.25600000) (0.00000000,-1.25600000) -1.255999999999999
3 (1.15785915E-03,-3.00192806) (-3.34376972E-04,-3.00055715) -2.998885266142280

Table 9: Numerical results for Problem 8 with initial point (-16,-1).

k x0
k x∗

k f(x∗
k)

1 (-16,-1) (-15.9964294,-0.996429560) 6.117673641171395
2 (-13.9958236,-0.996061400) (-13.9960614,-0.996061538) 5.715581170386420
3 (-11.9953632,-0.995605276) (-11.9956054,-0.995605445) 5.269594080166323
4 (-9.99477384,-0.995021602) (-9.99502182,-0.995021882) 4.768359205573809
5 (-0.984037201,-0.984495066) (-0.984500073,-0.984500071) 0.894453876550717
6 (0.000000000,-0.978345246) (0.000000000,-0.978345246) -0.094970424106275
7 (2.41384061E-15,0) (2.41384061E-15,0) -2.718281689496010

Table 10: Numerical results for Problem 9 with initial point(1,1).
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Table 11: Numerical results for Problem 10 with c=0.2 and c=0.5.

Table 12: Numerical results for Problem 11 with initial point(-2,1) and (-3,3).

Table 13: Numerical results for Problem 12 with initial point(-1,-2).

Table 14: Numerical results for Problem 13 with initial point(1,1).

k x0
k x∗

k f(x∗
k)

1 (-1.00000000,-2.00000000) (2.04669717,2.04669717) 2.291785049429219E-15
2 (2.20576323,2.04669710) (2.20576323,2.04669710) -3.174772226760831E-06
3 (2.36164796,2.04669138) (2.36164796, 2.04669138) -2.817139588048570E-04
4 (5.82432135,2.04595877) (5.82432135,2.04595877) -0.001851942899270
5 (5.48199101,1.80531284) (5.48286417,1.80565642) -39.588744510923043
6 (5.48287226,4.85826986) (5.48286419,4.85805684) -1.867309088310200E+02
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Table 15: Numerical results for Problem 14 with n=2,5.
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Table 16: Numerical results for Problem 14 with n=7,10.
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Table 17: Numerical results for Problem 14 with n=20,30,50,100.

n=20 n=30

k f(x∗
k) k f(x∗

k)

1 25.024269320349966 1 26.290377511895549
2 0.681833637838455 2 0.157966086563075
3 4.831690603168681E-13 3 1.058708676282549E-12

n=50 n=100

k f(x∗
k) k f(x∗

k)

1 24.185850534414463 1 25.756905387376211
2 0.438637301206239 2 10.386247553207347
3 1.057642862178909E-11 3 0.205102803215617

4 3.659295089164516E-13
5 2.060573933704291E-13

Table 18: Comparison of the results.
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the dimension of the problems, the advantage is more obvious.
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