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solutions, assuming that the solutions are counted by multiplicity. Wright [28] extended the
result to a system that has as many equations as complex variables. It was shown that the
number of solutions to such a system is the product of the degrees of the equations, if the
solutions are counted by multiplicity.

Brake, Hauenstein and Liddell [3] combined numerical algebraic geometry and sums of
squares programming for computing all real solutions of (1.1). They used sums of squares
programming to validate that a “complete” real solution set has been computed, that is,
the Zariski closure of the given set is equal to the Zariski closure of the set of all real
solutions. The method combines numerical and symbolic methods. Lasserre, Laurent and
Rostalski [15] used numerical linear algebra and semidefinite optimization techniques to
compute all (finitely many) solutions of the polynomial equations. The algorithm is based on
moment relaxations and, in contrast to other existing methods, it exploits the real algebraic
nature and avoides the computation of complex components. They also gave a real algebraic
symbolic-numeric algorithm, assuming the solution set is finite [14].

Recently, Cui, Dai and Nie [6] studied B-eigenvalues of symmetric tensors. They proposed
a semidefinite relaxation approach for computing all real B-eigenvalues sequentially, from
the largest to the smallest. Each eigenvalue can be computed by solving a finite hierarchy
of semidefinite relaxations. The approach was originally proposed by Nie [22] for computing
the hierarchy of local minimums for polynomial optimization.

In this paper, we follow the approach in [6, 22] to compute all real solutions of polynomial
equations (1.1), if there are finitely many ones. We formulate it as a sequence of polynomial
optimization problems. The real solutions are computed in order, by choosing a random
objective. Each of them can be obtained by solving a hierarchy of semidefinite relaxations.

This paper is organized as follows. In Section 2, we review some basics in polynomial
optimization. In Section 3, we show how to formulate (1.1) as a sequence of polynomial op-
timization problems. All real solutions are computed sequentially. A semidefinite relaxation
algorithm is proposed. The convergence properties of the algorithm are also discussed. In
Section 4, some numerical experiments are given. Finally, we conclude the paper in Section
5.

2 Preliminaries

Notations. The symbol R (resp., N) denotes the set of real number (resp., nonnega-
tive integers). Rn (resp., Nn) denotes the set of all real (resp., nonnegative integers) n-
dimensional vectors. The symbol R[x] = R[x1, . . . , xn] denotes the ring of polynomials in
x := (x1, . . . , xn) over the real field. The cardinality of a set S is denoted as |S|. For k ∈ R,
⌈k⌉ denotes the smallest integer not smaller than k. For a symmetric matrix X, X ⪰ 0
means X is positive semidefinite. For a vector y, ∥y∥ denotes its standard Euclidean norm.

In this section, we review some basics in polynomial optimization. We refer to [12, 13, 16]
for more details.

Given h1, . . . , hm ∈ R[x] and a tuple h = (h1, . . . , hm). The ideal generated by h is

I(h) = h1 · R[x] + · · ·+ hm · R[x].

The k-th truncation of I(h), denoted as Ik(h), is the set

Ik(h) = h1 · R[x]k−deg(h1) + · · ·+ hm · R[x]k−deg(hm),

where R[x]k is the set of polynomials in R[x] with degree at most k.
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A polynomial f ∈ R[x] is said to be sum of squares (SOS) if f = σ2
1 + · · · + σ2

t for
some σ1, . . . , σt ∈ R[x]. The set of all SOS polynomials in x is denoted as Σ[x]. The k-th
truncation of Σ[x] is denoted as Σ[x]k = Σ[x] ∩ R[x]k. The quadratic module of a tuple
g = (g1, . . . , gt) is the set

Q(g) = Σ[x] + g1 · Σ[x] + · · ·+ gt · Σ[x].

The k-th truncation of the quadratic module Q(g), denoted as Q(k)g, is the set

Q(k)g = Σ[x]2k + g1 · Σ[x]2k−deg(g1) + · · ·+ gt · Σ[x]2k−deg(gt).

The set I(h) +Q(g) is said to be archimedean if there exists N > 0 such that N − ∥x∥2 ∈
I(h) +Q(g). For the tuples h and g as above, denote

E(h) := {x ∈ Rn : h(x) = 0}, S(g) := {x ∈ Rn : g(x) ≥ 0}.

Clearly, if I(h) +Q(g) is archimedean, then E(h) ∩ S(g) is compact. On the other hand, if
E(h) ∩ S(g) is compact, then I(h) + Q(g) can be forced to be archimedean by adding the
polynomial R− ∥x∥2 to the tuple g, for R sufficiently large. If f ∈ I(h) +Q(g), then f ≥ 0
on the set E(h)∩S(g). Conversely, if f > 0 on E(h)∩S(g) and I(h)+Q(g) is archimedean,
then f ∈ I(h) +Q(g). This is called Putinar’s Positivstellensatz (cf. [24]) in the literature.

For α = (α1, . . . , αn) ∈ Nn, denote |α| = α1 + · · ·+ αn. Let

Nn
d = {α ∈ Nn : |α| ≤ d}.

Let RNn
d be the space of real vectors indexed by α ∈ Nn

d . A vector in RNn
d is called a truncated

moment sequence (tms) of degree d. For y ∈ RNn
d , define a Riesz function Fy acting on R[x]d

as
Fy(q) :=

∑
α∈Nn

d

qαyα, for all q(x) =
∑
α∈Nn

d

qαx
α,

where xα = xα1
1 . . . xαn

n and (qα) denotes the coefficient vector of the polynomial q. For
convenience, we also denote ⟨q, y⟩ := Fy(q). We say that y admits a representing measure
supported in a set T if there exists a Borel measure µ such that its support supp(µ) is
contained in T and

yα =

∫
T

xαdµ, ∀α ∈ Nn
d .

Denote
[x]d = [1, x1, . . . , xn, x

2
1, x1x2, . . . , x

d
1, . . . , x

d
n]

T .

Define the symmetric matrices A
(k)
α such that

q(x)[x]d[x]
T
d =

∑
α∈Nn

2k

A(k)
α xα,

where q ∈ R[x] with deg(q) ≤ 2k and d = k − ⌈deg(q)/2⌉. The k-th order localizing matrix

of q, generated by y ∈ RNn
2k , is the symmetric matrix L

(k)
q (y) satisfying

L(k)
q (y) =

∑
α∈Nn

2k

A(k)
α yα. (2.1)

When q = 1, we call it a moment matrix, denoted as Mk(y). We also denote

L
(k)
h (y) = diag(L

(k)
h1

(y), . . . , L
(k)
hm

(y)), (2.2)
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for the tuple h = (h1, . . . , hm).
For the polynomial tuples h and g given as above, people are often interested in whether

or not a tms y ∈ RNn
2k admits a representing measure whose support is contained in E(h) ∩

S(g). Indeed, if

L
(k)
h (y) = 0, Mk(y) ⪰ 0, L(k)

g (y) ⪰ 0, (2.3)

moreover, if y also satisfies the rank condition

rank Mk−d′(y) = rank Mk(y), (2.4)

where d′ = max{1, ⌈deg(h)/2⌉, ⌈deg(g)/2⌉}, then y admits a measure supported in E(h) ∩
S(g) (cf. [7, 10]). In such case, y admits a unique finitely atomic measure on E(h) ∩ S(g).
We call that y is flat with respect to h = 0 and g ≥ 0 if both (2.3) and (2.4) are satisfied.

For y ∈ RNn
d and t ≤ d, denote the truncation of y as

y|t = (yα)α∈Nn
t
.

For two tms’ y ∈ RNn
k and z ∈ RNn

l with k < l, we say that y is a truncation of z (equivalently,
z is an extension of y), if y = z|k. For such case, y is called a flat truncation of z if y is flat,
and z is a flat extension of y if z is flat. Flat extensions and flat truncations are useful in
solving polynomial optimization and truncated moment problems (cf. [20, 21]).

3 Finding All Real Solutions of Polynomial Equations

Denote the set of all real solutions of the polynomial equations (1.1) by

VR(h) = {x ∈ Rn : hi(x) = 0, i = 1, . . . ,m}.

We assume that VR(h) is finite throughout the paper. In this section, we study how to
compute all elements of VR(h). We propose a semidefinite algorithm for computing them
sequentially. Each of them can be obtained by solving a hierarchy of semidefinite relaxations.

Let f be a random polynomial in R[x]. Consider the optimization problem:

min f(x)
s.t. hi(x) = 0, i = 1, . . . ,m.

(3.1)

Clearly, x ∈ VR(h) if and only if x is feasible for (3.1). When it is generically chosen, f
achieves different values at different x ∈ VR(h). We order them monotonically as

f1 < f2 < · · · < fs.

Let
Vj = {x ∈ VR(h) : f(x) = fj}, j = 1, . . . , s. (3.2)

Then,
VR(h) = V1 ∪ · · · ∪ Vs. (3.3)

3.1 The first set V1

By (3.2), the value f1 is equal to the optimal value of the optimization problem

f1 = min f(x)
s.t. hi(x) = 0, i = 1, . . . ,m.

(3.4)
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We apply Lasserre type semidefinite relaxations (cf. [12]) to solve (3.4). The k-th order
semidefinite relaxation of (3.4) is

r
(k)
1 = min ⟨f, y⟩

s.t. ⟨1, y⟩ = 1,

L
(k)
h (y) = 0,

Mk(y) ⪰ 0, y ∈ RNn
2k ,

(3.5)

for k = k0, k0+1, . . ., where k0 = max{⌈deg(f)/2⌉, ⌈deg(h1)/2⌉, . . . , ⌈deg(hm)/2⌉}. In (3.5),

⟨1, y⟩ = 1 means that the first entry of y is one, and the matrices Mk(y), L
(k)
h (y) are defined

as in (2.1)–(2.2).
The dual problem of (3.5) is

d
(k)
1 = max γ

s.t. f − γ ∈ I2k(h).
(3.6)

Suppose y(1,k) is a minimizer of (3.5). By weak duality, r
(k)
1 ≥ d

(k)
1 for all k. If, for some

t ∈ [k0, k], the truncation ŷ = y(1,k)|2t satisfies

rank Mt−k0
(ŷ) = rank Mt(ŷ), (3.7)

then r
(k)
1 = f1 and we can obtain γ1 global minimizers of (3.4), where γ1 = rank Mt(ŷ) (cf.

[21]). Thus, we obtain V1.

Theorem 3.1. Suppose that VR(h) is finite. For problems (3.4)–(3.6), we have the following
results:

(i) If the problem (3.5) is infeasible for some k, then VR(h) = ∅.

(ii) If VR(h) = ∅, then (3.5) must be infeasible for some k.

(iii) If VR(h) is nonempty, then for all k sufficiently large,

r
(k)
1 = d

(k)
1 = f1

and the condition (3.7) must be satisfied.

Proof. (i) Note that (3.5) is a relaxation of (3.4). If (3.5) is infeasible, then (3.4) is infeasible.
So, (i) is true.

(ii) Since VR(h) = ∅, by the Positivstellensatz (cf. [2, Theorem 4.4.2]), there exists
ϕ = −1 ∈ I(h) where I(h) is the ideal generated by the tuple h. Hence, we have ϕ ∈ I2k(h)
for all k sufficiently large. This implies that (3.6) has an improving direction (that is,
the direction is feasible and can make the objective function increase along it) and it is
unbounded from the above. By weak duality, the relaxation (3.5) must be infeasible for k
sufficiently large.

(iii) Since VR(h) is finite and nonempty, we have |VR(h)| < ∞ and VR(h) ̸= ∅. Let
dh = maxj=1,...,m{deg(hj)/2}. By [15, Proposition 4.6], for k sufficiently large, there exists
s ∈ [dh, k] such that

rank Ms(y) = rank Ms−dh
(y)

for all y ∈ Ωk, where

Ωk = {y ∈ RNn
2k : ⟨1, y⟩ = 1,Mk(y) ⪰ 0, L

(k)
hi

(y) = 0, i = 1, . . . ,m}.
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Since VR(h) is finite, by [20, Theorem 1.1], we have d
(k)
1 = f1 for all k sufficiently large. So,

when the relaxation order k is sufficiently large, we have

r
(k)
1 = d

(k)
1 = f1

and the rank condition (3.7) must be satisfied.

3.2 The second and other sets Vj

Suppose fj and Vj are already known. We investigate how to compute fj+1 and Vj+1 for
j = 1, . . . , s− 1. Consider the optimization problem

f+j = min f(x)

s.t. hi(x) = 0, i = 1, 2, . . . ,m,
f(x) ≥ fj + δ.

(3.8)

Clearly, fj+1 = f+j if
0 < δ < fj+1 − fj . (3.9)

Similarly, the k-th order Lasserre relaxation of (3.8) is

r
(k)
j+1 = min ⟨f, y⟩

s.t. ⟨1, y⟩ = 1,

L
(k)
h (y) = 0,

Mk(y) ⪰ 0,

L
(k)
f−fj−δ(y) ⪰ 0, y ∈ RNn

2k ,

(3.10)

for k = k0, k0 + 1, . . .. The dual problem of (3.10) is

d
(k)
j+1 = max γ

s.t. f − γ ∈ I2k(h) +Qk(f − fj − δ).
(3.11)

By weak duality, r
(k)
j+1 ≥ d

(k)
j+1 for all k. Suppose y(j+1,k) is a minimizer of (3.10). If, for some

t ∈ [k0, k], the truncation ŷ = y(j+1,k)|2t satisfies the rank condition (3.7), then r
(k)
j+1 = fj+1

and we can obtain γj+1 global minimizers of (3.8), where γj+1 = rank Mt(ŷ) (cf. [21]).
Thus, we obtain Vj+1.

In practice, we typically do not know whether fj+1 exists. Even if it exists, its value
is typically not available. So, we need to determine the value of δ that satisfies 0 < δ <
fj+1 − fj . Consider the optimization problem:

f−j = max f(x)

s.t. hi(x) = 0, i = 1, 2, . . . ,m,
f(x) ≤ fj + δ.

(3.12)

Its optimal value f−j can be computed by the semidefinite relaxations similar to (3.10) and
(3.11).

Lemma 3.2. Suppose that VR(h) is finite. Let fj be the value of f(x) on Vj. For all j > 1
and δ > 0, we have

(i) If fj+1 exists, then f−j = fj if and only if δ satisfies (3.9).
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(ii) If f−j = fj for some δ > 0 and (3.10) is infeasible for some k, then fj+1 does not exist,
that is, fj is the maximum value of f on VR(h).

(iii) If fj is the maximum value of f on VR(h), then f
−
j = fj for any δ > 0.

Proof. (i) If 0 < δ < fj+1 − fj , by (3.12), the result is obvious. Conversely, if f−j = fj , then
the maximum value of f on VR(h), which is not larger than fj + δ, is still fj . So, if fj+1

exists, we must have fj+1 > fj + δ.
(ii) If (3.10) is infeasible for some k, then (3.8) is infeasible. This implies that, for any x

satisfying hi(x) = 0 (i = 1, . . . ,m), f(x) < fj + δ. By f−j = fj , we know that fj+1 does not
exist. So, fj is the maximum value of f on VR(h).

(iii) If fj is the maximum value of f on VR(h), then, for any x satisfying hi(x) = 0
(i = 1, . . . ,m), f(x) ≤ fj . Hence, f−j = fj for any δ > 0.

3.3 An algorithm for computing VR(h)

We propose a semidefinite relaxation algorithm to compute VR(h). Firstly, we compute V1
by solving (3.4), if VR(h) is nonempty. After obtaining V1, we solve (3.8). If f2 does not
exist, then V1 is the solution set of (1.1), and we stop. Otherwise, we determine f2 and V2.
Repeating this procedure, we can obtain the solution set VR(h) = V1 ∪ · · · ∪ Vs.

The algorithm is presented as follows.

Algorithm 3.3.

Step 0. Choose a random polynomial f(x). Let j := 0 and k := k0.

Step 1. If (3.5) is infeasible, then VR(h) = ∅ and stop. Otherwise, solve (3.5) to obtain

a minimizer y(1,k) and the optimal value r
(k)
1 .

Step 2. If (3.7) is satisfied for some t ∈ [k0, k], then let V := V1, where V1 is the set of

minimizers of (3.4). Let F = {r(k)1 }, k := k0, j := j + 1, and go to Step 3. If such t
does not exist, let k := k + 1 and go to Step 1.

Step 3. Let δ = 0.05. Compute the optimal value f−j of (3.12). If f−j > fj , let δ = δ/2

and compute (3.12) again. Repeat this procedure until we obtain f−j = fj .

Step 4. Solve (3.10). If it is infeasible, then h(x) = 0 has no more real solutions, let
VR(h) = V and stop. Otherwise, compute a minimizer y(j+1,k) and the optimal value

r
(k)
j+1.

Step 5. If (3.7) is satisfied for some t ∈ [k0, k], then update V := V ∪ Vj+1, where Vj+1

is the set of minimizers of (3.8). Let F := F ∪ {r(k)j+1}, k := k0, j := j + 1, and go to
Step 3. If such t does not exist, let k := k + 1 and go to Step 4.

Algorithm 3.3 has the following nice convergence properties.

Theorem 3.4. Suppose VR(h) is finite and nonempty. Let fj be the value of f(x) on
Vj(j ≥ 1) . Then, we have:

(i) If, for any δ > 0, (3.10) is infeasible for some k, then the maximum value on VR(h) is
fj.



164 X. ZHAO AND J. FAN

(ii) If the maximum value on VR(h) is fj, then (3.10) must be infeasible for some k, for
any δ > 0.

(iii) Suppose fj+1 exists and 0 < δ < fj+1 − fj, then for all k sufficiently large,

r
(k)
j+1 = d

(k)
j+1 = fj+1

and the condition (3.7) must be satisfied.

Proof. (i) Note that (3.10) is a relaxation of (3.8). If (3.10) is infeasible, then (3.8) is
infeasible. So, (i) is true.

(ii) If the maximum value of f(x) on VR(h) is fj , then the feasible set of (3.8) is empty
for any δ > 0. So, by the Positivstellensatz (cf. [2] Theorem 4.4.2), there exist ϕ ∈ I(h) and
ψ ∈ Pr(f − fj − δ) such that

ϕ+ ψ = −2,

where I(h) is the ideal generated by the tuple h and Pr(f − fj − δ) denotes the preordering
generated by the polynomial (f − fj − δ). (We refer to [2] for preorderings). It is a convex
cone of R[x].

Since VR(h) is finite, −∥h∥2 ∈ I(h) and {x ∈ Rn : −∥h∥2 ≥ 0} is compact. So, I(h) +
Q(f − fj − δ) is archimedean. Note that, 1 + ψ is strictly positive on the set {x ∈ Rn : h =
0, f − fj − δ ≥ 0}, then, by Putinar’s Positivstellensatz (cf. [24]),

1 + ψ ∈ I(h) +Q(f − fj − δ),

that is, there exist σ = 1 + ψ ∈ Qk(f − fj − δ) and ϕ ∈ I2k(h) such that

ϕ+ σ = −1

for all k sufficiently large. This implies that (3.11) has an improving direction and it is
unbounded from the above. By weak duality, the relaxation (3.10) must be infeasible for k
sufficiently large.

(iii) It is clear that if 0 < δ < fj+1− fj holds, the optimal value of (3.8) is equal to fj+1,
if fj+1 exists.

When VR(h) is finite, the results can be derived from [15, Proposition 4.6] and [20,
Theorem 1.1 ]. The proof is similar to that of Theorem 3.1 (iii).

Remark 3.5. In theory, the objective function f can be any random polynomial in R[x].
However, in practice, we may avoid those f with high degree. As shown in (3.5) and (3.10),
we use the Lasserre’s SDP relaxation to solve the polynomial optimization problem. The
high degree of f produces a higher order relaxation problem, which may not be favorable.
So, a random f with low degree is preferred.

4 Numerical Experiments

In this section, we present some numerical experiments for solving polynomial equations
(1.1) by Algorithm 3.3. We use the software GloptiPoly 3 [11] and SeDuMi [26] to solve
(3.5) and (3.10). The experiments are implemented on a laptop with an Intel Core i7
CPU (2.2GHz) and 16GB of RAM, using Matlab R2015a. We display 4 decimal digits for
numerical numbers.
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Example 4.1 ([5]). Consider the polynomial equations:

h1 = x42x1 + 3x31 − x42 − 3x21,

h2 = x21x2 − 2x21,

h3 = 2x42x1 − x31 − 2x42 + x21.

We choose the objective function as f = x21 + x22. By Algorithm 3.3, we obtain two real
solutions:

v1 =(−0.0000, 0.0000)T ,

v2 =(1.0000, 2.0000)T .

The computation takes about 1.1 seconds.

Example 4.2 ([1]). Consider the polynomial equations:

h1 = 5x91 − 6x51x2 + x1x
4
2 + 2x1x3,

h2 = −2x61x2 + 2x21x
3
2 + 2x2x3,

h3 = x21 + x22 − 0.265625.

They have 20 complex solutions, among which eight are real.
We choose the objective function as f = x1 + x2 + x3. By Algorithm 3.3, we obtain all

real solutions:

v1 = (−0.5153,−0.0001,−0.0124)T ,

v2 = (−0.0002,−0.5152,−0.0000)T ,

v3 = (−0.5016, 0.1185, 0.0124)T ,

v4 = (−0.2619, 0.4439,−0.0132)T ,

v5 = (0.5153, 0.0001,−0.0124)T ,

v6 = (0.0000, 0.5154,−0.0000)T ,

v7 = (0.5016, 0.1185, 0.0124)T ,

v8 = (0.2619, 0.4439,−0.0132)T .

The computation takes about 59 seconds.

Example 4.3 ([27]). Consider the polynomial equations:

h1 = x1 + x2 − 2,

h2 = x1x3 + x2x4,

h3 = x1x
2
3 + x2x

2
4 − 2/3,

h4 = x1x
3
3 + x2x

3
4,

which represents a Gaussian quadrature formula with two weights and two knots.
We choose the objective function as f = x21 +x22 +x23 +x24. By Algorithm 3.3, we obtain

two real solutions:

v1 = (1.0000, 1.0000,−0.5774, 0.5774)T ,

v2 = (1.0000, 1.0000, 0.5774,−0.5774)T .

The computation takes about 3.6 seconds.
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Example 4.4 ([30]). Consider the polynomial equations Katsura5:

h1 = 2x26 + 2x25 + 2x24 + 2x23 + 2x22 + x21 − x1,

h2 = x6x5 + x5x4 + 2x4x3 + 2x3x2 + 2x2x1 − x2,

h3 = 2x6x4 + 2x5x3 + 2x4x2 + x22 + 2x3x1 − x3,

h4 = 2x6x3 + 2x5x2 + 2x3x2 + 2x4x1 − x4,

h5 = x23 + 2x6x1 + 2x5x1 + 2x4x1 − x5,

h6 = 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + x1 − 1.

We can choose the objective function as f = x21 + · · ·+ x26. By Algorithm 3.3, we obtain
twelve real solutions:

v1 = (0.1362, 0.0428, 0.0417, 0.0404, 0.0964, 0.2106)T ,

v2 = (0.2386, 0.0608,−0.0622,−0.0233, 0.1862, 0.2192)T ,

v3 = (0.2772, 0.2259, 0.1621, 0.0858, 0.0115,−0.1240)T ,

v4 = (0.2919,−0.1011, 0.1805,−0.0591, 0.1929, 0.1409)T ,

v5 = (0.4086,−0.0732, 0.0657,−0.1266, 0.2521, 0.1777)T ,

v6 = (0.4411, 0.1515, 0.0226, 0.2192, 0.0935,−0.2073)T ,

v7 = (0.4616, 0.3087, 0.0553,−0.1020,−0.0844, 0.0917)T ,

v8 = (0.5903, 0.0422, 0.3274,−0.0642,−0.0874,−0.0132)T ,

v9 = (0.6798, 0.2657,−0.1541, 0.0323, 0.0896,−0.0735)T ,

v10 = (0.7263,−0.0503, 0.1220, 0.1636, 0.1095,−0.2079)T ,

v11 = (0.7534, 0.0532, 0.1909,−0.1144,−0.1456, 0.1391)T ,

v12 = (1.0000, 0.0000, 0.0000,−0.0000,−0.0000,−0.0000)T .

The computation takes about 25 seconds.

Example 4.5 ([15]). Consider the polynomial equations:

h1 = x21 + x2 + x3 + 1,

h2 = x1 + x22 + x3 + 1,

h3 = x1 + x2 + x23 + 1,

which admit seven complex solutions, among which the real solution (−1,−1,−1)T has
multiplicity two.

We choose the objective function as f = x21 + x22 + x23. By Algorithm 3.3, we obtain the
real solutions

v1 = (−0.9999,−0.9999,−0.9999)T ,

v2 = (−1.0090,−1.0090,−1.0090)T .

The computation takes about 0.8 seconds.

Example 4.6 ([5]). Consider the polynomial equations:

h1 = x21 − 2x1x3 + 5,
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h2 = x1x
2
2 + x2x3 + 1,

h3 = 3x22 − 8x1x3,

which have eight complex solutions, among which two are real.
We choose the objective function as f = x21 + x22 + x23. By Algorithm 3.3, we obtain the

real solutions:

v1 = (−1.1010,−2.8780,−2.8212)T ,

v2 = (0.9657,−2.8125, 3.0716)T .

The computation takes about 1.7 seconds.

Example 4.7 ([3]). Consider the intersection of a circle and a bivariate cubic, namely

h1 = x21 + x22 − 2,

h2 = 2x1x
2
2 − x1 + 1,

which have six solutions, all of which are real.
We choose the objective function as f = x21 + x22. By Algorithm 3.3, we obtain all real

solutions:

v1 = (−1.0000,−1.0000)T ,

v2 = (−1.0000, 1.0000)T ,

v3 = (−0.3660,−1.3660)T ,

v4 = (−0.3660, 1.3660)T ,

v5 = (1.3660,−0.3660)T ,

v6 = (1.3660, 0.3660)T .

The computation takes about 1.0 seconds.

Example 4.8 ([3]). Consider the polynomial equations:

h1 = x21 + x22 + x23 − 1,

h2 = x21 + x22 + x3 − 1,

h3 = x1.

We choose the objective function as f = x21+x
2
2+x

2
3. By Algorithm 3.3, we obtain three

real solutions:

v1 = (0,−1.0000, 0.0000)T ,

v2 = (0, 0.0000, 1.0000)T ,

v3 = (0, 1.0000, 0.0000)T .

The computation takes about 0.6 seconds.

Example 4.9 ([3]). This example aims to compute the real critical points of the energy
landscape of the two-dimensional nearest-neighbor φ4 model on a 3×3 grid as in [9, 19]. We
label the nodes 1, . . . , 9 with the following figure showing the coupling between the nodes.
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Figure 1: Nearest-neighbor coupling for a 3× 3 grid of nodes

Let N(i) denote the four nearest neighbors of node i, that is,

N(1) = {2, 3, 4, 7}, N(2) = {1, 3, 5, 8}, N(3) = {1, 2, 6, 9},
N(4) = {1, 5, 6, 7}, N(5) = {2, 4, 6, 8}, N(6) = {3, 4, 5, 9},
N(7) = {1, 4, 8, 9}, N(8) = {2, 5, 7, 9}, N(9) = {3, 6, 7, 8}.

After selecting various parameters for this model, we consider the potential energy

V (x) =

9∑
i=1

 1

40
x4i − x2i +

1

4

∑
j∈N(i)

(xi − xj)
2

 .
The system defining the critical points is h = ▽V so that

hi =
1

10
x3i − 2xi +

∑
j∈N(i)

(xi − xj), i = 1, . . . , 9.

It has 3 solutions

(0, 0, 0, 0, 0, 0, 0, 0, 0), ∓(ω, ω, ω, ω, ω, ω, ω, ω, ω),

where ω =
√
20 ≈ 4.4721.

We choose the objective function as f = x21 + · · ·+ x29. By Algorithm 3.3, we obtain all
real solutions

v1 =(0.00000.0000, 0.0000, 0.0000, 0.0000, 0.0000,−0.0000,−0.0000,−0.0000)T ,

v2 =(−4.4721,−4.4721,−4.4721,−4.4721,−4.4721,−4.4721,−4.4721,−4.4721,−4.4721)T ,

v3 =(4.4721, 4.4721, 4.4721, 4.4721, 4.4721, 4.4721, 4.4721, 4.4721, 4.4721)T

in 452 seconds.

5 Conclusions and Discussions

Solving polynomial equations is a classic problem in mathematics. In this paper, we studied
how to find all real solutions of polynomial equations, if there are finitely many ones. We
proposed a semidefinite relaxation algorithm for computing them sequentially. The conver-
gence properties of the algorithm are also given.
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Indeed, the polynomial inequality system gi(x) ≥ 0 (i = 1, . . . , s) can also be solved by
a similar method proposed in this paper. Consider the optimization problem

min f(x)
s.t. gi(x) ≥ 0, i = 1, . . . , s,

(5.1)

where f is a random polynomial in R[x]. Suppose gi(x) ≥ 0 (i = 1, . . . , s) has finitely many
solutions. Then we can compute them sequentially, similar to the way in Section 3. Each
solution can be obtained by solving a hierarchy of semidefinite relaxations.
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