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not easy to be verified. This paper aims to provide several sufficient conditions which can
be checked easily for the existence of solutions to QP with a closed convex constraint.

For these reasons, the aim of this work is to discuss the convexity and existence of
solutions to QP with a closed convex constraint. In Section 2, we present several sufficient
conditions which ensure the (strict) convexity of a QP. In Section 3, we present one necessary
condition and three sufficient conditions for the existence of solutions to QP with a closed
convex constraint.

2 The Convexity of QP Problems

In this work, we discuss the convexity and solution existence of the following QP problem:

QP(H,S)
min q(x) := cTx+ 1

2x
THx,

s.t. x ∈ S,

where c ∈ Rn, H is an n-order real symmetric matrix, and S is a nonempty convex set in
Rn.

Firstly, to obtain suitable conditions for the convexity of the objective function q(x) on
the convex feasible set S, referring to the analysis of [2, Section 3.2], we have the following
theorem. Since the set F (see Theorem 2.1) is not necessarily open, the following theorem
is different from the textbook material, where requires F to be an open set.

Theorem 2.1. Let F+ be a nonempty open set in Rn, and function f : F+ → R be
differentiable on F+. Assume that F is a nonempty convex subset (not necessarily open) of
F+. Then the following two conclusions hold true.

(i) The function f(x) is convex on the convex set F if and only if

f(y) ≥ f(x) +∇f(x)T (y − x),∀ x, y ∈ F . (2.1)

(ii) The function f(x) is strictly convex on the convex set F if and only if

f(y) > f(x) +∇f(x)T (y − x),∀ x, y ∈ F , x ̸= y. (2.2)

Proof (ia) [Necessity of claim (i)] Let f(x) be convex on F . Then, for two given points
x, y ∈ F and any λ ∈ (0, 1), according to the convexity and the first-order Taylor expansion
of f at x, we obtain

λf(y) + (1− λ)f(x) ≥ f(λy + (1− λ)x) = f(x+ λ(y − x))

= f(x) + λ∇f(x)T (y − x) + λ∥y − x∥α(λ),

where α : R → R satisfies lim
λ→0+

α(λ) = 0. By rearranging the terms and eliminating the

factor λ, the above relation further shows that

f(y)− f(x) ≥ ∇f(x)T (y − x) + ∥y − x∥α(λ).

Letting λ → 0+ in above inequality, it follows that f(y) ≥ f(x) + ∇f(x)T (y − x), which
shows that the formula (2.1) is true.

(ib) [Sufficiency of claim (i)] Suppose that relation (2.1) is satisfied. Let xλ := λy+(1−
λ)x ∈ F for any two points x, y ∈ F and any λ ∈ (0, 1), then

f(y) ≥ f(xλ) +∇f(xλ)
T (y − xλ) = f(xλ) + (1− λ)∇f(xλ)

T (y − x), (2.3)
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f(x) ≥ f(xλ) +∇f(xλ)
T (x− xλ) = f(xλ) + λ∇f(xλ)

T (x− y). (2.4)

It follows from (2.3) and (2.4) that

f(xλ) = f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x).

This shows that f(x) is convex on F .
(iia) [Necessity of claim (ii)] Let f(x) be strictly convex on F . Then f(x) is convex

and relation (2.1) holds true. We suppose, by contradiction, that there exist two dissimilar
points x̄, ȳ ∈ F such that (2.2) does not hold. Then f(ȳ) = f(x̄) +∇f(x̄)T (ȳ − x̄) by (2.1),
i.e., ∇f(x̄)T (ȳ − x̄) = f(ȳ) − f(x̄). Therefore, for each λ ∈ (0, 1), using relation (2.1) at
points λȳ + (1− λ)x̄ ∈ F and x̄ ∈ F , one has

f(λȳ + (1− λ)x̄) ≥ f(x̄) +∇f(x̄)T (λȳ + (1− λ)x̄− x̄)

= f(x̄) + λ∇f(x̄)T (ȳ − x̄).

This, together with ∇f(x̄)T (ȳ − x̄) = f(ȳ)− f(x̄), further gives

f(λȳ + (1− λ)x̄) ≥ f(x̄) + λ(f(ȳ)− f(x̄)) = λf(ȳ) + (1− λ)f(x̄).

This contradicts the strict convexity of f on F .
(iib) [Sufficiency of claim (ii)] The proof is similar to the one of claim (i). 2

For the objective function q(y) of QP(H,S), one always has q(y) = q(x) +∇q(x)T (y −
x) + 1

2 (y − x)TH(y − x) holding true for any x, y ∈ Rn. Now, applying Theorem 2.1 to
QP(H,S), we have the following result immediately.

Corollary 2.2. (i) The objective function q(x) of QP(H,S) is convex on the convex feasible
set S if and only if

dTHd ≥ 0, ∀ d ∈ (S − S),

i.e., the matrix H is positive semidefinite on the convex set (S−S) := {d = x−y : x, y ∈ S}.
(ii) The objective function q(x) of QP(H,S) is strictly convex on the convex feasible set

S if and only if
dTHd > 0, ∀ d ∈ (S − S), d ̸= 0,

i.e., the matrix H is positive definite on (S − S).

Remark 2.3. If the interior of S is nonempty, i.e., int S ̸= ∅, then 0 ∈ int (S − S).
Thus, H is positive definite (positive semidefinite) on (S − S) if and only if it is positive
definite (positive semidefinite) on Rn when int S ̸= ∅. Therefore, the objective function
q(x) of QP(H,S) is convex (strictly convex) on its feasible set S if and only if H is positive
semidefinite (positive definite) on the whole space Rn when int S ̸= ∅.

The following example shows that, in case int S = ∅, the positive definiteness (positive
semidefiniteness) of matrix H on the convex set (S − S) is weaker than on the whole space
Rn.

Example 2.4. Let

H1 =

(
4 −1
−1 −2

)
, S1 = {x ∈ R2 : x1 − x2 = 0, x1 ≥ 0, x2 ≥ 0}.

It is easy to show that (S1 − S1) = {x = (λ, λ), λ ∈ R}. Further, xTH1x = 0 holds for any
x ∈ (S1 − S1), i.e., H1 is positive semidefinite on (S1 − S1). Obviously, H1 is not positive
semidefinite on R2.
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For the application of Corollary 2.2, we analyze the structure of the set (S − S). Thus,
we review the recession cone (see [16]) of the set S as follows

0+S = {d ∈ Rn : x+ λd ∈ S, ∀ x ∈ S, ∀ λ ≥ 0}.

Specially, let 0+S = ∅ in case S = ∅. The following result can be shown easily.

Proposition 2.5. For any closed convex set S ⊆ Rn, the recession cone 0+S is a closed
convex cone. Furthermore, if

∑∞
i=1 λidi (λi ≥ 0, di ∈ 0+S) is convergent, then

∑∞
i=1 λidi ∈

0+S. In particular, the nonnegative combination of any finite terms in 0+S belongs to 0+S.

As special cases of S, we consider three kinds of polyhedral sets S as follows

Se = {x ∈ Rn : Ax = a}, Si = {x ∈ Rn : Bx ≤ b},

Sei = {x ∈ Rn : Ax = a, Bx ≤ b},

where matrices A ∈ Rm×n, B ∈ Rq×n and vectors a ∈ Rm, b ∈ Rq. It is easy to get that
0+Se = {d ∈ Rn : Ad = 0}, 0+Si = {d ∈ Rn : Bd ≤ 0} and 0+Sei = {d ∈ Rn : Ad =
0, Bd ≤ 0}.

Now, we use the recession cone 0+S to describe the structure of (S − S).

Proposition 2.6. (i) Relation (S − S) ⊇ 0+S holds true for any set S.
(ii) (Se − Se) = 0+Se.

Proof (i) If 0+S = ∅, then the conclusion holds true. Without loss of generality, we
suppose that 0+S ̸= ∅. Let d ∈ 0+S. Choose a point x0 ∈ S ̸= ∅, then, by the definition of
0+S, both x0 + d and x0 belong to S. Thus d = (x0 + d)− x0 ∈ (S − S). This shows that
(S − S) ⊃ 0+S.

(ii) From claim (i), it is sufficient to show (Se−Se) ⊆ 0+Se. For any point d = (x−y) ∈
(Se−Se), it follows that Ad = Ax−Ay = a−a = 0, i.e., d ∈ 0+Se. Thus, (Se−Se) ⊆ 0+Se.
2

Taking into account of Proposition 2.6 and Corollary 2.2, one has the following result.

Corollary 2.7. (i) If the objective function q(x) of QP(H,S) is convex (strictly convex) on
S, then the matrix H is positive semidefinite (positive definite) on the recession cone 0+S.

(ii) The objective function q(x) of QP(H,Se) is convex (strictly convex) on its feasible
set Se if and only if matrix H is positive semidefinite (positive definite) on the recession
cone 0+Se.

The following example shows that, even if S = Si, relation (S−S) = 0+S is not necessary
true, and the positive definiteness of H on 0+Si is not a sufficient condition for the convexity
of q(x) on the feasible set S.

Example 2.8. Let

H2 =

(
4 0
0 −1

)
, S2 = {(x1, x2) : x2 − x1 ≤ b1, −x2 ≤ b2}.

Then
0+S2 = {(d1, d2) : d2 − d1 ≤ 0, −d2 ≤ 0} = {(d1, d2) : d1 ≥ d2 ≥ 0}.

For x̂ = (12− b1 − b2, 3− b2) ∈ S2 and ŷ = (11− b1 − b2, 10− b2) ∈ S2, one has

d̂ := x̂− ŷ = (1,−7) ∈ (S2 − S2) \ 0+S2.
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This shows that (S2 − S2) ̸= 0+S2.

Furthermore, for any d ∈ 0+S2 \ {0}, we have d1 > 0, and

dTH2d = 4d11 − d22 ≥ 4d21 − d21 = 3d21 > 0.

Thus the matrix H2 is positive definite on 0+S2. However, H2 is not positive definite
on (S2 − S2) since d̂TH2d̂ = −45 < 0. Therefore, by Corollary 2.2, one can conclude that
the objective function q(x) of QP(H2, S2) is nonconvex on its feasible set S2.

3 The Existence of Solutions to QP Problems

In this section, we focus our attention on discussing the necessary and sufficient conditions
for the existence of solutions to the QP problem QP(H,S). It is easy to see that, if S is a
nonempty bounded closed set then QP(H,S) has at least one optimal solution. Throughout
this section, we always assume that S is a nonempty unbounded closed convex set in Rn.
Let ES denote the extreme point set of S, i.e., ES = {p : p is an extreme point of S}.
Let conv(ES) denote the convex hull of the set ES and Ω+

H(0+S) := {d ∈ 0+S : dTHd =
0}, ΩH(0+S) := {d ∈ 0+S : Hd = 0}.

If S = Rn (imply 0+S = Rn) and H is positive semidefinite on S, then dTHd = 0 ⇔
Hd = 0 (see [2, Corollary 1 in Section 11.2]), Thus Ω+

H(0+S) = ΩH(0+S). However, in case
S ̸= Rn, Ω+

H(0+S) and ΩH(0+S) might be not the same. This can be seen by Example 2.4,
where 0+S = {(λ, λ) : λ ≥ 0}, Ω+

H(0+S) = 0+S and ΩH(0+S) = {0}.
First, we have the following necessary condition.

Theorem 3.1. If the problem QP(H,S) has an optimal solution, i.e., the solution set of
QP(H,S) is nonempty, then

(i) the matrix H is positive semidefinite on the recession cone 0+S;

(ii) (c + Hx)T d ≥ 0 for all x ∈ S and all d ∈ Ω+
H(0+S), which further implies that

cT d ≥ 0 for all d ∈ ΩH(0+S).

Proof (i) Suppose by contraction that the stated conclusion is not true. Then there exists
a d̄ ∈ 0+S such that d̄THd̄ < 0. Let x∗ be an optimal solution to QP(H,S) and x̄ be any
given point in S. Then x̄+ λd̄ ∈ S for all λ ≥ 0 and

q(x∗) ≤ q(x̄+ λd̄) = q(x̄) + λ∇q(x̄)T d̄+
1

2
λ2d̄THd̄

= q(x̄) + λ(c+Hx̄)T d̄+
1

2
λ2d̄THd̄ (3.1)

→ −∞, as λ → +∞.

This contradicts that x∗ is an optimal solution to QP(H,S). Thus H is positive semidefinite
on the recession cone 0+S.

(ii) Suppose by contraction that there exist d̄ ∈ Ω+
H(0+S) ⊂ 0+S and x̄ ∈ S such that

(c+Hx̄)T d̄ < 0. Then, in view of d̄THd̄ = 0, in a same fashion to part (i), from (3.1), one
can bring a contraction. 2

Remark 3.2. The necessary conditions (i)-(ii) in Theorem 3.1 are not sufficient conditions
for the existence of solution to QP(H,S), even if the inequality in condition (ii) is strict for
d ∈ Ω+

H(0+S) \ {0}. See the following example.
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Example 3.3. In R2, consider

c =

(
1
1

)
, H3 =

(
−4 0
0 0

)
, i.e., q(x) = cTx+ 1

2x
TH3x = x1 + x2 − 2x2

1,

S3 = {x ∈ R2 : x2 ≥ x2
1, x1 ≥ 1} (a nonempty closed convex).

It is easy to see that 0+S3 = {d : d = λ(0, 1)T , λ ≥ 0}. Thus, H3d = 0 and dTH3d =
0 hold for all d ∈ 0+S3. Thus H3 is positive semidefinite on 0+S3, and Ω+

H3
(0+S3) =

ΩH3(0
+S3) = 0+S3. Furthermore, it follows that (c + H3x)

T d = cT d = λ > 0 for all d =
λ(0, 1)T ∈ Ω+

H3
(0+S3)\{0} and all x ∈ S3. However, for the sequence {xk = (k, k2)T } ⊂ S3,

q(xk) = k − k2 → −∞ as k → +∞. Therefore, the associated QP(H3, S3) has no optimal
solution.

In the rest of this section, if a sequence {xk} ⊂ S such that ∥xk∥ → ∞, we assume that
xk ̸= 0 for all k ∈ {1, 2, · · · }. Next, we present some sufficient conditions for the existence
of solution to QP(H,S). For this purpose, we first have the following lemma.

Lemma 3.4. If a sequence {xk} ⊂ S such that ∥xk∥ → ∞, then each accumulation d̄ of
{xk/∥xk∥} belongs to 0+S and d̄ ̸= 0.

Proof Let d̄ be any given accumulation of {xk/∥xk∥}. Then there exists an infinite index

set K such that xk/∥xk∥
K→ d̄. Obviously, ∥d̄∥ = 1 and d̄ ̸= 0. For any given point x̄ ∈ S,

we need to show that x̄+λd̄ ∈ S for any λ ≥ 0. In view of x̄, xk ∈ S and ∥xk∥ → ∞ as well
as the convexity of S, we know (1− λ

∥xk∥ )x̄+ λ
∥xk∥xk ∈ S when k is large enough. Further,

x̄+ λd̄ = lim
k→+∞,k∈K

(
x̄+ λ

xk

∥xk∥

)
= lim

k→+∞,k∈K

(
x̄+ λ

(xk − x̄)

∥xk∥

)
= lim

k→+∞,k∈K

(
(1− λ

∥xk∥
)x̄+

λ

∥xk∥
xk

)
.

This, along with the closedness of S, shows that x̄ + λd̄ ∈ S for any λ ≥ 0. The proof is
completed. 2

Theorem 3.5. For the QP problem QP(H,S), if the symmetric matrix H is positive definite
on the recession cone 0+S, then

(i) for any sequence {xk} ⊆ S with ∥xk∥ → ∞, one has lim
k→∞

q(xk) = +∞;

(ii) the QP problem QP(H,S) has at least one optimal solution.

Proof (i) Suppose by contraction that the stated conclusion is not true. Then there exists
an infinite sequence {xk} such that

{xk} ⊂ S, lim
k→+∞

∥xk∥ = ∞, lim
k→+∞

q(xk) ̸= +∞.

Thus, there exists an infinite index set K such that {q(xk) : k ∈ K} has an upper bound.
Therefore

a := sup{q(xk) : k ∈ K} < +∞.

That is

a ≥ q(xk) = cTxk +
1

2
xT
kHxk, k ∈ K.
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Dividing both sides of the above inequality by ∥xk∥2, one has

a

∥xk∥2
≥ cTxk

∥xk∥2
+

1

2

xT
k

∥xk∥
H

xk

∥xk∥
, k ∈ K. (3.2)

In view of the boundedness of the sequence {xk/∥xk∥ : k ∈ K}, one can suppose, without

loss of generality, that it converges to d̄, i.e., xk/∥xk∥
K→ d̄. Again, by Lemma 3.4, we know

that d̄ ∈ 0+S and d̄ ̸= 0. Thus, letting k → ∞ and k ∈ K in (3.2) and taking into account
∥xk∥ → ∞, we have d̄THd̄ ≤ 0. This, together with d̄ ∈ 0+S and d̄ ̸= 0, contradicts the
positive definiteness assumption about H on 0+S.

(ii) Let {xk} ⊂ S be such that q(xk) → q∗ := inf{q(x) : x ∈ S} < +∞. Then,
from result (i), we know that {xk} must possess a bounded infinite subsequence, namely,

{xk : k ∈ K ′}. Without loss of generality, suppose that xk
K′

→ x∗ ∈ S (due to the closedness
of S). Thus, q∗ = q(x∗) > −∞ and x∗ is an optimal solution of QP(H,S). 2

It is known that, in discussing and solving the QP problem QP(H,S), both the con-
vexity of QP(H,S) and the existence of solutions to QP(H,S) are very important. Now,
summarizing Corollaries 2.2, 2.7 and Theorem 3.5, we have three corollaries as follows.

Corollary 3.6. The problem QP(H,S) is not only strictly convex but also has a unique
optimal solution if and only if the matrix H is positive definite on (S − S). Particularly, if
int S ̸= ∅, then this condition is equivalent to that H is positive definite on Rn.

Proof (i) From Corollary 2.2, one has the equivalence between the strict convexity of the
problem QP(H,S) and the positive definiteness of matrix H on (S−S). Next, we prove the
following result:

If the matrix H is positive definite on (S−S), then the problem QP(H,S) has a unique
optimal solution.

Since 0+S ⊂ (S − S) and H is positive definite on (S − S), the matrix H is positive
definite on 0+S. From Theorem 3.5, one has QP(H,S) has at least one optimal solution.
Furthermore, take into account the strict convexity of the problem QP(H,S), QP(H,S) has
a unique optimal solution. 2

Corollary 3.7. Suppose that the equality constrained set Se is nonempty. Then, the associ-
ated problem QP(H,Se) is not only strictly convex but also has a unique optimal solution if
and only if the matrix H is positive definite on the recession cone 0+Se = {d ∈ Rn : Ad = 0}.
Furthermore, in this case, its optimal solution and Karush-Kuhan-Tucker (KKT) point are
the same.

Corollary 3.8. Let the equality and inequality constrained set Sei be nonempty. Assume that
the matrix H is positive definite on the recession cone 0+Sei = {d ∈ Rn : Ad = 0, Bd ≤ 0}.
Then the associated problem QP(H,Sei) has at least one optimal solution. Further, its
optimal solution is necessary a KKT point. However, due to q(x) is not necessary convex
on Sei, the converse is not necessarily true, i.e., a KKT point is not necessary an optimal
solution.

To illustrate Corollary 3.8, we consider the following example, which is a special case of
Example 2.8.

Example 3.9. (Illustrate Corollary 3.8) In R2, let

H4 =

(
4 0
0 −1

)
, c =

(
0
0

)
,
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S4 = {(x1, x2) ∈ R2 : x2 − x1 − 1 ≤ 0, −x2 − 2 ≤ 0}.

From Example 2.8, one knows that the matrix H4 is positive definite on 0+S4 = {(d1, d2) :
d1 ≥ d2 ≥ 0}. Therefore, from Corollary 3.8, we know that the associated problem
QP(H4, S4) has at least an optimal solution, which is necessary a KKT point of QP(H4, S4).
Again, by solving the KKT system of QP(H4, S4), all the KKT points are as follows:

(x∗;λ∗) = (0,−2; 0, 2)T , (x̂; λ̂) = (0, 0; 0, 0)T , (x̄; λ̄) =
(1
3
,
4

3
;
4

3
, 0
)T

.

It is not difficult to check that the KKT point x∗ = (0,−2)T is an optimal solution to
QP(H4, S4), and the other two KKT points x̂ and x̄ are not optimal.

Next, motivated by Theorem 3.1 and based on the positive semidefiniteness of H on 0+S
plus other suitable conditions, we further discuss sufficient conditions for the existence of
solution to QP(H,S).

Lemma 3.10. Assume that the QP problem QP(H,S) has no optimal solution. If {xk} ⊂ S
such that q(xk) → q∗ := inf{q(x) : x ∈ S}, then ∥xk∥ → ∞.

Proof If ∥xk∥ ̸→ ∞, then it possesses a bounded subsequence, say, {xk : k ∈ K}.
Without loss of generality, we suppose that xk

K→ x∗ ∈ S (due to the closedness of S). Thus
q∗ = q(x∗) and x∗ is an optimal solution of QP(H,S), which conflicts with the fact that
QP(H,S) has no optimal solution. 2

Theorem 3.11. For the QP problem QP(H,S), suppose that the extreme point set ES is
nonempty and bounded. Assume that the matrix H is positive semidefinite on the recession
cone 0+S, and that one of the two following conditions holds:

(C1) (c+Hx)T d > 0 holds for all x ∈ cl(conv(ES)) and all d ∈ Ω+
H(0+S)\{0};

(C2) (c+Hx)T d ≥ 0 holds for all x ∈ ES and all d ∈ 0+S.
Then,
(i) the QP problem QP(H,S) has at least one optimal solution;
(ii) there exists one optimal solution in the convex hull conv(ES), if condition (C2) is

satisfied.

Proof First of all, it is easy to know that the condition (C2) above has an equivalence
as follows:

Condition (C2) ⇔ (c+Hx)T d ≥ 0, ∀ x ∈ conv(ES),∀ d ∈ 0+S. (3.3)

(i) Suppose by contraction that QP(H,S) has no optimal solution.
First, there exists an infinite sequence {xk} ⊂ S such that q(xk) → q∗ := inf{q(x) : x ∈

S} < +∞. According to Lemma 3.10, it follows that ∥xk∥ → ∞. Again, in view of the
boundedness of the sequence {xk/∥xk∥}, there exists a convergent subsequence {xk/∥xk∥ :

k ∈ K}. Assume that xk/∥xk∥
K→ d̄. Therefore, by Lemma 3.4, we know that d̄ ∈ 0+S and

d̄ ̸= 0.
Second, taking into account q(xk) → q∗ < +∞, there exists a positive constant M > 0

such that

M ≥ q(xk) = cTxk +
1

2
xT
kHxk.

This further implies that

M

∥xk∥2
≥ cTxk

∥xk∥2
+

1

2

xT
k

∥xk∥
H

xk

∥xk∥
.
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Passing to the limit in the above inequality for k ∈ K, it follows that d̄THd̄ ≤ 0. This,
together with the positive semidefiniteness of H on 0+S and d̄ ∈ 0+S, gives that d̄THd̄ = 0
and d̄ ∈ Ω+

H(0+S)\{0}.
Third, from the fact that ES is nonempty, it is not difficult to show that S contains

no line. Otherwise, suppose that there exists a line {x̂ + λd̂ : λ ∈ R} ⊂ S, where d̂ ̸= 0.

Therefore, both d̂ and −d̂ belong to 0+S (see [16, Theorem 8.3]). Thus, for any point x ∈ S,

it follows that both x+ d̂ and x− d̂ belong to S, and x = 1
2 (x+ d̂) + 1

2 (x− d̂). This shows
that ES is empty. Therefore, by [16, Theorem 18.5] and Proposition 2.5, we know that the
set S can be expressed as the sum of the convex hull of ES and the recession cone 0+S,
namely,

S = conv(ES)⊕ 0+S := {x+ d : x ∈ conv(ES), d ∈ 0+S}. (3.4)

Fourth, by (3.4), there exist yk ∈ conv(ES) and d̂k ∈ 0+S such that

xk = yk + d̂k, k ∈ K.

Since ∥xk∥ → ∞ and {yk} is bounded (since ES is bounded), without loss of generality, one

could assume that ∥d̂k∥ ̸= 0 for all k ∈ K. And

xk = yk + λkdk, where λk = ∥d̂k∥ and dk = d̂k/∥d̂k∥ ∈ 0+S, k ∈ K.

Furthermore, in view of xk/∥xk∥ → d̄ and ∥dk∥ = 1, it follows that

λk = ∥xk − yk∥ → +∞, dk =
xk − yk

λk
=

xk − yk
∥xk − yk∥

→ d̄, k ∈ K.

Again, in view of the boundedness of {yk : k ∈ K}, one can suppose that, without loss
of generality, it converges to y∗ ∈ cl(conv(ES)) ⊂ S. Furthermore, since QP(H,S) has no
optimal solution, one has q∗ < q(y∗). Thus

0 > q∗ − q(y∗) = lim
k∈K

(q(xk)− q(yk))

= lim
k∈K

(q(yk + λkdk)− q(yk)) = lim
k∈K

(
λk (c+Hyk)

T
dk +

λ2
k

2
dTkHdk

)
.

This, together with dTkHdk ≥ 0 (since dk ∈ 0+S), implies that

(c+Hyk)
T dk < −λk

2
dTkHdk ≤ 0, when k ∈ K large enough. (3.5)

This contradicts the relationship (3.3) (i.e., condition (C2)). Furthermore, letting k → ∞
and k ∈ K in (3.5), one has

(c+Hy∗)
T d̄ ≤ 0, y∗ ∈ cl(conv(ES)), d̄ ∈ Ω+

H(0+S)\{0}.

This also contradicts the condition (C1). Therefore, result (i) holds true.
(ii) Let x∗ be an optimal solution to QP(H,S). Then, by (3.4), there exist y∗ ∈ conv(ES)

and d∗ ∈ 0+S such that x∗ = y∗+d∗. Furthermore, by (3.3) and the positive semidefiniteness
of H on 0+S, it follows that

(c+Hy∗)
T d∗ ≥ 0, dT∗ Hd∗ ≥ 0.

Therefore, we have

q(x∗) = q(y∗ + d∗) = q(y∗) + (c+Hy∗)
T d∗ +

1

2
dT∗ Hd∗ ≥ q(y∗).

This shows that the element y∗ of conv(ES) is also an optimal solution to QP(H,S). 2
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4 Conclusions

In this paper, we present several conditions for the (strict) convexity and existence of solution
to a class of quadratic programming problems QP (H,S), whose constraint is a closed convex
set. QP (H,S) is convex (strictly convex) if and only if the Hessian matrix of the objective
function is positive semidefinite (positive definite) on the difference of feasible set. Based on
the Hessian matrix of objective function and the recession cone of feasible set, we present
one necessary condition (Theorem 3.1) and three sufficient conditions (see Theorems 3.5 and
3.11) for the existence of solution to QP (H,S).
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