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ON THE CONVEXITY AND EXISTENCE OF SOLUTIONS TO
QUADRATIC PROGRAMMING PROBLEMS WITH CONVEX
CONSTRAINT™

JINBAO JIAN, MIANTAO CHAO!T XIANZHEN JIANG AND DAOLAN HAN

Abstract: Sequential quadratic programming (SQP) algorithm is a very effective algorithm for solving
constrained nonlinear programming. The search direction at each iteration of an SQP algorithm is usually
generated by solving one or more quadratic programming (QP) problems with closed convex constraint.
Therefore, an significant problem is discussing the convexity and the existence of solutions to QP. In this
paper, we present several conditions for the (strict) convexity and existence of solutions to a class of QP
problems.
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Introduction

Since the effective numerical performance, the research on the SQP method is very active.
The important achievements on SQP methods are abundant, see Refs. [3,5,6,8-15], but
far more than these. As we all know, at the each iteration of an SQP method, the core
technique and computation are to solve one or more appropriate QP subproblems with a
closed convex constraint.

Therefore, for SQP algorithms, the existence of solutions to QP is a basic and critical
problem. Gould [7] discussed and established the existence and uniqueness of the solutions
to QP with equality constraints. Cambini and Sodini [4] discussed a kind of particular
QP with a polyhedron set, where the Hessian matrix of the objective function has no more
than one nonpositive eigenvalue. Based on the Hessian matrix and gradient of objective
function as well as the recession cone of feasible set, Cambini and Sodini [4, Theorem 2.2]
established a sufficient and necessary condition for the existence of the optimal solution to
the discussed QP above. The key to the proof of [4, Theorem 2.2] is that the constraint
set is a polyhedron. [1, Theorem 3.4.1] established a sufficient and necessary condition for
the existence of the optimal solutions to the general optimization problems based on the
recession function in R™. Obviously, this result can be applied to QP, but the condition is
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not easy to be verified. This paper aims to provide several sufficient conditions which can
be checked easily for the existence of solutions to QP with a closed convex constraint.

For these reasons, the aim of this work is to discuss the convexity and existence of
solutions to QP with a closed convex constraint. In Section 2, we present several sufficient
conditions which ensure the (strict) convexity of a QP. In Section 3, we present one necessary
condition and three sufficient conditions for the existence of solutions to QP with a closed
convex constraint.

The Convexity of QP Problems

In this work, we discuss the convexity and solution existence of the following QP problem:

min ¢(z) := Tz + 12T Ha,

QP(H, 5) st.ze S

where ¢ € R™, H is an n-order real symmetric matrix, and S is a nonempty convex set in
R™.

Firstly, to obtain suitable conditions for the convexity of the objective function ¢(z) on
the convex feasible set S, referring to the analysis of [2, Section 3.2], we have the following
theorem. Since the set F (see Theorem 2.1) is not necessarily open, the following theorem
is different from the textbook material, where requires F to be an open set.

Theorem 2.1. Let F* be a nonempty open set in R", and function f : FT — R be
differentiable on F*. Assume that F is a nonempty conver subset (not necessarily open) of
F*. Then the following two conclusions hold true.

(i) The function f(x) is convex on the convex set F if and only if

fy) = fl2) + VI@) (y —2),¥ 2,y € F. (2.1)
(ii) The function f(z) is strictly convex on the convex set F if and only if
fly) > f@) + V(@) (y—a),Va,y e F, = #y. (2.2)

Proof (ia) [Necessity of claim (i)] Let f(x) be convex on F. Then, for two given points
z, y € F and any A € (0, 1), according to the convexity and the first-order Taylor expansion
of f at x, we obtain

M)+ A =XNfx) = fOy+0-Nz)=flz+Ay—2)
= f(@) + AV (@) (y = 2) + Ay — z]la(N),

where a : R — R satisfies )\lim+ a(M\) = 0. By rearranging the terms and eliminating the
—0

factor A, the above relation further shows that
fy) = f@) 2 V(@) (y —2) + |y — za().

Letting A — 0% in above inequality, it follows that f(y) > f(z) + Vf(2)T(y — x), which
shows that the formula (2.1) is true.

(ib) [Sufficiency of claim (i)] Suppose that relation (2.1) is satisfied. Let zy := Ay + (1 —
Az € F for any two points z, y € F and any A € (0, 1), then

fly) = flan) + V(@) (g —22) = flaa) + =NV (y—x),  (2.3)
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fl@) > fla) + V(e (@ —ax) = flan) + AV f(22)T (z — y). (2.4)
It follows from (2.3) and (2.4) that

fan) = fy+ (1 =Nz) <Af(y) + (1 = A) f(2).

This shows that f(z) is convex on F .

(iia) [Necessity of claim (ii)] Let f(z) be strictly convex on F. Then f(z) is convex
and relation (2.1) holds true. We suppose, by contradiction, that there exist two dissimilar
points Z,y € F such that (2.2) does not hold. Then f(7) = f(z) + Vf(z)" (7 — z) by (2.1),
ie., V(@) (g —z) = f(y) — f(z). Therefore, for each A € (0, 1), using relation (2.1) at
points Ay + (1 — A\)z € F and T € F, one has

fOg+(1=Nz) > f@+V@R) g+ (1-NT-7)
= f@+ V@) (G- 2).
= f(g) — f(Z), further gives
FOg+ QA =Nz) > f(2) + A(f(9) = f(2)) = Af(7) + (1 = A f(@).

This contradicts the strict convexity of f on F.
(iib) [Sufficiency of claim (ii)] The proof is similar to the one of claim (i). O
For the objective function ¢(y) of QP(H, S), one always has q(y) = q(z) + Vq(z)T (y —
z) + 1(y — )" H(y — x) holding true for any z,y € R". Now, applying Theorem 2.1 to
QP(H,S), we have the following result immediately.

This, together with V f(z)T (5 — z)

Corollary 2.2. (i) The objective function q(x) of QP(H,S) is convex on the convex feasible
set S if and only if
d"Hd >0,V de (S—8),

i.e., the matriz H is positive semidefinite on the convex set (S—S) :={d=xz—y: z, y € S}.
(ii) The objective function q(x) of QP(H,S) is strictly convex on the convex feasible set
S if and only if
d"Hd >0,Vde(S—-8), d+#0,

i.e., the matriz H is positive definite on (S — S).

Remark 2.3. If the interior of S is nonempty, i.e., int S # (), then 0 € int (S — 9).
Thus, H is positive definite (positive semidefinite) on (S — S) if and only if it is positive
definite (positive semidefinite) on R™ when int S # (. Therefore, the objective function
q(z) of QP(H,S) is convex (strictly convex) on its feasible set S if and only if H is positive
semidefinite (positive definite) on the whole space R™ when int S # (.

The following example shows that, in case int S = {), the positive definiteness (positive
semidefiniteness) of matrix H on the convex set (S — S) is weaker than on the whole space
R".

Example 2.4. Let

H1_<_41 :;), 51:{1'€R2$1—$2:0,$120,$220}

It is easy to show that (S; — S1) = {z = (\,\), A € R}. Further, 27 Hyz = 0 holds for any
x € (81 — S1), i.e., Hy is positive semidefinite on (S; — S7). Obviously, H; is not positive
semidefinite on R2.
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For the application of Corollary 2.2, we analyze the structure of the set (S — S). Thus,
we review the recession cone (see [16]) of the set S as follows

0tS={deR": x+Xd€S, Ve VI>0}
Specially, let 07.S = ) in case S = (). The following result can be shown easily.

Proposition 2.5. For any closed convexr set S C R", the recession cone 01 S is a closed
convex cone. Furthermore, if Y .1 Nidi (A; >0, d; € 01S) is convergent, then > =, \id; €
0TS. In particular, the nonnegative combination of any finite terms in 0TS belongs to 0T S.

As special cases of S, we consider three kinds of polyhedral sets S as follows
Se={reR": Az =a}, S;={x € R": Bx <b},

Sei ={r € R": Ax =a, Bxr < b},

where matrices A € R™*", B € R7*™ and vectors a € R™, b € R?. It is easy to get that
0"Se ={de R": Ad =0}, 07S; ={d e R": Bd <0} and 0tSy; = {d e R": Ad =
0, Bd < 0}.

Now, we use the recession cone 0TS to describe the structure of (S — S).

Proposition 2.6. (i) Relation (S — S) 2 0%S holds true for any set S.
(ii) (Se— Se) = 0T Se.

Proof (i) If 0TS = @, then the conclusion holds true. Without loss of generality, we
suppose that 07S # ). Let d € 07S. Choose a point 2° € S # (), then, by the definition of
0*S, both 2° + d and 2° belong to S. Thus d = (2° + d) — 2° € (S — S). This shows that
(S—S)D>07"S.

(ii) From claim (i), it is sufficient to show (Se —Se) C 07 Se. For any point d = (z —y) €
(Se—Se), it follows that Ad = A.T?—Ay =a—a= 0, i.e., de O+Se. Thus, (Se—Se) - O+Se.
O

Taking into account of Proposition 2.6 and Corollary 2.2, one has the following result.

Corollary 2.7. (i) If the objective function q(x) of QP(H,S) is convex (strictly convex) on
S, then the matriz H is positive semidefinite (positive definite) on the recession cone 07 S.

(ii) The objective function q(x) of QP(H, Se) is convex (strictly convex) on its feasible
set Se if and only if matriz H is positive semidefinite (positive definite) on the recession
cone 01 Se.

The following example shows that, even if S = Sj, relation (S—.S) = 01 is not necessary
true, and the positive definiteness of H on 07 S; is not a sufficient condition for the convexity
of q(x) on the feasible set S.

Example 2.8. Let

4 0
Hy = < 0 -1 ), Sy = {(z1,22) : w2 — 21 < by, —x2 < ba}.

Then
0+52 = {(dl,dg) : d2 — d1 S O, —d2 S 0}‘ = {(dl,dz) : dl Z d2 Z 0}
For & = (12 — by — b3,3 —b2) € Sy and § = (11 — by — b2, 10 — by) € S, one has

d:= i‘—g = (1,—7) S (SQ —SQ) \0+Sg.
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This shows that (So — S3) # 07 S,.
Furthermore, for any d € 0755 \ {0}, we have d; > 0, and

d" Hod = 4d7 — d3 > 4d3 — d3 = 3d} > 0.

Thus the matrix Hj is positive definite on 07Sy. However, Hy is not positive definite
on (Sy — S3) since df Had = —45 < 0. Therefore, by Corollary 2.2, one can conclude that
the objective function ¢(x) of QP(Hz, S2) is nonconvex on its feasible set Ss.

The Existence of Solutions to QP Problems

In this section, we focus our attention on discussing the necessary and sufficient conditions
for the existence of solutions to the QP problem QP(H,S). It is easy to see that, if S is a
nonempty bounded closed set then QP(H, S) has at least one optimal solution. Throughout
this section, we always assume that S is a nonempty unbounded closed convex set in R™.
Let Es denote the extreme point set of S, i.e., Eg = {p : p is an extreme point of S}.
Let conv(Eg) denote the convex hull of the set Eg and Q;(0%S) := {d € 0tS: dTHd =
0}, Qu(0tS):={de0tS: Hd=0}.

If S = R™ (imply 0*S = R™) and H is positive semidefinite on S, then d’ Hd = 0 <
Hd =0 (see [2, Corollary 1 in Section 11.2]), Thus Q},(07S) = Q (0 S). However, in case
S # R™, Qf(0%S) and Qx(0%S) might be not the same. This can be seen by Example 2.4,
where 078 = {(\,A) : A >0}, Qf(07S) =07 S and Qp(0+5) = {0}.

First, we have the following necessary condition.

Theorem 3.1. If the problem QP(H,S) has an optimal solution, i.e., the solution set of
QP(H,S) is nonempty, then

(i) the matriz H is positive semidefinite on the recession cone 0TS

(ii) (c + Hz)Td > 0 for all x € S and all d € Qf(07S), which further implies that
c'd >0 for all d € Qu(0+S).

_Proof (i) Suppose by contraction that the stated conclusion is not true. Then there exists
a d € 07S such that d"Hd < 0. Let z* be an optimal solution to QP(H, S) and 7 be any
given point in S. Then T+ A\d € S for all A > 0 and

gz*) < q(z+ M) = q@) +\Vqz)Td+ %)\%ZTHJ

= q@) 4+ MNc+Hp)Td+ %AWHJ (3.1)

—  —00, as A — +oo.

This contradicts that z* is an optimal solution to QP(H,.S). Thus H is positive semidefinite
on the recession cone 0.

(ii) Suppose by contraction that there exist d € Q};(0%S) € 07S and z € S such that
(c+ Hz)Td < 0. Then, in view of d" Hd = 0, in a same fashion to part (i), from (3.1), one
can bring a contraction. O

Remark 3.2. The necessary conditions (i)-(ii) in Theorem 3.1 are not sufficient conditions
for the existence of solution to QP(H, S), even if the inequality in condition (ii) is strict for
d € Q}(075)\ {0}. See the following example.



150 J. JIAN, M. CHAO, X. JJANG AND D. HAN

Example 3.3. In R2, consider

c:(}),Hg,:(4 8) ie., q(z) =z + JaT Hyx = o1 + x5 — 223,
22T

2

S ={r € R%: 22, x1 > 1} (a nonempty closed convex).

It is easy to see that 0¥ S3 = {d: d = A\(0,1)T, A > 0}. Thus, H3d = 0 and d? Hzd =
0 hold for all d € 07S3. Thus Hs is positive semidefinite on 0*S3, and Q;}s (0TS3) =
Qp,(07S3) = 07S3. Furthermore, it follows that (¢ + Hzz)Td = ¢Td = X\ > 0 for all d =
A0,1)7T ¢ QES (0153)\{0} and all = € S3. However, for the sequence {x;, = (k,k?)T} C Ss,
q(ry) = k — k> = —oc0 as k — +o0o. Therefore, the associated QP(H3, S3) has no optimal
solution.

In the rest of this section, if a sequence {zy} C S such that ||xg|| — oo, we assume that
xr # 0 for all k € {1,2,---}. Next, we present some sufficient conditions for the existence
of solution to QP(H,S). For this purpose, we first have the following lemma.

Lemma 3.4. If a sequence {x} C S such that ||zy|| — oo, then each accumulation d of
{zr/ |||} belongs to 0TS and d # 0.

Proof Let d be any given accumulation of {zy/||zx||}. Then there exists an infinite index

set K such that x/||zg|| Ei d. Obviously, ||d|| = 1 and d # 0. For any given point z € S,
we need to show that 4 Ad € S for any A>0. In view of Z, x € S and ||zy|| — oo as well
as the convexity of S, we know (1 — IIEkII )T + HrkH x € S when k is large enough. Further,

T4+ = lim FAAE ) = qim JE+>\M
k—+o0,k€K |EZA k—+o0,k€ K k||

by A
- lim l— )T+ 7 ) :
k—+oo,kEK <( ||l’k||) llzk | g

This, along with the closedness of S, shows that Z + Ad € S for any A > 0. The proof is
completed. O

Theorem 3.5. For the QP problem QP(H,S), if the symmetric matriz H is positive definite
on the recession cone 0TS, then
(i) for any sequence {x} C S with |zk| — oo, one has klim q(xg) = 4o0;
—00

(ii) the QP problem QP(H,S) has at least one optimal solution.

Proof (1) Suppose by contraction that the stated conclusion is not true. Then there exists
an infinite sequence {xy} such that

S li = 1i .
{zx} C S, kJToon’“” 0, k_ir_‘{lOOQ(xk)?é‘f'OO

Thus, there exists an infinite index set K such that {g(xx) : k € K} has an upper bound.
Therefore

a :=sup{q(x): k€ K} < 4oc.

That is

1
—xlHxy, k€ K.

a>q(ey) = oy + 5
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Dividing both sides of the above inequality by ||zx]|?, one has

a cl'ay, 1zl T
> = ke K. 3.2
el = Ml 2 gl ]’ 32

In view of the boundedness of the sequence {zy/||zx| : k € K}, one can suppose, without

loss of generality, that it converges to d, i.e., x1./||xx| X d. Again, by Lemma 3.4, we know
that d € 0TS and d # 0. Thus, letting k — co and k € K in (3.2) and taking into account
llzx| — oo, we have d¥ Hd < 0. This, together with d € 07S and d # 0, contradicts the
positive definiteness assumption about H on 0%S.

(ii) Let {zx} C S be such that ¢(zr) — ¢* = inf{q(z) : = € S} < 4o00. Then,
from result (i), we know that {x;} must possess a bounded infinite subsequence, namely,

{z} : k € K'}. Without loss of generality, suppose that z;, Kares (due to the closedness
of S). Thus, ¢* = q(z*) > —oo and z* is an optimal solution of QP(H,S). O
It is known that, in discussing and solving the QP problem QP(H,S), both the con-
vexity of QP(H,S) and the existence of solutions to QP(H, S) are very important. Now,
summarizing Corollaries 2.2, 2.7 and Theorem 3.5, we have three corollaries as follows.

Corollary 3.6. The problem QP(H,S) is not only strictly convex but also has a unique
optimal solution if and only if the matriz H is positive definite on (S — S). Particularly, if
int S # 0, then this condition is equivalent to that H is positive definite on R™.

Proof (i) From Corollary 2.2, one has the equivalence between the strict convexity of the
problem QP(H, S) and the positive definiteness of matrix H on (S —5). Next, we prove the
following result:

If the matrix H is positive definite on (S — S), then the problem QP(H, S) has a unique
optimal solution.

Since 078 C (S — S) and H is positive definite on (S — S), the matrix H is positive
definite on 07S. From Theorem 3.5, one has QP(H, S) has at least one optimal solution.
Furthermore, take into account the strict convexity of the problem QP (H, S), QP(H, S) has
a unique optimal solution. O

Corollary 3.7. Suppose that the equality constrained set Se is nonempty. Then, the associ-
ated problem QP(H,S.) is not only strictly convex but also has a unique optimal solution if
and only if the matriz H is positive definite on the recession cone 0v S, = {d € R" : Ad = 0}.
Furthermore, in this case, its optimal solution and Karush-Kuhan-Tucker (KKT) point are
the same.

Corollary 3.8. Let the equality and inequality constrained set Sq; be nonempty. Assume that
the matriz H is positive definite on the recession cone 0V Se; = {d € R": Ad =0, Bd <0}.
Then the associated problem QP(H,Se) has at least one optimal solution. Further, its
optimal solution is necessary a KKT point. However, due to q(x) is not necessary convex
on Sei, the converse is not necessarily true, i.e., a KKT point is not necessary an optimal
solution.

To illustrate Corollary 3.8, we consider the following example, which is a special case of
Example 2.8.

Example 3.9. (Illustrate Corollary 3.8) In R?, let

(1 0)= (1)
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S4={(31‘1,.132)ER22 $2—Z‘1—1§0, —$2—2§0}.

From Example 2.8, one knows that the matrix Hy is positive definite on 07.Sy = {(d1,d>) :
dy > dy > 0}. Therefore, from Corollary 3.8, we know that the associated problem
QP(Hy, S4) has at least an optimal solution, which is necessary a KKT point of QP(Hy, Sy).
Again, by solving the KKT system of QP(Hy, S4), all the KKT points are as follows:

144 )T
3’373’

It is not difficult to check that the KKT point z* = (0,—2)7 is an optimal solution to
QP(Hy, Sy), and the other two KKT points & and Z are not optimal.

(#%507) = (0,-2,0,2)7, (54) = (0,0:0,0)7, (#:}) = (

Next, motivated by Theorem 3.1 and based on the positive semidefiniteness of H on 0%S
plus other suitable conditions, we further discuss sufficient conditions for the existence of
solution to QP(H, S).

Lemma 3.10. Assume that the QP problem QP(H,S) has no optimal solution. If {xp} C S
such that q(xy) — ¢* := inf{q(x) : x € S}, then |zk| — co.

Proof If ||z|| # oo, then it possesses a bounded subsequence, say, {z; : k € K}.

Without loss of generality, we suppose that zj Kaees (due to the closedness of S). Thus
q* = q(z*) and z* is an optimal solution of QP(H,S), which conflicts with the fact that
QP(H, S) has no optimal solution. O

Theorem 3.11. For the QP problem QP(H,S), suppose that the extreme point set Eg is
nonempty and bounded. Assume that the matriz H is positive semidefinite on the recession
cone 015, and that one of the two following conditions holds:

(C1) (c+ Hz)Td > 0 holds for all z € cl(conv(Es)) and all d € Q(05)\{0};

(C2) (c+ Hx)Td > 0 holds for all x € Es and all d € 0FS.

Then,

(i) the QP problem QP(H,S) has at least one optimal solution;

(i) there exists one optimal solution in the convex hull conv(Es), if condition (C2) is
satisfied.

Proof First of all, it is easy to know that the condition (C2) above has an equivalence
as follows:

Condition (C2) < (c+ Hx)"d >0, ¥V x € conv(Es),V d € 07 S. (3.3)

(i) Suppose by contraction that QP(H,S) has no optimal solution.

First, there exists an infinite sequence {z)} C S such that ¢(zy) — ¢* :=inf{q(z) : = €
S} < 4o00. According to Lemma 3.10, it follows that ||zk| — oco. Again, in view of the
boundedness of the sequence {xy/||zk||}, there exists a convergent subsequence {xy/||zx|| :
k € K}. Assume that xy /| x| K d. Therefore, by Lemma 3.4, we know that d € 0+ S and
d#0.

Second, taking into account g(zr) — ¢* < 400, there exists a positive constant M > 0
such that

1
M > q(zp) = T2 + §m;‘fok
This further implies that

M Ty 1 x{ Tk

el = Nl 2zl Nkl
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Passing to the limit in the above inequality for & € K, it follows that d” Hd < 0. This,
together with the positive semidefiniteness of H on 07 S and d € 015, gives that d" Hd = 0
and d € Q7(075)\{0}.

Third, from the fact that Eg is nonempty, it is not difficult to show that S contains
no line. Otherwise, suppose that there exists a line {Z + M: M€ R} C S, where d # 0.
Therefore, both d and —d belong to 07 S (see [16, Theorem 8.3]). Thus, for any point z € S,
it follows that both z + d and x — d belong to S, and z = iz + d) + iz — d). This shows
that Eg is empty. Therefore, by [16, Theorem 18.5] and Prop051t10n 2 5, we know that the
set S can be expressed as the sum of the convex hull of Eg and the recession cone 015,
namely,

S =conv(Eg) ®07S :={z+d: z € conv(Es), d €07 S}. (3.4)
Fourth, by (3.4), there exist y; € conv(Eg) and dj, € 0TS such that
x =y +dy, k€ K.

Since ||zx|| — oo and {yx} is bounded (since Eg is bounded), without loss of generality, one
could assume that ||dg|| # 0 for all k € K. And

Tk = Yk + Medi, where A, = ||di|| and dj, = di/||di| € 0S, k € K.

Furthermore, in view of zj/||zx|| — d and ||di| = 1, it follows that

xk—yk: Tk — Yk wd ke K
Ak lze =yl

Ak = [T — yxll = +o0, di =

Again, in view of the boundedness of {y; : k € K}, one can suppose that, without loss
of generality, it converges to y. € cl(conv(Eg)) C S. Furthermore, since QP(H,.S) has no
optimal solution, one has ¢* < ¢(y*). Thus

0 > ¢ —q(y") = lim(g(zr) — alyr))
. T Mo
= hm( (yk + Medr) — q(yr)) = llleI% Me (c+ Hyg)" di + Edk Hdy ).
This, together with d Hdy, > 0 (since dj, € 07S), implies that

A
(c+ Hyp) dy < —?kdedk <0, when k € K large enough. (3.5)

This contradicts the relationship (3.3) (i.e., condition (C2)). Furthermore, letting k — oo
and k € K in (3.5), one has
(c+ Hy,)Td <0, y. € cl(conv(Es)), d € Qf(079)\{0}.

This also contradicts the condition (C1). Therefore, result (i) holds true.

(ii) Let 2, be an optimal solution to QP (H, S). Then, by (3.4), there exist y, € conv(Eg)
and d, € 0%S such that 2, = y.+d,. Furthermore, by (3.3) and the positive semidefiniteness
of H on 075, it follows that

(c+ Hy)"d, >0, d'Hd, > 0.
Therefore, we have

1
q(z.) = q(y« + d) = q(y.) + (c+ Hy.)"d, + id*THd* > q(Y«)-

This shows that the element y, of conv(Eg) is also an optimal solution to QP(H, S). O
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Conclusions

In this paper, we present several conditions for the (strict) convexity and existence of solution
to a class of quadratic programming problems QP(H, S), whose constraint is a closed convex
set. QP(H,S) is convex (strictly convex) if and only if the Hessian matrix of the objective
function is positive semidefinite (positive definite) on the difference of feasible set. Based on
the Hessian matrix of objective function and the recession cone of feasible set, we present
one necessary condition (Theorem 3.1) and three sufficient conditions (see Theorems 3.5 and
3.11) for the existence of solution to QP(H, S).
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