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SECOND-ORDER SLICE-DERIVATIVE OF CONVEX
FUNCTIONS IN NORMED SPACES

YARA MOHAMMAD AND MOHAMED SOUEYCATT

Abstract: Epi-derivatives have many applications in variational analysis and optimization. In particular,
second-order epi-derivatives play an important role in optimality conditions statements, and sensitivity
results. Introduced by R.T. Rockafellar in finite dimensional spaces, these notions have been studied for
convex functions acting on reflexive Banach spaces by Chi Ngoc Do. The purpose of this article is to
extend these results to general normed spaces, replacing the Mosco convergence by a stronger notion which
is called epigraphical slice convergence. New results are obtained for the second-order slice-derivative of
convex functions and the proto-derivative of the subdifferential operators. We show that the conjugate of
the second-order slice-derivative of a convex function is the second-order slice-derivative of its conjugate
function. We establish that a function is twice slice-differentiable if and only if its subdifferential is proto-
differentiable, as a set-valued mapping. We also give formulas for the second-order slice-derivative of a
composite function of the form f o A with f convex and A linear.
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Introduction

In [15,17] R.T. Rockafellar introduced second-order epi-derivatives to establish necessary
and sufficient conditions for optimality. This notion is based on the epi-convergence of the
second-order difference quotients, hence its name. It turns out that this a is useful concept
for several classes of nonsmooth functions, including convex functions, convex-concave saddle
functions, strongly subsmooth functions, or composite function of the form f o A, with f
convex and A of class C2. These concepts have been developed further in [3,7,8,14,17].
Second-order optimality conditions in nonlinear programming have been obtained in terms
of epi-derivatives in [12,15,18].

Many authors have tried to define second-order derivatives in a different way. Most
definitions have been limited to finite-valued functions (see for example [4,17,19]). In [10],
the second-order epi-derivatives have been studied in the case of reflexive Banach spaces,
where epiconvergence is replaced by the notion of Mosco-epi-convergence.

The purpose of this article is to extend the theory to general normed spaces, replacing
Mosco-epi-convergence by a stronger convergence notion which is called epigraphical slice
convergence. The slice-convergence is a concept introduced by Beer in [5,6], which is equiv-
alent to Mosco convergence if and only if the underlying space is reflexive. This notion has
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been developed by many authors (see [19-22]), and has proved effective in analyzing the
stability of minimization problems in normed spaces.

The document is organized as follows. In Section 2, we set the notations and recall
some classical definitions and results. In Section 3, we present the definition and the first
properties of the second-order slice-derivative on a normed space X. We also give our first
main result (Theorem 3.7) concerning the continuity of the Legendre-Fenchel transform,
which allows us to establish the equivalence between the differentiability properties of f
and f*. In Section 4, we give our second important result (Theorem 4.3): we establish
that a lower semicontinuous proper convex function f on X is twice slice-differentiable at
x relatively to z if and only if its subdifferential mapping Jf is proto-differentiable at z
relatively to z. We also give a formula for the second-order slice-derivative of a composite
function of the form f o A with f convex and A linear.

Notation and Definitions

Recall some definitions and basic concepts in convex analysis and optimization. For
more details, one can refer to [1,9,11]. Let (X, ||.]|) be a normed linear space and (X*, ||.||,)
its topological dual. The duality pairing between y € X* and = € X is denoted by (z,y).

Let f : X — R be an extended real-valued function acting on X. We set briefly f € R”.
For such a function, the set

epif = {(z.0) € X xR | f(2) < a}

is called the epigraph of f. The function f is called convex (resp. lower semicontinuous) if
its epigraph is a convex (resp. closed) subset of X x R. Furthermore, f is called proper if
its epigraph is nonempty.

As usual, I'(X) denotes the set of proper, lower semi continuous convex functions acting
on X , and in a dual way, I'*(X™*) denotes the set of proper, weak* lower semicontinuous
convex functions acting on X*.

For f € T'(X), its conjugate f* € IT'*(X*) is defined by the formula: for any y € X*

f*(y) = sup {(z,y) — f(x)} (2.1)

reX

For h € T*(X*), we adopt the usual convention that h* be defined only on X rather than
on all of X** so that h* € T'(X). with this in mind, the Fenchel transform f — f* is a
bijective involation between I'(X) and I'*(X™).

The subdifferential of f € R at xg, denoted by df(zg), is defined by :
If (xo) ={y € X* | f(x) > f(z0) + (2 — @0,y) Yz € X}

={ye X" [ f(z) + [*(y) — (x,y) = 0}. (2.2)

This set is convex (closed) if f is convex (lower semicontinuous), and one has the following
equivalent

y € 0f(xo) & e >0,V € B(x,e), f(x) > f(zo) + (x — zo,y). (2.3)
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We write C(X) for the class of nonempty closed convex subsets of X, and CB(X) for the
nonempty closed and bounded convex subsets of X. For any A and C in C(X) the gap
D(A, C) between the two sets is given by

DA C)=inf{lla—c|| : a€ Aand ce C}. (2.4)

The Wijsman topology on C(X) is the topology generated by the family of functions
{d(z,.) : x € X}, where d(z,A) = inf{||lx —a|| : a € A}. Note that such a distance
functional is also a gap functional, namely, d (z,.) = D ({z}, .). Having this in mind, the
topology on C'(X) generated by

{D(B,.): B e CB(X)}

is the topology of interest for this paper, and is called the slice topology 74 (see [2,5,6]).

The classical notion of convergence for sequences of closed sets in a topological space X
is the convergence in the Kuratowski-Painlevé sense. Let us recall its definition: Given
a sequence of nonempty closed subsets {A,, A; n € N} of X, we have A = lim,, A,, pro-
vided A = lim, sup, A, = liminf, A,, where the lower and upper limits of the sequence
{A,; n € N} are defined by the formulas

liminf A, ;= {z € X | @n)nen; Tn € An;xy — z}

limsup A, :={x € X | 3(nk)ren; I @p)ren; Yk €Ny € Ay, a2 — 2}

Graph convergence (see [1]) Let {f,, f;n € N} be a sequence of functions of I'(X). We
say that the sequence (0f,) is graph-convergent to 0f and we write 0f = G—lim,, df,, if the
sequence {graph f,;n € N} converges in the Kuratowski-Painlevé sense to the set gph df in
(X X R), i.e., Of =liminf, df, = limsup,, df,, where the topological limits are taken with
respect to the strong topology on X x X*.

Convergence in C(X) (see [5])

e Let X be a normed space and let {A,, A; n € N} be subsets of C(X). The sequence
{A,;n € N} is said to be slice-convergent to A, and we write A = 75, — lim,, A,,, if for
each closed and bounded convex subsets B of X, we have

D(B,A)= lim D(B,A,). (2.5)

n—-+oo

e When X is a reflexive Banach space and the sets belong to C(X), the sequence
{A,;n € N} is said to be Mosco-convergent to A, and we write A = M — lim,, 4,
if for each weakly compact and convex subset K of X, we have

Since the closed convex and bounded subsets of a reflexive Banach space are weakly compact,
these two notions of convergence coincide in the reflexive setting.
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Mosco-epigraphical convergence ([13]) Let X be a reflexive Banach space and let
{fn, f;n € N} be a sequence of functions in I'(X). We say that the sequence {f,;n € N} is
Mosco-epi-convergent to f and we write f = M —epi—lim,, f,, if the sequence {epi f,,; n € N}
Mosco-converges to epi f in (X x R).

This is equivalent to say that, for any = € X, the two following statements hold:

M1) for any sequence (z,),cy: Zn — @ = f(z) < liminf, fo(2,);
n

M2) there exists a sequence ((,)nen such that ¢, — zand
f(z) > limsup,, fn(Cn)-

In the above statements, s (resp. w) is the strong (resp. weak) topology on X.

Slice-epigraphical convergence ( [5, 6]) Let X be a normed space and
{fn,f; n € N} be a sequence of proper lower semicontinuous convex functions on X. We
say that the sequence {f, ; n € N} is epigraphically slice convergent to f and we write
[ = 1, —lim, fyor f, —= f,if the sequence {epi f,; n € N} slice-converges to epi f in
X x R. This is equivalent to say that for any x € X, the two following statements hold:

S1) for any (y,n) € epif* with n > f*(y) and each bounded sequence (x,), there
exists ng € N such that for each n > ng, we have

fn(n) > (20, y) — .

S2) for each z € X, there exists (x,)nen that converges strongly to = and such that

flz)= lim fn(z,).

n — +00

Similarly, for {h,,h; n € N} a sequence of proper weak* lower semicontinuous convex
functions on X*, we have h = 7} — lim,, hpor h, ey hif and only if :

S*1) for any (z,a) € epih* witha > h* (z) and each bounded sequence (y,,), there
exists ng € N such that for each n > ng, we have

hn(yn) > <£L’, yn> - Q.

S5*2) for each y € X*, there exists (yn)neny that converges strongly to y and which
satisfies
h(y) = lm  h,(yn).

n — +oo

We recall some fundamental results concerning the slice convergence.

Proposition 2.1 ([19]). Let X be a normed space and {f,, f; n € N} be a sequence in
I'(X) such that f, —» f. Then for each &, — &, we have

f< limninf fn (§n)
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Theorem 2.2 ([6]). Let {fn, f;n € N} be a sequence of functions in T'(X). Then the
following two conditions are equivalent :

(i) f =7 —lim, f,

(i) f* =71 —lim, f}
Theorem 2.3 ([2]). Let X be a Banach space. Let {f,, f; n € N} be a sequence of

closed proper convex functions. Then f = 75— lim, f, if and only if the following two
conditions are satisfied :

(i) of = G —lim,df,
(i) there exists (u,z) € Of and a sequence (Uy, z,) € Ofy, such that

(uvf(u)vz): lim (unvfn(un)vzn)

n — +oo

The previous notions have natural extensions in case of a family of functions (¢¢),-,
parametrized by ¢t > 0. The slice convergence of p; to ¢ as t | 0 is defined by saying that
o, L2 o for every sequence t,, | 0. ie ¢ = 74 — lim,_ o0 ©t,, - In view of S1) and S2),
this is equivalent to say that:

Stl) for any (y,n) € epip* withn > ¢* (y) and each bounded sequence (), there
exists ng € N such that for each n > ng, we have ¢, (x,) > (Tp,y) — 7.

St2) for each x € X, there exists (z,)nen that converges strongly to x for which

plx) = Um @ (2,).

n — +0o

Second-Order Epi-Derivatives

Throughout this section, X is a normed space and f denotes a closed proper convex function.

Definition 3.1. Let f : X — R be finite at z € X. Let z € X* and consider the
second-order difference quotient functions ga,{ zz X = R

Plocl® = 5 @410 —F@) — 62} (>0) (31)

If the net of functions (QO{,z,z)t slice-converges as ¢ | 0 to some function ¢ € I' (X)), then we
say that f is twice slice- differentiable at x relatively to z, and ¢ is called the second-order

slice-derivative of f at x relatively to z. We then write f;' , instead of ¢, i.e.,

z

fa/:l, z = Ts — ltli(r)l 90{,:1:,7;
In terms of sequences ,
=T i ol 4.V it, L0 (3.2)

Some elementary properties entailed by these definitions are explored in the following propo-
sitions.
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Proposition 3.2. If f € T'(X), then for each t > 0 the function @,{x,z e I'(X).

Proof. Since f is proper, lower semicontinuous and convex then, as a direct consequence of
the formula (3.1), we have @{x _» € T'(X), which completes the proof. O

Proposition 3.3. The second-order slice-derivative function f, . is positively homogeneous

of degree 2 and f,/ . (0) = 0.

z

Proof. The positive homogeneity of degree 2 of f;' , is immediate from the form of the
functions cp{mz in (3.1). On the other hand, since (p{m,z (0) = 0 for every ¢, and by
Proposition 2.1 , one has f , (0) < liminf, o/, ,(0) = 0. Hence f” _(0) < 0, so f
is closed and proper. Also, )by homogeneity, f;’ Z (O) = A . (0), then7 the finiteness of

7, (0) gives f/ ,(0) = 0, which complete the proof. O

T, z T, 2z

Proposition 3.4. If f is twice slice-differentiable at x relative to z, then z € Of(x) the
subdifferential of f at x. Furthermore, one has 3’6'7 . > 0, and 0 s minimal point of fI 2
i.e., 0€afy .(0).

Proof. We proceed by contradiction. Suppose that f is twice slice- differentiable at z rel-
atively to z and that z ¢ Jf(xz). Since f is twice slice-differentiable at z relatively to z,
then for all ¢,, | 0, f; ., = 75 —limg, 0 gafmghz . Moreover, since z ¢ Of(x), then, by (2.3),
we deduce that for all € > 0 there exists h € B(z, ) such that :

fh) < f(z) + (h—w2)
Let h = &, + x withe = % and &, — 0, such that

floe+ &) —f(@) = (§n2) = an <0

Set

&) = flz+& —[flx) - (£2)
The function ¢ defined in this way is lower semicontinuous, convex and ¢ (0) = 0. As a
consequence

< liminf
0< g;low(in)

= liminf o,
n

< limsup ay,
n

= 0,

ie., liminf, o, = limsup,, a, = 0.
hence lim, a,, = 0. We may assume that |a,| < 1 for all n. By convexity of ¢, we have

¢ (—anbn) = ¢ (—an&n + (1 + an) (0))
—anp (&) + (1+ o) ¢ (0)
= —anp (&)

2
n*

IN

—Q
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Set t,, = —a, > 0. For all n € N, the difference quotients for the function f satisfy

f (1' B angn) B f (1') + O‘n<£nv Z>
(*O‘n)2

— @(_an£n> (33)

2
an,

50{7,,,:6 Lz (gn) =

< -1

By the slice-convergence of gotfmmyz to f;”z*, combined with Proposition 2.1 and inequality
(3.3), we obtain:

0=f.(0)
<liminfep/ , . (&) (3.4)
< -1

a clear contradiction. Hence z € Jf(x).

On the other hand, the above proof also implies that ¢ > 0, and hence f;’)z > 0; We
. e, 0 €9f),(0), which
completes the proof. O

conclude by Proposition 3.3 that 0 is a minimum point of f;/

Proposition 3.5. Let f : X — R be convex and C? (Fréchet) in a neighborhood of x € X.
Then the function

0 (©) = 5i6 D2 (@)8) (35)

s positive, convex, strongly continuous, and weakly lower semicontinuous.

Proof. Since f is convex and C2, the bilinear form D?f () is positive, hence ¢ > 0. The
strong continuity of ¢ follows from the strong continuity of D?f (). It is easy to see that

e+ (1 —t)n) =t () +A-)pn) —t1-t)p(E—n)
<tp@+ (A=t em, Vtelol].

This gives the convexity of ¢, and therefore the lower semicontinuity of ¢ for the weak
topology, which completes the proof. O

Proposition 3.6. Let f : X — R be a C? convex function in a neighborhood of v € X.
Then f is twice slice-differentiable at x relatively to D f (x), and the the second-order slice-
derivative fg’;’Df(m)is given by

P i) (©) = 506 D'f (@)8). (36)

Proof. By Taylor’s formula, we have

F@ 419~ £ (@)~ 16 DF @& = e D2 @) + o (Jeel?) (3.7)
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o(lieel®)
t2

with limy = 0. From (3.7) we obtain

1

Let us show that <pfw D Slice-converges (as (t ] 0) to f; Df(x)-
We start by proving S1): for every (¢, J 0) and for every (y,n) € epi (f;: D(z))” With

"

n > (fvaf(z))*(y), we have f;:, Df(x) (&) > (y,&) —n, V€ € X. As a consequence, for each
bounded sequence (§,,) we have

0 (Iltnéall?)

1
L‘Ofrb,av,Df(a:) (gn) = §<D2f (37) gnv §n> + t2

> (y,&n) — -

Let us now examine S2). Let € X, and (£,,)nen that converge strongly to £&. We have

2
y 1, 0 (gl
Hm @y o by (En) =Um (D7 (2) €, €n) + lim ——75—=
Hence, lim,, cp{n D) &) = ) Df(x) (£) . i.e., fis twice slice-differentiable at z relatively
to Df (z), and the the second-order slice-derivative is given by (3.5), which completes the
proof. O

Theorem 3.7 (Conjugacy). Let f: X — R be a closed proper convex function. Then one
has

a) z € Of (x) if and only if x € 9f*(2).

b) The second-order difference quotient functions of f and f* are conjugates from each,
namely

(ole2) (€ = (22) (3.8)

c) f is twice slice-differentiable at z relatively to z if and only if f* is twice slice-
differentiable at z relatively to x. More precisely

elo T 00l o= (12.)" (3.9)
Moreover,
* N
(fe.)" = (f2) (3.10)

Proof. part (a) : It is well-known in convex analysis. For closed proper convex function, one
has the following equivalence :

z € 0f(x) ©xedf(z)e f(z)+ f(2) =z, 2).

part (b) : First we compute the conjugate function to <p£ z,» and we obtain the relation
(3.8). Part (c) is a consequence of (b) and Theorem 2.2, which completes the proof. O
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Proto-Derivatives
Throughout this section, X and Y are Banach spaces .

Definition 4.1. Let I': X = Y be any multifunction and let x € X with T' (z) # ¢ and
y € T'(z). We consider the difference quotient multifunction :

Aley(©) = T TG +16) ~y}i € € X, (¢ >0) (11)

If the graphs of AE «,y Strongly-converge (as ¢ | 0) to some multifunction 4 : X = Y,
then we shall say that I' is proto- differentiable at = relatively to y, and A is called the
proto-derivative of I' at x relatively to y. We then write I‘;yy instead of A, i.e.,

! . F
r,, = G- ltlﬁ’)l Aty
In terms of sequences ,
Tpy = G= Tim Ay o, ¥itn 0.

We easily prove that 0 € I',, , (0) and I', | (A) = AL, , (&) for all £ € X and A > 0.

Theorem 4.2. Let f : X — R be a closed proper convex function, x € X such that f (z)
s finite and z € X*. Then the following two conditions are equivalent

(a) f is twice slice-differentiable at x relatively to z.

(b) z € 9f(x) and Of is proto-differentiable at x relatively to z, and the proto-derivative
of Of at x relatively to z is the subdifferential of ;’72. More precisely,

o(fr.) = (0f);.. (4.2)

Proof. For any t > 0, let

Plea(©) = 5 (@ +16) = F(@) — (500} € € X.
Then )
Oplo - (€)= T (2 +16) =2} : = AVL . (©) (43)

which is the difference quotient for the multifunction 9f.
Now, suppose that f is twice slice-differentiable at z relatively to z. Then z € 9f(x) by
Proposition 3.4 and for every sequence t,, | 0, we have

"o _ . f
fac,z =Ts ngrfoo @tn,x,z

By (i) of Theorem 2.3, we have

af:/v/,z =G— lim asozjfcn,,m,z

n—-+oo

Hence, from (4.3) it follows that
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afl, = G— lim A}

e

We conclude that the graph limit of A% exists and

t,x,z

" . IRT 6f _ /
6f:c,z - G ltli(r)lAt@,z (af)m,z
This proves (a) and (4.2).
Conversely, suppose that (b) of the theorem holds, that is, z € 9f(z) and there is a
maximal monotone operator A such that

— O_ T of
A=0G ngrfoo Otz Vi d0

Since the class of subdifferentials of closed proper convex functions is closed under Kuratowski-
Painlevé convergence in the class of maximal monotone operators, one has A = 0y for some
closed proper convex function. Hence by (4.3) , we have

dp = G— lim o] . (4.4)

n—-+oo

In fact, since z € Of(z) then 0 € &ptfmhz (0) = A?f@’z (0) and by the convergence in (4.4)

we obtain 0 € d¢ (0). Since ¢ (0) is finite, we can assume that ¢ (0) = 0 and by definition
(3.1), one has cp{mz (0) = 0. Hence, we see that (ii) of theorem 2.3 holds for go{xyz and ¢

by taking u, = z, = 0,¥n € N. To sum up, there exist (0,0) € dyp, (0,0) € agp{,am such
that (0, (0),0) = limy oo (tn, @] 4. (un), 20).
Then by (4.4), we conclude from theorem 2.3 that, for any sequence t,, | 0

— ; f .
Y= Ts — ngrfoo Qotn,m,z ; 1.€.

_ : f
Y= Ts— ltlfg wt,m,z*

with ¢ (0) = 0. This proves (b) , which completes the proof. O

Let us now consider the slice-diffferentiability properties of composite functions of the
form f o A with f convex and A linear in a normed space.

Proposition 4.3. Let X, Y be two normed spaces and let A: X — 'Y be a linear operator
isomorphism. Let f € T (x), and x € X such that Of (A(x)) #0, and let z € Jf (Ax).
Then:

(a) A*2€0(foA) ().

(b) If f is twice slice-differentiable at Ax relatively to z, then foA is twice slice-differentiable
at x relatively to A*z. More precisely,

(foA) 4o (&) = fli,. (AD). (4.5)
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Proof. Part (a): For any z € 0f (Ax), we have f (£') > f (Ax) + (z,& — Ax).
Since A is an isomorphism, there exists £ € X such that A§ = & and

(foA) (&) > (foA)(x)+ (2, AL — Ax)
=(fod)(x)+(z A 1))
=(fod)(z)+ (A2, —x)
that is, A*z € (f o A) ().
Part (b): Let (gofOA)%A*Z ) ((pf)Ax,z be the difference quotients of (f o A) (at x rela-
tively to A*z), f ( at Ax relatively to z), respectively. Then for all £ € X

(), O =g oA+~ (o 4) @)~ 1(4"5,6)
— ;2 {f (Az 4 tAE) — f (Az) —t (2, AE)}

= (), (9. (4.6)

Now, we will examine the two conditions S1) and S2) for the slice epigraphical conver-
gence:

S1) Suppose that f is twice slice-differentiable at Ax relatively to z. Let (y,n) €
epi (fli, .o A)* with (f%,.. o A)* (y) < n. For each bounded sequence (AE,) = (&), and
for each n € N, we have

<ya€n> -1 < (fx:c,z © A) (gn)
= Zm,z (gn) :

For all sequence t, | 0 and since f is twice slice-differentiable at Ax relatively to z, there
exists ng € N such that for each n > ng, we have:

(¢,) (A8 > @w.62) —n (47)

Comparing (4.6) with (4.7), for all ¢,, | 0 and for each n > ng, we obtain
foA _
(#1oh) &) > &) =

)

S2) Since f is twice slice-differentiable at Az relatively to z, for each & € X, there exists
(A&,) = (&) that converges strongly to A¢ = ¢’ for which

(Fozod) (© =tim (o],)  (46)

We conclude from S1) and S2) then f o A is twice slice-differentiable at x relatively to
A*z, and its second-order slice derivative is given by (4.5), which completes the proof. O



142 Y. MOHAMMAD AND M. SOUEYCATT
References
[1] H. Attouch, Variational convergence for functions and operators, London, 1984.

2]

[3]

H. Attouch and G. Beer, On the convergence of subdifferentials of convex functions,
Arch. Math. 60 (1993) 389-400.

H. Attouch and J.L .Ndoutoume and M.Théra, Epigraphical convergence of functions
and convergence of their derivatives in Banach spaces, Fx. No.9, Sem. Anal Convezxe
(Montpellier) 20 (1990) 1-45.

H. Attouch and M. Soueycatt, Augmented Lagrangian and Proximal Alternating Di-
rection Methods of Multipliers in Hilbert Spaces. Applications to Games, PDE’S and
Control, Pacific J. Optim. 5 (2009), 1-37.

G. Beer, The slice convergence: a viable alternative to Mosco convergence in non re-
flexive spaces, Nonlinear Anal. 19 (1992) 271-290.

G. Beer, On the Young-Fenchel transform for convex functions, Proc. Amer. Math. Soc.
104 (1988) 1115-1123.

F. Bernard, L. Thibault and N. Zlateva: Characterizations of Prox-regular sets in
uniformly convex Banach spaces, J. Conver Anal. (2006) 525-559.

R. Cominetti, On Pseudo-differentability, Trans. Amer. Math. Soc. 322 (1996).
F. Clarke, Optimizition and Nonsmooth Analysis, New-York: Wiley, 1983.

C.N. Do, Generalized second-order derivatives of convex functions in reflexive Banach
spaces, Trans. Amer. Math. Soc. 334 (1992) 281-310.

1. Ekeland et R.Temam, Analyse Convexe et Problémes Variationnels, Dunod, 1974.

A. B. Levy, R. Poliquin and L.Thibault, Partial extensions of Attouch’s theorem with
applications to proto-derivatives of subgradient mapping, Trans. Amer. Math. Soc. 347
(1995) 1269-1294.

U. Mosco, On the continutity of the Young-Fenchel transformation. J. Math. Anal.
Appl. 35 (1971) 318-335.

N. Ovcharova, Second-order analysis of the Moreau-Yosida and the Lasry-Lions regu-
larizations, Optimization Methods 25 (2010) 109-116.

R.T. Rockafellar, First and second-order epi-differentability in nonlinear programming
Trans. Amer. Math. Soc. 307 (1988) 75-108.

R.T. Rockafellar, Proto-differentability of set-valued mappings and its applications in
optimization, Ann. Inst. H. Poincaré, Anal. Nonlinéaire 6 (1989) 449-482.

R.T. Rockafellar, Generalized second derivatives convex functions and saddle functions,
Trans. Amer. Math. Soc. 322 (1990) 51-77.

R.T. Rockafellar, Second-order optimality conditions in nonlinear programming ob-
tained by way of epi-derivatives, Math. of Oper. Res. 14 (1989) 462-484.



SECOND-ORDER SLICE-DERIVATIVE OF CONVEX FUNCTIONS IN NORMED SPACES 143

[19] M. Soueycatt and F.Barhoom, On first order epi-derivatives of convex functions in
normed spaces, J. Res. Sci.Studies - Basic Sciences Series 33 (2011) 202-215.

[20] M. Soueycatt, The convergence of E-solution in terms of epigraphical distance, J. In-
ternational Academic Research for Multidisciplinary 4 (2016).

[21] R. Wenczel and A. Eberhard, Slice convergence of sums of convex functions in Banach
spaces and saddle point convergence, Applied Optimization, vol. 99, Springer, New
York, 2005, pp. 321-341.

[22] C. Zalinescu, Slice convergence for some classes of convex functions, J. Nonlinear Con-
vex Anal. 4 (2003) 291-299.

Manuscript received 15 February 2017
revised 27 September 2017
accepted for publication 10 November 2017

YARA MOHAMMAD

Al Andalus University For Medical Sciences
Faculty of Biomedical Engineering, Tartos, Syria
E-mail address: ym@au.edu.sy

MOHAMED SOUEYCATT
Department of Mathematics, Tishreen University, Latakia, Syria
E-mail address: soueycatt55@hotmail.com





